A fluidized bed apparatus and a method for making the same.

Proprietor: NIRO HOLDING A/S
Bredgade 6
DK-1260 Copenhagen K (DK)

Inventor: Christensen, Mogens A.
Bakkevej 4
2830 Virum (DK)
Inventor: Madsen, Benny Helding
Tottevaenget 1
8700 Horsens (DK)
Inventor: Bonde, Mikael
Ackerstrasse 37
CH-4057 Basle (CH)

Representative: Vingtoft, Knud Erik et al
Plougmann & Vingtoft A/S,
Sankt Annae Plads 11,
P.O. Box 3007
DK-1021 Copenhagen K (DK)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to a bed plate for a fluidized bed apparatus, a fluidized bed apparatus comprising such bed plate, and to a method for making the bed plate.

Fluidized bed apparatuses are used for example as dryers and/or agglomerators, and for otherwise treating a powdered or particulate product with gas or air, for example for cooling the product, or as fluid bed combustors for combustion of powdered or particulate fuel, etc. Such fluid bed apparatuses may comprise a bed plate which is made from sheet metal having a plurality of air or gas distributing openings or perforations punched therein. The openings or perforations may be plain, circular openings. The diameter of such openings are usually chosen as small as possible in order to reduce the amount of powdered or particulate product which may fall through the openings of the bed plate into an underlying air or gas plenum chamber, for example, when the operation of the fluid bed is interrupted or stopped.

Bed plates having openings or perforations of the so-called "gill type" are also known, for example from US-A-3,821,342 and 4,033,555. This type of openings or perforations define fluidizing flows of air or gas having a flow component which is directed along the upper surface of the bed plate, for example towards a product outlet of the fluid bed. Such flow component directed towards the product outlet renders it possible to obtain a self-clearing or self-emptying effect when the operation of the apparatus is stopped, and the fall-through of products may thereby be further reduced.

An opening or perforation of the "gill-type" may be made by cutting a slit or slot in the sheet metal so as to form opposite edges, and by pressing one of the opposite edge portions out from the plane defined by the sheet metal. Such depression of one edge portion causes it to be moved away from the other whereby the slit or slot is opened also when viewed in a direction at right angles to the plane of the sheet metal. This means that the product in a fluid bed formed on a bed plate having openings of the conventional gill type may to some extent fall through the openings of the bed plate, when the supply of fluidizing air or gas is stopped or interrupted. In cases where even such reduced fall-through of product is unacceptable it is necessary to use a bed plate with nozzles of the type disclosed in GB-A-2 015 377. This known, rather complicated and expensive bed plate cannot be made by punching sheet metal. Furthermore, this known bed plate can only be made with a relatively small number of openings per unit of area because of relatively large minimum dimensions of each opening.

According to a first aspect, the present invention provides a fluidized bed apparatus, for example a fluidized bed dryer or agglomerator, comprising a bed plate according to the invention as described below and further comprising means for passing gas upwardly through the openings of the bed plate for fluidizing a powdered or particulate product thereon, means for supplying powdered or particulate product to the bed plate, and means for removing fluidised product therefrom.

The bed plate may be made from sheet metal by simple cutting and deforming operations, and which may be made so that fall-through of the product to be fluidized is substantially reduced or prevented.

According to the present invention, the bed plate for a fluidized bed apparatus which is made from sheet metal, defining a first general side surface and having a plurality of gas distributing openings formed therein, each of said openings being defined between first and second opposite edge portions, of which at least the first edge portion has been pressed out from said general side surface, and the bed plate according to the invention is characterized in that at least one of said first and second edge portions has been deformed so as to increase the extension thereof along said first general side surface and so as to thereby reduce or eliminate the orthographic projection on said first general side surface of the opening defined between said first and second edge portions.

The first and/or second edge portion may be deformed in any manner causing a reduction of the transverse spacing of the first and second edge portions as viewed in a direction at right angles to the first side surface.

Basically, the bed plate of the fluidized bed apparatus according to the invention may be made in a similar manner as a bed plate having openings of the conventional "gill type". Thus, the first and second edge portions may be located on opposite sides of a cut made in the sheet metal.

In principle, the first side surface defined by the bed plate may have a curved shape. In the preferred embodiment, however, this first side surface is substantially plane. As mentioned above, one or both of the opposite edge portions may be deformed in any manner so as to increase the extension thereof to a smaller or higher extent. The edge portion or portions may even be deformed to such a degree that the first and second edge portions at least partly overlap in an orthographic projection on said first side surface, whereby fall-through of the product to be fluidized is prevented to a high degree.

