APPARATUS FOR TREATING ANALYTES.

Priority: 01.03.90 GB 9004596

Date of publication of application: 23.12.92 Bulletin 92/52

Publication of the grant of the patent: 19.07.95 Bulletin 95/29

Designated Contracting States: BE DE FR GB NL SE

References cited:
EP-A- 0 309 303
EP-A- 0 312 252
DE-A- 2 916 753
US-A- 3 930 880
US-A- 4 204 767

Proprietor: AMERSHAM INTERNATIONAL plc
Amersham Place
Little Chalfont Buckinghamshire HP7 9NA (GB)

Inventor: THOMAS, Nicholas
12 Maple Tree Close,
Radyr
Cardiff CF4 8RU (GB)

Representative: Perkins, Sarah et al
Stevens, Hewlett & Perkins
1 Serjeants’ Inn
Fleet Street
London EC4Y 1LL (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

BACKGROUND OF THE INVENTION

It is common practice in the fields of biomedicine and molecular biology to use techniques for the analysis of biological molecules where the analytes are immobilised on the surface of membrane filters. Such techniques are well documented in the scientific literature and have been used for the analysis of DNA, RNA and protein molecules. The processes used in such analyses are commonly termed Southern blotting (1) where DNA molecules or fragments are analysed, Northern blotting (2) where RNA molecules or fragments are analysed and Western blotting (3) where proteins or polypeptides are analysed.

The principle of all these techniques involves separation of the analyte molecules by electrophoresis in agarose or acrylamide gels such that the molecules or fragments of molecules are separated according to their molecular weight or physical size. Separation is followed by transfer of the analyte to a membrane composed of natural or synthetic polymer to produce an exact replica of the separation pattern on the gel. Such transfer is commonly achieved by capillary transfer, application of an electric field or by use of vacuum suction.

In addition to the above techniques there are a variety of further blotting procedures in common use in biomedicine and molecular biology. The technique commonly known as the uniblot (4) process involves drying the gel used for separation of the analyte to form a thin sheet which can then be handled and treated identically to a membrane blot. The techniques known as dot blotting (5) and slot blotting (6) are also widely used to confirm the presence or absence of a particular molecule or molecular fragment in an unseparated analyte mixture. In these techniques the analyte is applied directly to the membrane filter, either by use of a pipette tip, or by using a manifold filtration device.

Further blotting techniques are used in the process of gene cloning, to identify organisms containing an inserted nucleic acid sequence. In these procedures, known as colony lifts, bacteria are the organism used, or plaque lifts where the organism is viral, a filter is laid on the surface of a culture plate containing the organism and then removed, forming a replica of the distribution of organisms on the culture plate, which is then analysed for the presence or absence of the inserted nucleic acid sequence.

Central to all of the above techniques is the requirement to expose the immobilised analyte to a solution containing a further biomolecule, commonly termed a probe, which has an affinity for one or more analyte molecules, such that the probe molecule is able to bind to the immobilised analyte.

The probe molecule, which may be DNA, RNA, a synthetic oligonucleotide, a protein or polypeptide, or a ligand, is labelled with a radioactive isotope or non-radioactive reporter molecule, which may be either an enzyme or a small molecule (typically biotin or a hapten) recognised by an antibody or other binding protein.

Following exposure to the probe the blot is washed in order to achieve removal of unbound probe. Where the probe is labelled with a radioisotope, exposure of the blot to X-ray film produces an image on the film corresponding to the location of the analyte molecule or molecules recognised by the probe.

Where the probe carries a non-isotopic label further stages are necessary to achieve localisation of the bound probe. In the case of enzyme labelled probes, addition of a specialised enzyme substrate solution leads to the formation of a coloured stain or the emission of light at the position of the probe. Where the probe is labelled with biotin or a hapten molecule the blot is exposed to a solution containing either avidin or streptavidin in the case of biotin labelled probes, or to a solution containing an antibody recognising the hapten molecule. The antibodies or biotin binding proteins used in these procedures may themselves be labelled with either a radioisotope or an enzyme label, and detection is achieved using X-ray film or an enzyme substrate as described above.

