EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 07.02.1996 Bulletin 1996/06

(21) Application number: 92830316.3

(22) Date of filing: 17.06.1992

(54) Fulling machine with a cylinder provided with internal motor drive
Walke mit innerhalb des Walzenmantels angeordnetem Antriebsmotor
Fouuelve dont le cylindre comporte un moteur d’entraînement situé dans le corps du cylindre

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR LI NL PT

(30) Priority: 17.06.1991 IT FI910141


I-50047 Prato, Firenze (IT)

(72) Inventor: Biancalani, Fiorenzo
I-50047 Prato (IT)

(74) Representative: Mannucci, Gianfranco, Dott.-Ing. et al
I-50123 Firenze (IT)

(56) References cited:
EP-A- 0 419 825 DE-B- 1 216 234
DE-B- 1 221 604 DE-C- 742 750
DE-C- 862 294 GB-A- 857 000
GB-A- 2 032 703

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention)
Description

The invention relates to a fulling machine for textiles or similar comprising a pair of cylinders for drawing the textile and means of driving said cylinders in rotation, according to the preamble of claim 1. Such a machine is known from DE-C-742.750.

Fulling machines (see also GB-A-857.000) are used for the treatment of cord textiles, in which the textile is made to circulate within a vessel on whose bottom a treatment liquid is present. The textile is removed from the bath by means of a pair of cylinders with parallel axes rotating in opposite directions, and is impelled by these cylinders into a fulling box where the textile is compressed to cause it to shrink.

At present these machines are driven by means of electric or hydraulic motors and with a belt transmission which transmits the motion to the two cylinders of each fulling machine or mechanism. This is also true of multiple fulling machines constructed with dependent or independent fulling mechanisms, as for example in the machine described in Italian utility model application no. 11677 B/89 in the name of the present applicant.

These systems of driving the cylinders are particularly cumbersome, especially in the case of multiple fulling machines with an independent drive for each fulling mechanism, since the belts and the associated pulleys for the transmission of the motion from the motor to the two cylinders of each pair have a considerable transverse extension.

The subject of the invention is a machine which has a new type of cylinder drive which enables the transverse dimensions of the machine to be substantially reduced.

According to the invention, the fulling machine is provided with a driving motor inside each cylinder.

The use of internal motors inside a cylinder is known from GB-A-2032703. This prior art reference relates, however, to cylinders for driving a belt conveyor or a scraper chain conveyor.

In particular, since the cylinders of the fulling machine have a rather large diameter with respect to their axial extension, the motor is housed inside the cylinder with its axis substantially perpendicular to the axis of said cylinder. The motor is advantageously housed inside a box which may be sealed in order to protect the motor, especially when an electrical motor is used; this box may advantageously be supported by a shaft which projects from the ends of the corresponding cylinder and is supported in a fixed way on the sides of the machine. The supports of the corresponding cylinder may be disposed on this shaft.

A reduction unit may advantageously be disposed between the motor and the cylinder; the motion from the motor may advantageously be transmitted to the corresponding cylinder through a pinion which engages with a ring gear integral with one of the closure disks or with one of the two ends of the corresponding cylinder.

In a particularly advantageous embodiment, the two cylinders of the fulling mechanism are driven by electric motors which are both controlled preferably by a single inverter. The use of electric motors makes it possible considerably to simplify their power supply, and the use of a single inverter for each pair of cylinders substantially reduces the cost of the equipment.

As mentioned above, the use of the type of drive according to the invention is particularly advantageous in the case of multiple independent fulling machines, in which each fulling mechanism is provided with cylinder drive means independent of the adjacent mechanisms. In this case the reduction in transverse dimensions is substantial.

The drawing schematically illustrates a non-restrictive example of the invention.

Figs 1 and 2 show in a highly schematic way a fulling machine in longitudinal section and in transverse section respectively.

Fig. 3 shows a longitudinal section of a cylinder with an internal motor; and

Fig. 4 shows a section along IV-IV in Fig. 3.

According to the illustration in the attached drawing, and with reference to Figs 1 and 2 initially, 1 indicates a vessel for the treatment of a cord textile, indicated in a general way by T. The textile is made to circulate inside the machine in the direction of the arrow IT shown in Fig. 1. The movement of the textile is obtained by means of a pair of cylinders 3 and 4 with parallel and contra-rotating axes, between which the textile is made to pass. Cushions or jaws 5 are disposed upstream of the cylinders 3 and 4 to compact the textile T transversely as it enters the two drawing cylinders 3 and 4. A box 6 which has the function of compacting the textile leaving the cylinders 3 and 4 is located downstream of the cylinders 3 and 4 (with respect to the direction of advance of the textile). The textile is made to circulate repeatedly between the various components of the machine to achieve the desired treatment, as is known to experts in the field.