Normally, the necessary deformation of the edge portion or edge portions in order to cause said increase of extension involves a reduction of
the thickness of a least part of said least one of
the first and second edge portions. Such thickness
reduction may, for example, be obtained by com-
pressing at least part of the edge portion in ques-
tion. In the preferred embodiment at least part of
the second edge portion has been compressed so
as to reduce its thickness.

Alternatively or additionally one or both of the
eight & edge portions may be stretched, and preferably
at least part of the first edge portion has been
stretched. In the conventional openings of the "gill
type" the edge portion which has been pressed
out, has a rounded or curved cross-sectional
shape. It has been found, however, that the fall-
through of product may be reduced when the
pressed out edge portion is mainly defined by
substantially flat wall sections defining an angle
therebetween. Thus, the first edge portion may
comprise an outer part defining a free edge and an
inner connecting part separated from the outer part
by a relatively sharp bend, and a cross-section of
the inner and outer parts taken substantially at right
angles to said free edge may define first and
second acute angles, respectively, with said gen-
eral side surface, the second acute angle being
substantially smaller than the first angle. When the
bed plate is positioned so that the pressed out first
dge portions are facing downward, product fall-
ing through the openings of the bed plate may be
coupled and supported by the outer parts of the first
dge portions. This is especially the case, when
the outer part of each of the first edge portions
extends substantially parallel with the first general
plane, or when the said outer part is slightly in-
clined upwardly towards the free edge thereof.

The thickness of the inner part of the first edge
portion may have been reduced by stretching. As
an example, the openings of the bed plate may be
formed by punching, and while the first edge por-
tion is pressed out from the plane of the sheet
metal by means of a punching tool, the outer part
may be fixed in relation to the punching and press-
ing tool, whereby the inner part of the edge portion
is stretched so as to increase the extension of the
dge portion along the first general plane of the
bed plate. Such fixing of the first edge portion
in relation to the punching tool may, for example,
leave some extent be caused by the sharp bend
separating the inner and outer parts of the first
dge portion.

A desired predetermined area of a bed plate
opening may be obtained either by making a rela-
tively short cut in the sheet metal and by depress-
ing the first edge portion relatively deep, or by
making a relatively long cut, and by depressing the
first edge portion less deeply. In the latter case the
risk of fall-through of product is substantially mini-
mized. Therefore, in the bed plate according to the
invention each opening is preferably elongated and
defined between a pair of coextending or substan-
tially parallel edges which may then have a rela-
tively small spacing.

Preferably, only the first edge portion is
pressed out from the general side surface, but it is
also possible to press both of the edge portions out
from the plane of the sheet metal, for example in
order to define a tortuous gas flow path there-
between. The openings of the bed plate may also
be arranged in pairs of substantially oppositely
directed openings, and a depressed portion of the
plate may then extend between the openings of
each pair, for example as disclosed in US-A-
4,885,848.

According to a second aspect, the present in-
vention provides a method for making a bed plate
from sheet metal, said method comprising forming
a plurality of mutually spaced cuts or slits in the
sheet metal, each slit being defined between op-
posite first and second edge portions, and pressing
at least the first edge portion out from a plane
defined by the sheet metal so as to form an
opening, and the method according to the invention
is characterized in deforming at least one of said
first and second edge portions so as to increase
the extension thereof along the plane of the sheet
metal.

According to the present invention each open-
ing in the bed plate may be formed by means of a
punching tool having a cutting edge and being
moved substantially at right angles to the plane
defined by the sheet metal so as to cut said slit therein, the punching tool being moved further in
relation to the sheet metal so as to press the first
dge portion out of the plane defined by the sheet
metal. An outer part of the first edge portion adja-
cent to its free edge may then substantially be
prevented from moving in relation to the punching
tool, whereby an inner connecting part of the first
dge portion is stretched. The outer part may, for
example, be clamped to the punching tool in any
suitable matter. Alternatively or additionally, the
punching tool may comprise a sharp tool edge
coextending with or extending substantially parallel
with said free edge. The sharp tool edge then
forms a sharp bend on the first edge portion and
tends to prevent the outer part from moving in
relation to the punching tool.