While the great number of probe detection systems vary widely in method of action and in the complexity of the techniques used, all systems share a common requirement for multiple exposure of the immobilised analyte to reagent solutions, with each exposure separated by a washing procedure to prevent carry over or to remove non-specific binding of reagent, and so prevent interference with the next stage in the detection process.

Conventional methods of processing membrane blots to detect analytes are well established and documented (7,8,9,10). All methods rely on using a container or chamber in which the blot is placed, and into which the necessary reagent solutions may be introduced, in order to effect the desired detection of the analyte.

Such container or chambers are typically plastic bags, plastic boxes, or plastic or glass tubes, or various combinations of containers may be used in a single procedure. The use of such containers is well documented in the scientific literature, and a variety of commercially produced apparatus is available.

Currently available methods all rely on varying degrees of manual intervention during the process of probing and detection of probe, and require the worker to carry out manual addition and removal of the various reagents used. As a consequence, the techniques used are labour intensive, time consuming and unsuitable for automation due to the intricacy of the manipulations involved in transfer of membranes in and out of containers, and in addition and removal of
reagents without causing damage to the blot.

The invention as described seeks to remove the need for manual handling of the blot during processing and to perform the process of detection of analyte automatically by introduction of all necessary reagent and washing solutions onto the blot. Furthermore, by inclusion of a blot feed mechanism the invention may be used to allow the automatic sequential processing of a number of blots according to programmed instructions.

SUMMARY OF THE INVENTION

According to this invention in one aspect there is provided apparatus for handling or processing an analyte carried by a transporting means, comprising a processing chamber, a horizontally-disposed motor-driven rotary drum mounted in the chamber, means for attaching the transporting means to the peripheral surface of the drum, said chamber including a bath into which the lower portions of the periphery of the drum dip, and means whereby liquids can be fed into and emptied from the bath the drum having means for releasably attaching the transporting means by only its transverse leading edge to the drum, and in that the bath is shaped and arranged to extend closely about the lower portions of the periphery of the drum.

According to this invention in another aspect there is provided a method of treating a membrane blot comprising mounting the blot in a mesh envelope of sufficient porosity to allow free access to liquid reagents, attaching the mesh envelope by a leading edge to a motor-driven horizontally disposed rotary drum, placing in a bath extending closely about the lower portions of the periphery of the drum a succession of liquid treating and washing agents in turn each agent being discharged from the bath before the next agent is admitted, and rotating the drum to carry the envelope and blot through the liquids in the bath.

The invention also provides a method of treating a membrane blot carried by a carrier sheet of solid phase material comprising the steps of attaching the carrier sheet to a rotary element at least part of the periphery of which is disposed in a bath in which a succession of liquid treating and washing agents are accommodated in turn, each agent being discharged from the bath before the next agent is admitted, and rotating the rotary element whereby the blot is carried through the liquids in the bath in succession.

In a convenient application of the method of this invention membranes carrying the biological analyte or analytes are processed in a mechanism utilising a rotating drum, partially bathed in reagent solutions. Blots are held, analyte side outwards, on the central drum by attachment of the leading edge of the blot to the drum, and hence all areas of the blot are continually bathed with processing reagents as the blot is passed through the solutions by the rotating action of the drum.

Blots to be processed by this method may be of a standard size, determined by the dimensions of the processing drum or, alternatively, one or more smaller blots may be processed by use of a transporter in the form of a mesh envelope adaptor of a size suited to the dimensions of the drum. Where non-standard blots are used, one or more blots are placed in a heat sealable nylon mesh envelope of the same dimensions as the standard blot, the envelope sealed by heat welding, and processed in the same way as a standard blot.