Fig. 2 shows the same elements as Fig. 1, in a front view. In this figure a number of fulling mechanisms 7, 9, and 11 are represented; each of these has pairs of cylinders 3 and 4 which are independent of each other. Characteristically, according to the invention, the movement of each of the cylinders 3 and 4 is obtained by means of a corresponding motor indicated by 13 in Fig. 2, housed inside each cylinder 3 and 4.

The disposition of the motor inside the corresponding cylinder is indicated for a single cylinder in Figs 3 and 4, the disposition of the other cylinder of each pair being symmetrical or identical.

In Figs 3 and 4 the cylinder is indicated by 3, and the motor by 13. The motor 13 has an axis A-A substantially perpendicular to the axis B-B of the cylinder 3.

The motor 13 is supported inside a box 17 consisting of two portions 17A and 17B coupled together in a sealed way. The box 17 is supported by two shafts 19 and 21
which project from the closure disks 3B of the cylinder 3 and are firmly attached to the structure 23 of the machine. In this way the box 17 is fixed with respect to the casing of the machine, while the cylinder 3 is free to rotate. For this purpose, the cylinder 3 support bearings are mounted on the shafts 19 and 21. The bearings 25 mounted on the shaft 19 may be seen in Fig. 3. The bearings on shaft 21 being disposed in a substantially symmetrical way. The two shafts 19, 21 are hollow to permit the passage of the motor supply line and, if necessary, the cooling air. Suction means which keep the interior of the box slightly depressurized may advantageously be used for cooling.

The motor 13 is attached by a flange to a flat portion 17P of the box 17, from which the shaft 29 of the motor 13 projects. A first pinion 31 is keyed to the shaft 29 and engages with a gear wheel 33 supported by an auxiliary shaft 35 firmly attached to the box 17. The gear wheel 33 is supported by means of rollers 36 and 37 by means of thrust bearings 38. A bevel pinion 39 is integral with the gear wheel 33 and in turn engages with a ring bevel gear 41 integral with one of the two sides or ends 3B of the cylinder 3. The set of gears 31, 33, 39, and 41 form a reduction mechanism for the motion from the motor 13 to the cylinder 3, which must rotate at a relatively low speed for the purposes associated with the processing cycle to which the textile T is subjected.

The two motors 13 associated with the two cylinders of each pair are advantageously controlled by a single inverter schematically indicated by 45 in Fig. 2, in order to obtain, at low cost, control of the speed of rotation of the cylinders, in such a way that there is no difference in peripheral speed, which might damage the textile being treated, between them. To permit control of the speed of rotation of the two cylinders, encoders associated with the corresponding motors may be used.

Figs. 1 and 2 further show a fixed frame 51 which supports the bearings of the lower cylinder 4. Reference number 53 denotes the pivots of arms 55 on which bearings of upper cylinder 3 are supported. Upper cylinder 3 is stressed toward cylinder 4 by a pneumatic spring 57. A further pneumatic spring acts onto a mobile wall 6A of box 6. This arrangement is known in the art.

Claims

1. A fulling machine for the treatment of textiles or similar, comprising a first drawing cylinder (3) and a second drawing cylinder (4) between which the fabric (T) is made to pass, and for each cylinder a driving motor (13) for driving said cylinders into rotation, said cylinders (3, 4) being rotated in opposite directions, characterized in that each motor (13) is arranged inside the respective cylinder (3, 4).

2. The fulling machine as claimed in claim 1, wherein said motor (13) is disposed with its axis (A-A) substantially perpendicular to the axis of rotation (B-B) of the corresponding cylinder.

3. The fulling machine as claimed in claim 1 or 2, wherein said motor is housed in a box (17) inside the corresponding cylinder.

4. The fulling machine as claimed in claim 3, wherein said box is supported by a fixed shaft (19) carried by the structure of the machine (9), and wherein the supports (25) for the corresponding cylinder are disposed on said shaft.

5. The machine as claimed in one or more of the preceding claims, wherein a reduction unit (31, 33, 39, 41) is disposed between the motor (13) and the cylinder (3).

6. The machine as claimed in one or more of the preceding claims, wherein a ring gear (41) which engages with a pinion (39) driven in rotation by said motor (13) is applied to the inner surface of one of the end walls (3B) of the cylinder.