As mentioned above, the outer part of the first
dge portion preferably extends substantially par-
allel with the plane of the bed plate. Alternatively,
the free edge of the outer part of the edge portion
may be directed towards the plane of the bed
plate. In order to obtain any of such directions of
the outer part of the first edge portion, the punch-
ing tool may comprise first and second substanz-
tially plane surface parts, which are separated by
said sharp tool edge and intended to form the inner and outer parts, respectively, of the first edge portion. The first plane surface may then define a first acute angle with the plane of the sheet metal and the first and second plane surfaces may mutually define an angle which is smaller than the angle supplemental of the first acute angle.

The invention will now be further described with reference to the drawings wherein

Fig. 1 is a diagrammatic side view and partially sectional view of a fluidized bed drying apparatus comprising a bed plate with openings of the "gill type".

Fig. 2 illustrates punching of a conventional "gill type" opening in sheet metal by means of a punching tool.

Fig. 3 is a sectional view in a conventional "gill type" opening punched as illustrated in Fig. 2.

Fig. 4 is a side view and partially sectional view illustrating a bed plate with openings of the conventional "gill type" being modified in accordance with the present invention by means of a compression tool.

Fig. 5 is a sectional view corresponding to that shown in Fig. 3 after having been modified as illustrated in Fig. 4.

Fig. 6 is a sectional view as that shown in Fig. 5, the bed plate having been turned around, so that the pressed out, gill-like edge portion of each opening of the bed plate is directed downwardly.

Fig. 7 illustrates punching of an opening in sheet metal in accordance with the present invention by means of a punching tool in a manner so as to stretch the gill-like edge portion being pressed out from the plane of the sheet metal.

Fig. 8 is a sectional view of an opening of a further embodiment of the bed plate according to the invention.

Figs. 9A and 9B are sectional views showing a highly arched gill-type opening and taken along a line substantially parallel with and substantially at right angles to the slit of the opening, respectively.

Figs. 10A and 10B are sectional views of a flattened gill-type opening and taken along lines substantially parallel with and substantially at right angles to the slit of the opening, respectively.

Fig. 1 shows a fluidized bed dryer which may, for example, be used for drying a partially dried and still moist powdered or particulate product. The fluidized bed dryer shown in Fig. 1 comprises an elongated housing 10 having an inner space divided into upper and lower chambers 11 and 12, respectively, by means of a perforated bed plate 13, which is fastened to the inner walls of the housing 10. Heated drying gas or air is supplied to the lower chamber or plenum chamber 12 of the housing 10 through gas inlets 14, and drying gas is exhausted from the upper chamber 11 of the housing through a gas exhaust conduit 15, which may, for example, be connected to a cyclone, not shown, from which the drying gas may be exhausted into the atmosphere. At one end the housing 10 comprises a product inlet funnel 16, which opens into the upper chamber 11 defined above the perforated bed plate 13. At the other end the housing 10 has a product outlet 17, which also communicates with the upper chamber 11.

A moist powdered or particulate product P, which may, for example, be supplied from a conventional spray drying system and which has to be further dried, may be fed continuously to the product inlet 16 of the housing 10 as indicated by an arrow 18. Heated drying gas or drying air is supplied to the lower chamber 12 of the housing, and the heated gas flows upwardly through the perforations of the bed plate 13 and into the upper chamber 11 so as to form a plurality of gas flows fluidizing the product P on the bed plate 13. The thickness or the height of the fluidized product layer is determined by the height of a movable damper or valve member 19 forming an overflow at the outlet end of the chamber 11. When a state of equilibrium has been obtained an amount of dried product corresponding to the amount of moist product supplied through the inlet funnel 16 will flow out through the product outlet 17 as indicated by an arrow 20 in Fig. 1. Thus, when the fluidized bed dryer is operating the fluidized product layer supported by the bed plate 13 is moved continuously from the inlet funnel 16 to the product outlet 17 as indicated by an arrow 21. When the operation of the fluidized bed dryer has to be closed down, the supply of moist product to the inlet funnel 16 is stopped, and thereafter the damper or overflow plate 19 is moved to such a position that almost all of the product may flow from the bed plate 13 into the product outlet 17.

In order to ensure that no substantial residue of the product P remains on the bed plate 13 when the damper 19 has been opened, at least some of the perforations or gas distributing openings in the bed plate are formed so as to define upwardly directed fluidizing gas flows having a resulting horizontal flow component directed towards the product outlet 17.