DETAILED DESCRIPTION OF THE INVENTION

In order to clarify the principle and function of the invention, reference is now made to the accompanying drawings in which:

Figure 1 shows an end elevation of a processing apparatus according to the invention;
Figure 2 shows a front elevation of the apparatus of Figure 1;
Figure 3 shows a plan view of the apparatus of Figure 1; and
Figure 4 shows the apparatus of Figures 1 to 3 with ancillary equipment, and

Referring to Figures 1 to 4 of the drawings, the apparatus comprises a casing 10 providing in its upper portions, a chamber 11 in which a drum 12 driven by an electric motor 13 is mounted for rotation about a horizontal axis. A semi-cylindrical wall 14 extends substantially coaxially with the drum about the lower half of the drum and is spaced from the surface of the drum to form therewith a semi-annular space 15 which forms a bath or treatment chamber. Lateral continuations 16 of the semi-cylindrical wall 14 extend outward to the casing to form a sealing partition across the chamber. The axial ends of the walls 14,16 are sealed with respect to the casing. The space 15 can be charged with liquids through a feed pipe 17 projecting into the chamber 11 through the casing wall, and these liquids can be removed through an outlet duct 18 leading through the wall 14 from the bottom of the space and thence out of the casing, under the control of an outlet valve 18a which operates to seal the chamber 11, including the semi-annular space 15, during processing. The walls 14,16 form also the top of a water jacket 20 through which water at any predetermined temperature above the ambient value can be circulated by means of a circulatory pump, the water temperature being set by a thermostatically controlled heater 21. The inlet and outlet pipes for the circulating water are shown at 22 and 23.

In operation, a membrane blot is introduced analyte face upward into the casing through a slot 35 therein and the leading edge of the blot is fed between part of the top wall 16 and a guide bracket 36 into an
axial slot 37 in the cylindrical surface of the drum 12, the analyte face of the blot facing outward on the drum.

Once the leading edge of the blot is located in the slot in the processing drum, the drive motor 13 is switched on so rotating the processing drum causing the location slot to pass in an upward direction drawing the blot on to the periphery of the drum until all of the membrane blot is held on the surface of the drum, the wet membrane adhering adequately to the drum. The circumference of the drum is greater than the length of the blot, so that the blot is held on the drum with no overlap and will continue to rotate with the drum throughout the processing regime.

During processing, reagents are introduced into the chamber 15 through the reagent feed pipe 17 by use of a syringe or a peristaltic pump and are removed after the appropriate period through the waste outlet 18 by application of suction from a vacuum pump 40 connected through a liquid trap 41. Where the addition of wash solutions is required, these are introduced, from a reservoir 42 held in a water bath 43, by a second peristaltic pump 44 through a wash bar 45 located in the chamber 11 above the drum and extending along its length, such that wash solutions are sprayed downwards from holes formed along the length of the wash bar over the rotating blot to collect in the chamber 15.

During all operations the temperature of solutions in the chamber 15 may be monitored by means of a thermocouple 48 immersed in the liquid at the base of the chamber. The read-out from the thermocouple is displayed on a separate control panel which also contains electronic means to control the speed of the processor motor 13.

Under this arrangement, washing may be accomplished by introducing a fixed volume of wash reagent sufficient partially to fill the chamber 15, rotating the drum and blot for a period of time and then removing the spent wash solution to waste, followed by repetition of the process as necessary. Alternatively, wash solutions may be introduced and withdrawn continuously to give a continuous downward flow of wash reagent.

All pipe connections for the supply and removal of reagents and heating water may be arranged on the end walls to allow units to be placed together to form an interconnected multi-unit system.

The processing of blots for detection of analyte, as described above, offers a number of advantages over conventional processing methods and apparatus.

a) The apparatus allows all processing steps to be carried out within a sealed unit without the worker handling or manipulating the blot.
b) All stages of processing are carried out within the same chamber.
c) The circular geometry of the system minimises the volumes of reagents required for processing, as only a small volume of liquid is required in the base of the processing chamber.
d) Efficient processing is achieved by the constant motion of the blot through the reagents.
e) Efficient washing of blots is achieved through spraying wash solutions over the entire blot area.
f) The construction of the processing chamber prevents any contact or mechanical damage occurring to the area of the blot carrying the analyte.
g) By provision of appropriate automatic control of reagent addition and withdrawal, the processing mechanism can operate without intervention.
h) By linking together multiple processing units in combination with such equipment a higher capacity system may be constructed.