7. The machine as claimed in one or more of the preceding claims, wherein said motor is an electric motor.

8. The machine as claimed in claim 7, wherein the two motors (13) associated with the two cylinders are controlled by the same inverter (45).

9. The machine as claimed in claim 3, wherein said box is supported by hollow shafts (19) for the passage of the power supply to the motor and for cooling of said motor where necessary.

10. The machine as claimed in one or more of the preceding claims, being constructed as a multiple machine (7, 9, 11) comprising two or more pairs of drawing cylinders, with independent operation of each pair of cylinders.

Patentansprüche

1. Walkmaschine für die Behandlung von Textilien od. dgl. mit einer ersten Vorschubwalze (3) und einer zweiten Vorschubwalze (4), zwischen denen das Gut (T) durchgeführt wird, sowie mit einem Antriebsmotor (13) für jede der Walzen für den Drehantrieb der Walzen, wobei die Walzen (3, 4) in entgegengesetzte Richtungen gedreht werden, dadurch gekennzeichnet, daß jeder Motor (13) innerhalb der zugehörigen Walze (3, 4) angeordnet ist.

2. Walkmaschine nach Anspruch 1.
bei der der Motor (3) mit seiner Achse (A-A) im wesentlichen rechtwinklig zu der Drehachse (B-B) der zugehörigen Walze angeordnet ist.

3. Walkmaschine nach Anspruch 1 oder 2, bei der der Motor in einem Kasten (17) innerhalb der zugehörigen Walze eingeschlossen ist.


5. Maschine nach einem oder mehreren der vorangehenden Ansprüche, bei der ein Untersetzungsgetriebe (31, 33, 39, 43) zwischen dem Motor (13) und der Walze (3) angeordnet ist.

6. Maschine nach einem oder mehreren der vorangehenden Ansprüche, bei der ein Zahnkranz (41), der mit einem vom Motor (13) angetriebenen Ritzel (39) kämmt, an der Innenfläche einer der Stirnwände (3b) der Walze angeordnet ist.

7. Maschine nach einem oder mehreren der vorangehenden Ansprüche, bei der der Motor ein Elektromotor ist.

8. Maschine nach Anspruch 7, bei der die beiden Motoren (13), die den beiden Zylindern zugeordnet sind, von dem gleichen Umformer (45) gesteuert sind.


Revendications

1. Une machine de foulage pour le traitement de textiles ou analogues comprenant un premier cylindre d'aménée (3) et un second cylindre d'aménée (4) entre lesquels le tissu (T) doit passer et pour chaque cylindre un moteur de commande (13) pour entraîner lesdits cylindres en rotation, lesdits cylindres (3, 4) étant animés d'un mouvement de rotation dans des directions opposées, caractérisée en ce que chaque moteur (13) est agencé à l'intérieur du cylin-

dre respectif (3, 4).

2. La machine de foulage selon la revendication 1, dans laquelle le cylindres moteur (13) est disposé avec son axe (A-A) essentiellement perpendiculaire à l'axe de rotation (B-B) du cylindre correspondant.

3. La machine de foulage selon la revendication 1 ou 2, dans laquelle le cylindres moteur est logé dans un carter (17) à l'intérieur du cylindre correspondant.

4. La machine de foulage selon la revendication 3, dans laquelle le cylindres moteur est supporté par un axe fixe (19) porté par la structure de la machine (9), et dans laquelle les supports (25) pour le cylindre correspondant sont disposés sur le cylindre axe.

5. La machine selon l'une ou plusieurs des revendications précédentes, dans laquelle une unité de réduction (31, 33, 39, 41) est disposée entre le moteur (13) et le cylindre (3).

6. La machine selon l'une ou plusieurs des revendications précédentes, dans laquelle un engrenage annulaire (41) qui est en prise avec un pignon (39) entraîné en rotation par le moteur (13) est appliqué à la surface intérieure de l'une des parois d'extrémité (3B) du cylindre.

7. La machine selon l'une ou plusieurs des revendications précédentes, dans laquelle le cylindres moteur est un moteur électrique.

8. La machine selon la revendication 7, dans laquelle les deux moteurs (13) associés aux deux cylindres sont contrôlés par le même inverseur (45).

9. La machine selon la revendication 3, dans laquelle le cylindres moteur est supporté par des axes creux (19) pour le passage de l'alimentation d'énergie au moteur et pour le refroidissement dudit moteur lorsque cela est nécessaire.

10. La machine selon l'une ou plusieurs des revendications précédentes qui est réalisée comme une machine multiple (7, 9, 11) comprenant deux ou plusieurs paires de cylindres d'aménée avec une opération indépendante de chaque paire de cylindres.