Bed plates having perforations or openings 22 of the so-called gill-type are well-known in the art. Such a gill-type opening may be made in a plate 23 of sheet metal by cutting an incision or slit through the plate and by subsequently pressing one of the edge portions defining the slit out from the plane of the plate 23 so as to form a gill portion 24. As shown in Fig. 2 the cutting of the incision or
slit and the subsequent pressing out of an adjacent edge portion may be made by means of a punching tool comprising male and female tool parts 25 and 26, respectively. The male tool part 25 comprises a tooth-like projection 27 having a cutting edge 28 cooperating with an inner surface part 29 of the female tool part 26 so as to cut a slit in the sheet metal plate 23, when the tooth-like projection 27 of the male tool part 25 is moved transversely through the plate 23 and into a hollow space 30 defined in the female tool part 26, which is placed in abutting engagement with the sheet metal plate 23 opposite to the male tool part 25. The tooth-like projection 27 further defines a curved surface part 31, which may, for example, form part of a spherical surface. During the punching movement of the male tool part 25 one of the edge portions defining the slit formed in the plate 23 will be pressed out from the plane of the plate 23 by the curved surface part 31 so as to form the gill portion 24.

When the gill portion 24 is pressed out from the plane of the sheet metal plate 23 by the tooth-like projection 27 the free edge 32 of the gill portion 24 is removed from the free edge 33 of an opposite or second edge portion 34 defining the opening 22. As illustrated in Fig. 3, the orthographic projection of the free edge 32 of the gill portion 24 on the plane of the bed plate 13 is spaced from the edge 33 of the opposite edge portion 24 by a distance designated A. Because of this spacing of the adjacent free edges 32 and 33 defining a conventional opening 22 of the gill type, the powdered or particulate product P in a fluid bed formed on a bed plate 13 having such conventional gill type openings 22 may fall through the openings into the lower chamber or plenum chamber 12 of the fluidized bed apparatus, in which the bed plate is used. Such undesirable fall-through of product is especially likely to take place, when the supply of fluidizing air or gas through the openings 22 is stopped or interrupted for some reason or another.

Fig. 4 shows a bed plate 13 of the type shown in Fig. 3, in which the spacing A of the adjacent free edges 32 and 33 of the edge portions 24 and 34, respectively, are being reduced or eliminated by a subsequent deformation of the second edge portions 34. Such deformation is of a type increasing the extension of the edge portions 34 in the plane of the bed plate 13, preferably to such an extent that an overlap between adjacent edge portions 24 and 34 in the plane of the plate 13 is obtained. Such deformation of the edge portions 34 may, for example, be obtained by compression of the edge portions transversely to the plane of the bed plate and/or by stretching the edge portions 34 along the plane of the bed plate 13. As illustrated in Fig. 4, each of the edge portions 34 may be compressed or pinched between a jaw or projection 35 of a lower supporting tool part 36 and a jaw or projection 37 of an upper tool part 38 which is moveable transversely or at right angles to the plane of the bed plate 13. Thus, when the upper jaw 37 of the tool part 38 is pressed downwardly towards the lower jaw 35 of the lower tool part 36, the thickness of the plane second edge portion 34 is reduced substantially so as to increase the extension of the edge portion. This means that the free edge 33' of the compressed edge portion 34' will extend beyond the free edge 32 of the adjacent gill portion 24 so as to provide an overlap between the edge portions 24 and 34'.

Fig. 5 shows part of a bed plate with an opening 22 where the edge portion 34 has been modified by the method illustrated in Fig. 4 so as to produce an extended edge portion 34'. As illustrated in Fig. 5, the compression operation illustrated in Fig. 4 causes that the original spacing A between the adjacent free edges 32 and 33 is converted into an overlap so that an acute angle α is defined between a line 39 parallel with the plane of the bed plate 13 and a line 40 touching the free edges 32 and 33'.

When the bed plate 13 is arranged so that the gill portions 24 are directed upwardly as shown in Fig. 5, fall-through of product is definitely prevented provided that the angle of slide of the product is equal to or exceeds the angle α. As shown in the drawings, the free edge 33' of the compressed edge portions 34' may have an increased thickness so as to form upwardly and downwardly directed rim portions 41 also countering product fall-through.