In order to illustrate the function and performance of this particular embodiment of the invention in processing membrane blots, reference is made to the two following non-limitative examples.

Example 1

Phage lambda DNA (0.5μg) was digested with the restriction enzyme Hind III and the resultant fragments separated by electrophoresis in a 1% agarose gel. The fragments were transferred to a positively charged nylon membrane, marketed by Amersham International plc under the trade name Hybond-N*, by capillary blotting (1). A non-radioactive DNA probe was prepared by labelling lambda DNA with horse-radish peroxidase, marketed by Amersham International plc under the name ECL Gene Detection System, using standard methods.

Prior to starting blot processing the processing chamber was heated to 42°C by circulating heated water through the water jacket 20 and 75 ml of pre-hybridisation buffer, using the ECL Gene Detection System marketed by Amersham International plc, containing 0.5 molar NaCl and 5% casein, was added by injection from a syringe. Once the buffer had reached 42°C the membrane blot was fed onto the drum 12 and rotated at 5 rpm for 75 minutes. Following pre-hybridisation the buffer was removed, 60 ml of fresh buffer containing the enzyme labelled probe (10ng) was added to the processor and rotation continued for a further 2 hours to allow hybridisation to occur.

Following hybridisation, the blot was washed following standard procedures, namely the ECL Gene Detection System marketed by Amersham International plc, using the peristaltic pump 44 (running at 500 ml/minute) to supply wash solutions (80 ml/wash cycle) to the chamber 15 through the wash bar 45 and removing spent wash solutions by means of the vacuum pump 40 and liquid trap 41. On completion of the wash procedure the blot was removed from the processor and soaked briefly in chemiluminescence.
substrate solution, using the ECL Gene Detection System marketed by Amersham International plc, and the resultant light emission from the enzyme labelled probe recorded by exposure to X-ray film for 1 minute.

Example 2

Human genomic DNA (5fg) was digested with the restriction enzymes alu I, EcoR I, Hinf I and Hae III and the resultant digests separated by electrophoresis in a 1% agarose gel. DNA was transferred to a positively charged nylon membrane (Hybond-N*, marketed by Amersham International plc) by capillary blotting (1). A [32P]-DNA probe was prepared by labelling a Y chromosome DNA repeat sequence with [32P]-dCTP using random primer labelling marketed under the trade name Multiprime by Amersham International plc. Prior to blot processing the processing chamber was heated to 65°C by circulating heated water through the water jacket, and 75 ml of hybridisation buffer marketed under the trade name Multiprime Rapid Hybridisation Buffer by Amersham International plc was injected into the chamber. Once the buffer temperature had reached 65°C the membrane blot was fed onto the roller and rotated at 5 rpm for 15 minutes. Following pre-hybridisation the buffer was removed, 60 ml of fresh buffer containing the [32P]-DNA probe (1ng/ml) was added to the processor and rotation continued for a further 60 minutes to allow hybridisation to occur.

Following hybridisation the blot was washed twice for 10 minutes in 0.3x SSC/0.1%SDS, using the peristaltic and vacuum pumps to supply and remove wash solution. On completion of the washing procedure, the membrane was removed from the processor, wrapped in Saran Wrap and hybridised probe located by exposure to autoradiography film, marketed under the trade name Hyperfilm-MP by Amersham International plc, overnight at -80°C.

The method of processing as described has considerable scope for automation. As the blot is not held within a sealed container it is possible to design a processing system where, following treatment of the blot with all necessary reagents, the blot is automatically removed from the processing drum 12 and ejected from the unit, so freeing the processor unit to accept, by manual or automated feeding, a further membrane for processing.

Such automated removal of blots may be achieved in the processing device described above by means of reversing the direction of rotation of the processing drum 12, and by use of a sliding or hinged flap, lifting the trailing edge of the blot from the drum and utilising the reverse rotation to feed the blot out through the entry slot in the reverse direction to that used to feed the blot onto the drum.

In a modification of the illustrated embodiment the central drum carries a magnetic strip or an electromagnet set into the surface of the drum along the linear axis, where such a magnet or magnets take the place of the locating slot 37 described above. In a device of this form the leading edge of the blot to be processed would carry a flexible magnetic strip, or a flexible strip of magnetically attractive material, allowing the attraction of the two magnetic surfaces to secure the leading edge of the blot onto the drum.

Utilising magnetic attachment of the blot allows the leading edge to remain on the surface of the drum, rather than hidden in a locating slot, and hence is accessible to allow removal of the blot without reversal of the rotation of the drum. Removal of the blot may be achieved in a similar means to that described above, where a sliding or hinged flap is used to detach the leading edge of the blot and hence allow removal from the drum. Where an electromagnet is used to attach the leading edge of the blot, blot removal may be accomplished by either de-energising the magnet, in which case the blot is no longer attached to the drum and may be removed by a flap as described above, or alternatively the polarity of the magnet may be reversed, so inducing repulsion between the blot and the drum, and so aiding removal of the blot from the drum.

The facility to remove blots automatically after processing allows the potential for a completely automated blot processing system in which blots are fed from a storage device into one or more processing units, and following treatment are ejected either into a further storage device to await manual detection of bound probe or alternatively to an automated detection or image analysis instrument.

LITERATURE CITED

Claims

1. Apparatus for handling or processing an analyte carried by a transporting means, comprising a processing chamber, a horizontally-disposed motor-driven rotary drum mounted in the chamber, means for attaching the transporting means to the peripheral surface of the drum, said chamber including a bath into which the lower portions of the periphery of the drum dip, and means whereby liquids can be fed into and emptied from the bath the drum having means for releasably attaching the transporting means by only its transverse leading edge to the drum, and in that the bath is shaped and arranged to extend closely about the lower portions of the periphery of the drum.

2. Apparatus as claimed in Claim 1, where an electric heater and/or cooling device is provided for directly heating or cooling a liquid held in the processing chamber.

3. Apparatus as claimed in Claim 2, wherein the liquids held in the processing chamber are heated by an electrically heated or cooled water jacket.

4. Apparatus as claimed in Claim 2, wherein the liquids in the processing chamber are heated or cooled by a water jacket supplied with water from an external circulating thermostated source.

5. Apparatus as claimed in any one of Claims 1 to 4, wherein the drum has an axial slot in its periphery in which the leading edge of the transporting means is engaged.

6. Apparatus as claimed in any one of Claims 1 to 4, wherein the drum has on its periphery an axially extending magnetic strip by which the leading edge of the transporting means is releasably attached to the drum.

7. Apparatus as claimed in any one of the preceding Claims, wherein the transporting means includes a mesh envelope of sufficient porosity to allow free access to reagents, in which envelope the analyte is carried on a membrane blot or blots.

8. Apparatus as claimed in Claim 7, wherein the envelope has a plurality of layers of mesh internally thereof with which layers blots can be interleaved.

9. Apparatus as claimed in any one of Claims 1 to 8, wherein the transporting means carrying the analyte comprises a blot having a magnetic strip extending along a leading edge thereof for attachment of the leading edge to the drum.

10. Apparatus as claimed in Claim 5, wherein the transporting means carrying the analyte comprises a blot having its leading edge reinforced by a flexible strip for engagement in said slot in the drum.

11. Apparatus as claimed in any one of Claims 1 to 10, wherein removal of the transporting means is achieved by reversal of the direction of rotation of the drum allowing removal of the transporting means in the opposite direction to that used to feed it onto the drum.

12. Apparatus as claimed in Claim 11, wherein a flap is provided which is operable to lift the trailing edge of the transporting means during reverse rotation of the drum to separate the transporting means from the drum.

13. A system comprising a plurality of apparatuses each as claimed in any one of Claims 1 to 12, and a selection mechanism for selecting the apparatus to which the transporting means is fed.