However, when the bed plate 13 shown in Fig. 5 is inverted so that the gill portions 24 are directed downwardly, product particles P which have passed through the opening 22 cannot be safely retained by the downwardly sloping gill portion 24 as illustrated by the parallelogram, of forces in Fig. 6.

Therefore, instead of or in addition to the deformation of the plane edge portions 34 illustrated in Fig. 4, the gill portion 24 may be deformed so as to reduce the spacing or increase the overlap of the adjacent free edges 32 and 33 of the edge portions 24 and 34, respectively. Thus, the gill portion 24 may be compressed and/or stretched so as to reduce its thickness and increase its extension along the plane of the bed plate 13. In order to avoid the situation illustrated in Fig. 6 it may also be desirable to shape the gill portion 24 so as to provide a substantially horizontal or an upwardly inclined product supporting surface thereon.

This may be obtained by using a punching tool as that shown in Fig 7 for punching the openings 22 in a sheet metal plate 23. The punching tool
shown in Fig 7 is similar to that shown in Fig. 2, and similar parts are therefore provided with the same reference numerals. In Fig. 7, the tooth-like projection 27 of the male tool part 25 is shaped differently from that shown in Fig. 2. In Fig. 7, the tooth-like projection 27 defines a relatively sharp edge 42 which extends substantially parallel with the cutting edge 28 and comes into engagement with the sheet metal plate 23 immediately before the cutting edge 28 engages with the plate 23. This means that the edge 42 bites into the surface of the sheet metal and causes a stretching of a connecting part 43 of the gill portion 24 defined between the sharp edge 42 of the tooth-like projection 27 and a plate backing edge 44 of the female tool part 26. A top surface part 45 of the tool-like projection 27 extending between the cutting edge 28 and the edge 42 preferably defines an acute angle γ with a plane parallel to the plane of the sheet metal plate 23 so as to cause an outer end part 46 of the gill portion 24 to extend substantially parallel with the sheet metal plate 23 or even to be directed inwardly towards the plane of the plate 23.

Fig. 8 illustrates a bed plate 13 having a gill portion 24 which has been deformed by means of the punching tool illustrated in Fig. 7 so that its outer end part 46 extends substantially parallel with the plane of the bed plate 13. Furthermore, the edge portion 34 has been modified by the method illustrated in Fig. 4. From Fig. 8 it is apparent that by stretching of the gill portion 24 of the punching tool illustrated in Fig. 7 the spacing of the free edges 32 and 33 of the stretched gill portion 24 and the non-compressed, plane edge portion 34, respectively, has been reduced to a value "a" substantially smaller than "A" in Fig. 3. It is also apparent that compression of the edge portion 34 by the method illustrated in Fig. 4 causes a prolongation of the same indicated by "B" whereby an overlap "C" is obtained, "C" being equal to "B" minus "a". The combined compression of the edge portion 34 and stretching of the gill portion 24 causes that the angle α is substantially reduced compared with the angle α in Fig. 5. This means that a product having an angle of slide equal to or exceeding the angle α as shown in Fig. 8 cannot fall through the openings of the bed plate because it will be supported and retained by the substantially horizontal outer end part 46 of the gill portion 24.

Fig. 9 and 10 illustrate two different types of gill openings, namely an opening, which is relatively narrow and high, and an opening which is relatively broad, flat and low, respectively. It is immediately apparent that when a product having an angle of slide α is fluidized in a fluid bed the risk of product fall-through is substantially higher when the openings 22 of the bed plate are of the type shown in Fig. 9 than when they are of the type shown in Fig. 10. It is also immediately apparent that the necessary overlap "g" to be provided between the edge portions 24 and 34 in Fig. 10 in order to avoid product fall-through is much less than the corresponding necessary overlap "G" in Fig. 9. Therefore, the openings 22 of the bed plate 13 according to the invention shown in Figs. 5, 6, and 8 are preferably of the flat, broad, and low type shown in Fig. 10.

It should be understood that various modifications and amendments of the embodiments shown in the drawings and described above could be made within the scope of the present invention as defined in the appended claims. Thus, the reduction of the spacing or the overlap between adjacent end portions 24 and 34 may be provided by any kind of deformation, such as stretching and/or compression of the one or both of the adjacent edge portions. Furthermore, the deformation of the edge portion or portions may be made by the punching operation and/or by one or more subsequent operations. It should also be understood that the bed plate of the fluidized bed apparatus according to the invention may comprise openings of the gill type modified in accordance with the present invention as well as other types of openings which may be conventional.