14. A system as claimed in Claim 13, wherein means whereby liquids can be fed into the baths is connected to an external unit or units supplying all the reagents under automatic control.

15. A system composed of an array of two or more apparatuses as claimed in Claim 13 connected in series so as to be capable of simultaneous processing of two or more blots.

16. A system as claimed in Claim 13, linked to a feeder mechanism capable of automatic feed of blots to the apparatuses.

17. A system as in Claim 16, linked to an automated radioactive or non-radioactive imaging system.

18. A system as in Claim 17, linked to a computerised image analysis system.

19. A method of treating a membrane blot comprising mounting the blot in a mesh envelope of sufficient porosity to allow free access to liquid reagents, attaching the mesh envelope by only its leading edge to a motor-driven horizontally disposed rotary drum, placing in a bath extending closely about the lower portions of the periphery of the drum a succession of liquid treating and washing agents in turn each agent being discharged from the bath before the next agent is admitted, and rotating the drum to carry the envelope and blot through the liquids in the bath.
20. A method as claimed in Claim 19 comprising subsequently to completion of the treatment by said liquids reversing the rotation of the drum and operating a flap to separate the trailing edge of the flap from the drum to enable the envelope to be released from the drum.

21. A method as claimed in Claim 19 or Claim 20, comprising placing in the envelope a plurality of blots interleaved with layers of mesh material.

Patentansprüche

1. Gerätfür die Handhabung oder Bearbeitung von Analysematerial, das von einem Transportmittel getragen wird, umfassend eine Bearbeitungskammer, eine horizontal angeordnete, motorgetriebene Rotationstrommel, die in der Kammer montiert ist, Mittel zur Anbringung des Transportmittels an die periphere Oberfläche der Trommel, besagt Kammer schließt ein Bad ein, in das die unteren Teile der Peripherie der Trommel eintauchen, und Mittel wodurch Flüssigkeiten in das Bad eingeleitet und aus dem Bad abgelassen werden können, die Trommel Mittel für die trennbare Anbringung des Transportmittels nur durch seine quer verlaufende Vorderkante an die Trommel aufweist, und indem das Bad so gestaltet und angeordnet ist, das es nahe an den unteren Teilen der Peripherie der Trommel heranreicht.

2. Gerätfür die Ansprüche 1 beansprucht, wo eine elektrische Heiz- und/oder Kühlvorrichtung für direktes Erwärmen oder Abkühlen einer, in der Bearbeitungskammer gehaltenen, Flüssigkeit vorgesehen ist.

3. Gerätfür die Ansprüche 2 beansprucht, worin die, in der Bearbeitungskammer gehaltenen, Flüssigkeiten durch einen elektrisch geheizten oder gekühlten Wassermantel erwärmt werden.

4. Gerätfür die Ansprüche 2, worin die Flüssigkeiten in der Bearbeitungskammer durch einen Wassermantel erwärmt oder gekühlt werden, der ab einer externen, umlaufenden, temperaturgeregelten Quelle mit Wasser versorgt wird.

5. Gerätfür in einem der Ansprüche 1 bis 4 beansprucht, worin die Trommel einen axialen Schlitz in ihrer Peripherie hat, mit dem die Vorderkante des Transportmittels in Eingriff steht.

6. Gerätfür in einem der Ansprüche 1 bis 4 beansprucht, worin die Trommel an ihrer Peripherie einen axial erstreckenden Magnetstreifen aufweist, durch den die Vorderkante des Trans-

portmittels trennbar an die Trommel angebracht ist.


8. Gerätfür in Anspruch 7 beansprucht, worin die Hülle eine Vielheit von Maschenlagen intern davon aufweist mit denen Lagen von Blots verflochten werden können.

9. Gerätfür in einem der Ansprüche 1 bis 8 beansprucht, worin das das Analysematerial tragende Transportmittel einen Blot umfaßt, der einen Magnetstreifen aufweist, der sich entlang einer Vorderkante davon erstreckt, um die Vorderkante an die Trommel zu befestigen.

10. Gerätfür in Anspruch 5 beansprucht, worin das das Analysematerial tragende Transportmittel einen Blot umfaßt, dessen Vorderkante durch einen flexiblen Streifen zum Eingriff in den besagten Schlitz der Trommel verstärkt ist.

11. Gerätfür in einem der Ansprüche 1 bis 10 beansprucht, worin das Entfernen des Transportmittels durch Umkehr der Trommeldrehrichtung erzielt wird, welches das Entfernen des Transportmittels in umgekehrter Richtung zu der gestattet, die verwendet wurde um es an die Trommel heranzuführen.

12. Gerätfür in Anspruch 11 beansprucht, worin eine Klappe vorgesehen ist, die betätigt werden kann, um die hintere Kante des Transportmittels während der umgekehrten Rotation der Trommel anzuheben, um das Transportmittel von der Trommel zu trennen.


14. Ein System wie in Anspruch 13 beansprucht, worin ein Mittel, wodurch Flüssigkeiten in die Bänder eingeleitet werden können, an eine externe Einheit oder Einheiten angeschlossen wird, die alle Nachweismittel unter automatischer Überwachung liefert bzw. liefern.

15. Ein System, das aus einer Anordnung von zwei oder mehr Geräten wie in Anspruch 13 bean-

17. Ein System wie in Anspruch 16, das an ein automatisiertes radioaktives oder nichtradioaktives Abbildungssystem angeschlossen ist.

18. Ein System wie in Anspruch 17, das an ein computerisiertes Bildanalyse system angeschlossen ist.

19. Eine Methode der Behandlung eines Membran Blots, die umfaßt, Montage des Blots in eine Maschenhülle ausreichender Porosität, um freien Zugang zu flüssigen Nachweismitteln zu gestatten, Anbringen der Maschenhülle nur durch ihre Vorderkante an eine motorgetriebene horizontal angeordnete Rotationstrommel, Plazieren in ein Bad, das sich nahe um die unteren Teile der Peripherie der Trommel erstreckt, einer Aufeinanderfolge flüssiger Behandlungs- und Waschmittel, wobei jedes Mittel seinerseits aus dem Bad entleert wird, bevor das nächste Mittel zugelassen wird, und Rolieren der Trommel, um die Hülle und den Blot durch die Flüssigkeiten im Bad zu tragen.

20. Eine Methode wie im Anspruch 19 beansprucht, die anschließend an die Beendigung der Behandlung durch besagte Flüssigkeiten die Rotation der Trommel, und die Betätigung einer Klappe umfaßt, um die hintere Kante der Klappe von der Trommel zu trennen, damit die Hülle aus der Trommel gelöst werden kann.


Revendications

1. Un appareil pour la manutention ou le traitement d’un analyte acheminé par un moyen de transport, comportant une chambre de traitement, un tambour rotatif actionné par un moteur disposé à l’horizontale installé dans la chambre, un dispositif pour fixer le moyen de transport à la surface périphérique du tambour, la chambre mentionnée comportant un bain dans lequel les parties inférieures de la périphérie du tambour trempent et un dispositif permettant aux liquides d’être alimentés dans le bain et vidangés du bain, le tambour ayant un dispositif pour que le moyen de transport se fixe au tambour tout en pouvant s’en détacher par son bord avant transversal seulement de façon que le bain soit formé et agencé pour s’étendre à proximité du pourtour des parties basses de la périphérie du tambour.

2. Un appareil tel que revendiqué par la revendication 1, dans lequel un dispositif électrique de chauffage et/ou de refroidissement est prévu pour chauffer ou refroidir directement un liquide contenu dans la chambre de traitement.

3. Un appareil tel que revendiqué par la revendication 2, dans lequel les liquides contenus dans la chambre de traitement sont chauffés par une chemise d’eau chauffée ou refroidie électriquement.

4. Un appareil tel que revendiqué par la revendication 2, dans lequel les liquides dans la chambre de traitement sont chauffés ou refroidis par une chemise d’eau alimentée par de l’eau venant d’une source externe de circulation dotée d’un thermostat.