Claims

1. A fluidized bed apparatus comprising a bed plate (13) which is made from sheet metal, defining a first general side surface and having a plurality of gas distributing openings (22) formed therein, each of said openings being defined between first and second opposite edge portions (24,34), of which at least the first edge portion (24) has been pressed out from said general side surface,

 means (12,14) for passing gas upwardly through the openings (22) of the bed plate (13) for fluidizing a powdered or particulate product (P) thereon,

 means (16) for supplying powdered or particulate product to the bed plate, and

 means (17,19) for removing fluidized product therefrom, characterized in that the thickness at least part of at least one of said first and second edge portions (24,34) has been reduced so as to increase the extension thereof along said first general side surface, and so as to thereby reduce or eliminate the orthographic projection on said first general side surface of the opening defined between said first and second edge portions.

2. An apparatus according to claim 1, wherein the first and second edge portions (24,34) are lo-
3. An apparatus according to claim 1 of 2, wherein said first general side surface is substantially plane.

4. An apparatus according to any of the claims 1-3, wherein the first and second edge portions (24,34) at least partly overlap in an orthographic projection on said first side surface.

5. An apparatus according to claim 1, wherein at least part of the second edge portion (34) has been compressed so as to reduce its thickness.

6. An apparatus according to claim 1 or 4, wherein at least part (43) of the first edge portion (24) has been stretched.

7. An apparatus according to any of the claims 1-6, wherein the first edge portions (24) comprises an outer part (46) defining a free edge (32) and an inner connecting part (43) separated from the outer part by a relatively sharp bend, a cross-section of the inner and outer parts taken substantially at right angles to said free edge defining first and second acute angles, respectively, with said general side surface, the second acute angle being substantially smaller than the first angle.

8. An apparatus according to claim 7, wherein the outer part (46) extends substantially parallel with the first general plane.

9. An apparatus according to claim 7 or 8, wherein the thickness of the inner part (43) has been reduced by stretching.

10. An apparatus according to any of the claims 1-9, wherein each opening (22) is elongated (Fig. 10a) and defined between a pair of co-extending or substantially parallel edges.

11. An apparatus according to any of the claims 1-10, wherein the openings of the bed plate are arranged in pairs of substantially oppositely directed openings, a depressed portion of the plate extending between the openings of each pair.

12. A method for making a bed plate (13) for a fluidized bed apparatus according to claim 1 from sheet metal (23), said method comprising forming a plurality of mutually spaced cuts or slits in the sheet metal, each slit being defined between opposite first and second edge portions (24,34), and pressing at least the first edge portion (24) out from a plane defined by the sheet metal (23) so as to form an opening, characterized in deforming after forming said slit at least one of said first and second edge portions (24,34) so as to increase the extension thereof along the plane of the sheet metal.

13. A method according to claim 12 wherein said at least one edge portion is deformed so as to provide at least partial overlap of the opposite edge portions (24,34) viewed at right angles to the plane of the sheet metal (23).

14. A method according to claims 12 or 13, wherein the wall thickness of at least part of said at least one edge portion (24,34) is reduced so as to cause said increase of extension.

15. A method according to claim 14, wherein said part of the edge portion (34) is pinched or compressed between tool parts (35,37) engaging with opposite surfaces of the edge portion.

16. A method according to claim 14 or 15, wherein said part (43) of the edge portion (24) is stretched.

17. A method according to claim 12-16, wherein each opening (22) is formed by means of a punching tool (25,26) having a cutting edge (28) and being moved substantially at right angles to the plane defined by the sheet metal (23) so as to cut said slit therein, the punching tool being moved further in relation to the sheet metal so as to press the first edge portion (24) out of the plane defined by the sheet metal.

18. A method according to claim 17, wherein an outer part (46) of the first edge portion (24) adjacent to its free edge (32) is substantially prevented from moving in relation to the punching tool, whereby an inner connection part (43) of the first edge portion (24) is stretched.

19. A method according to claim 18, wherein the punching tool (25,26) comprises a sharp tool edge (42) coextending with or extending substantially parallel with said free end (32).

20. A method according to claim 19, wherein the punching tool comprises first and second substantially plane surface parts being separated.
by said sharp tool edge (42) for forming the inner and outer parts (43, 46), respectively, of the first edge portion (24), the first plane surface defining a first acute angle with the plane defined by the sheet metal (23) and the first and second plane surfaces mutually defining an angle, which is smaller than the angle supplemental of the first acute angle.