5. Un appareil tel que revendiqué par les revendications 1 à 4, dans lequel le tambour possède une rainure axiale à sa périphérie où le bord avant du moyen de transport est engagé.

6. Un appareil tel que revendiqué par les revendications 1 à 4, dans lequel le tambour possède à sa périphérie une bande magnétique posée axialement, au moyen de laquelle le bord avant du moyen de transport est fixé au tambour tout en pouvant s’en détacher.

7. Un appareil tel que revendiqué par les revendications précédentes, dans lequel le moyen de transport comporte une enveloppe en mailles d’une porosité suffisante pour permettre un accès libre aux agents réactifs, l’analyte pouvant être porté dans cette enveloppe sur un ou des blot(s) à membrane.

8. Un appareil tel que revendiqué par la revendication 7, dans lequel l’enveloppe possède un certain nombre couches de mailles à l’intérieur, avec lesquelles les blot(s) peuvent être intercalés.

9. Un appareil tel que revendiqué par les revendications 1 à 8, dans lequel le moyen de transport acheminant l’analyte comporte un blot doté d’une bande magnétique le long de son bord avant pour que le bord avant se fixe au tambour.
10. Un appareil tel que revendiqué par la revendication 5, dans lequel le moyen de transport acheminant l'analyte comporte un blot dont le bord avant est renforcé par une bande souple faite pour s'encastrer dans la rainure du tambour.

11. Un appareil tel que revendiqué par les revendications 1 à 10, dans lequel l'enlèvement du moyen de transport est réalisé par l' inversement du sens de rotation du tambour permettant l'enlèvement du moyen de transport dans le sens opposé à celui utilisé pour l'acheminement sur le tambour.

12. Un appareil tel que revendiqué par la revendication 11, qui prévoit une trappe actionnable pour lever le bord arrière du moyen de transport pendant la rotation inverse du tambour afin de détacher le moyen de transport du tambour.

13. Un système comportant un certain nombre d'appareils, chacun tel que revendiqué par les revendications 1 à 12, ainsi qu'un mécanisme de sélection pour sélectionner l'appareil vers lequel le moyen de transport est alimenté.

14. Un système tel que revendiqué à la revendication 13, dans lequel un dispositif, grâce auquel des liquides peuvent être alimentés dans les bains, est connecté à un/ des bloc(s) externes alimentant tous les agents réactifs sous contrôle automatisé.

15. Un système composé d'un agencement de deux appareils ou plus tel que revendiqués à la revendication 13 branchés en série pour pouvoir traiter simultanément deux ou plusieurs blots.

16. Un système tel que revendiqué à la revendication 13, lié à un mécanisme d'alimentation capable d'alimenter automatiquement des blots aux appareils.

17. Un système tel que revendiqué à la revendication 16, lié à un système automatisé d'imagerie radioactive ou non-radioactive.

18. Un système tel que revendiqué à la revendication 17, lié à un système informatique d'analyse d'images.

19. Une méthode pour traiter un blot à membrane impliquant le montage du blot dans une enveloppe de mailles d'une porosité suffisante pour permettre un accès libre aux agents réactifs liquides, la fixation de l'enveloppe de mailles seulement par son bord avant à un tambour rotatif actionné par un moteur disposé à l'horizontale et la mise dans un bain, s'étendant à proximité du pourtour des parties basses de la périphérie du tambour, d'une succession d'agents liquides de traitement et de lavage, chaque agent étant tour à tour vidangé du bain avant que l'agent suivant soit admis, et la rotation du tambour pour faire passer l'enveloppe et le blot dans les liquides du bain.

20. Une méthode telle que revendiquée par la revendication 19 impliquant, suite à la fin du traitement par les liquides mentionnés, une inversion de la rotation du tambour et l'actionnement d'une trappe pour détacher le bord arrière de la trappe du tambour et permettre à l'enveloppe d'être libérée du tambour.

21. Une méthode telle que revendiquée par la revendication 19 ou la revendication 20, impliquant la mise dans l'enveloppe d'un certain nombre de blots intercalés avec des couches de matière maillée.