Patentansprüche

1. Wirbelbettvorrichtung umfassend ein Bettblech (13), welches aus Metallblech besteht, welches eine erste Hauptseitenoberfläche bildet und eine Mehrzahl von darin geformten Gasverteilungsöffnungen (22) hat, wobei jede der denannten Öffnungen zwischen einander gegenüberliegenden ersten und zweiten Kantenbereichen (24, 34) gebildet ist, von denen mindestens der erste Kantenbereich aus der genannten Hauptseitenoberfläche herausgepreßt ist, Mittel (12, 14) zum aufwärts erfolgenden Durchtritt von Gas durch die Öffnungen (22) des Bettblechs (13) für ein Fluidisieren eines pulverisierten oder teileinförmigen Produkts (P) darauf, Mittel (16) zum Zuführen von pulverförmigem oder teileinförmigem Produkt auf das Bettblech und Mittel (17, 19) zum Abführen des fluidisierten Produkts davon, dadurch gekennzeichnet, daß die Dicke mindestens eines Teils mindestens der genannten ersten und zweiten Kantenbereiche (24, 34) reduziert worden ist, um deren Ausdehnung entlang der genannten ersten Hauptseitenoberfläche zu vergrößern und derart, daß dadurch die orthografische Projektion der Öffnungen, die zwischen den ersten und zweiten Kantenbereichen gebildet sind, auf die genannte erste Hauptseitenfläche reduziert oder eliminiert wird.

2. Vorrichtung nach Anspruch 1, bei der die ersten und zweiten Kantenbereiche (24, 34) an einander gegenüberliegenden Seiten eines Einschnitts in das Blechmaterial angeordnet sind.

3. Vorrichtung nach Anspruch 1 oder 2, bei der die erste Hauptseitenoberfläche im wesentlichen eben ist.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, bei der die ersten und zweiten Kantenbereiche (24, 34) mindestens teilweise in einer orthografischen Projektion auf die genannte erste Seitenoberfläche einander überlappen.

5. Vorrichtung nach Anspruch 1, bei der mindestens ein Teil des zweiten Kantenbereichs (34) so zusammengedrückt ist, daß dessen Dicke reduziert ist.

6. Vorrichtung nach Anspruch 1 oder 4, bei der mindestens ein Teil (43) des ersten Kantenbereichs (24) gestreckt worden ist.

7. Vorrichtung nach einem der Ansprüche 1 bis 6, bei der die ersten Kantenbereiche (24) einen äußeren Teil (46) umfassen, welcher eine freie Kante (32) bildet und einen inneren Verbindungsbereich (43), der von dem äußeren Teil durch eine relativ scharfe Biegung getrennt ist, ferner einen Querschnitt des inneren und äußeren Teils, der im wesentlichen unter rechten Winkeln zu der genannten freien Kante genommen ist und erste bzw. zweite spitze Winkel mit der genannten Hauptseitenfläche gebildet sind und der zweite spitze Winkel wesentlich kleiner als der erste Winkel ist.

8. Vorrichtung nach Anspruch 7, bei der der äußere Bereich (46) sich im wesentlichen parallel zur ersten Hauptebene erstreckt.

9. Vorrichtung nach Anspruch 7 oder 8, bei der die Dicke des inneren Teils (43) durch Dehnen reduziert worden ist.

10. Vorrichtung nach einem der Ansprüche 1 bis 9, bei der jede Öffnung (22) gelängt ist (Fig. 10a) und gebildet durch ein Paar von in gleicher Richtung sich erstreckenden oder im wesentlichen parallelen Kanten.

11. Vorrichtung nach einem der Ansprüche 1 bis 10, bei der die Öffnungen des Bettblechs in Paaren von im wesentlichen entgegengesetzt gerichteten Öffnungen angeordnet sind, und ein eingedrückter Bereich des Blechs sich zwischen den Öffnungen eines jeden Paares erstreckt.

12. Verfahren zur Herstellung eines Bettblech (13) für eine Wirbelbettvorrichtung nach Anspruch 1, aus Metallblech (23), wobei das Verfahren umfaßt ein Formen einer Mehrzahl von mit wechselseitigem Abstand angeordneten Schnitten oder Schlitten im Metallblech, wobei jeder
Schlitz zwischen gegenseitig liegenden ersten und zweiten Kantenbereichen (24, 34) gebildet ist, und
Ausdrücken von mindestens dem ersten
Kantenbereich (24) aus einer Ebene, die durch
das Metallblech (23) gebildet wird, um eine
Öffnung zu bilden, dadurch gekennzeichnet,
daß nach dem Formen des genannten Schlitzes
mindestens einer der genannten ersten
und zweiten Kantenbereiche (24, 34) derart
verformt wird, daß dessen Ausdehnung entlang
der Ebene des Metallblechs vergrößert wird.

13. Verfahren nach Anspruch 12,
bei dem der genannte mindestens eine Kan-
tenbereich so verformt wird, daß zumindest ein
teilweise erfolgendes Überlappen der einander
gegenüberliegenden Kantenbereiche (24, 34)
folgt, bei Blickrichtung unter rechtem Winkel
auf die Ebene des Metallblechs (23).

14. Verfahren nach Anspruch 12 oder 13,
bei dem die Wanddicke von mindestens einem
Teil des genannten einen Kantenbereichs (24,
36) für das genannte Vergrößerung der Ausdehn-
nung reduziert wird.

15. Verfahren nach Anspruch 14,
bei dem der genannte Teil des Kantenbereichs
(34) gequetscht oder zwischen Werkzeugteilen
(35, 37) gepresst wird, welche an gegenüberlie-
genden Oberflächen der Kantenbereiche anlie-
gen.

16. Verfahren nach Anspruch 14 oder 15,
bei dem der genannte Teil (43) des Kantenbe-
reichs (24) gestreckt wird.

17. Verfahren nach Ansprüchen 12 bis 16,
bei dem jede Öffnung (22) mitteis eines Stanz-
kwerkzeugs (25, 26) geformt wird, welches eine
Werkzeugschneide (28) aufweist und unter
rechtem Winkel zu der durch das Metallblech
(23) definierten Ebene bewegt wird, darft, daß
der genannte Schlitz darin geschnitten wird, wobei das Stanzwerkzeug ferner gegenüber
dem Metallblech so bewegt wird, daß der erste
Kantenbereich (24) aus der durch das Metall-
blech gebildeten Ebene herausgedrückt wird.

18. Verfahren nach Anspruch 17, bei dem ein äußerer Teil (46) des ersten Kantenbe-
reichs (24) benachbart zu dessen freiem Ende
(32) im wesentlichen daran gehindert wird, sich
in Richtung des Stanzwerkzeugs zu bewegen,
wochdar ein innerer Verbindungsbereich (43)
des ersten Kantenbereichs (24) gestreckt wird.

19. Verfahren nach Anspruch 18,
bei dem das Stanzwerkzeug (25, 26) eine
scharfe Werkzeugschneide (42) umfaßt, die
sich in Richtung des genannten freien Endes
(32) oder im wesentlichen parallel dazu er-
streckt.

20. Verfahren nach Anspruch 19,
bei dem das Stanzwerkzeug erste und zweite, im
wesentlichen ebene Oberflächenbereiche aufweist, die durch den genannten scharfen
Schneidenbereich (42) zur Bildung der inneren
bzw. äußeren Teile (43, 46) des ersten Kanten-
bereichs (24) voneinander getrennt sind, wobei
die erste ebene Fläche einen ersten spitzen
Winkel mit der Ebene, die vom Metallblech
(23) gebildet ist, bildet und die ersten und
zweiten ebenen Flächen wechselseitig einen
Winkel bilden, welcher kleiner ist als der Sup-
plementärwinkel des ersten spitzen Winkels.

Revendications

1. Appareil à fluidisé, comprenant
une plaque de support de lit fluidisé (13)
formée d’une feuille métallique, délimitant une
première surface latérale générale et ayant
plusieurs ouvertures (22) de distribution de gaz
formées dans la plaque, chacune des ouvertu-
res étant délimitée entre une première et une
seconde partie opposée de bord (24, 34) aux-
quelles la première partie de bord (24) au
moins a été repoussée en dehors de la surface
latérale générale,
un dispositif (12, 14) destiné au passage
du gaz vers haut par les ouvertures (22) de la
plaque de support de lit (13) pour la fluidisa-
tion d’un produit particulaire ou en poudre (P)
plaçé sur la plaque,
un dispositif (16) de transmission du pro-
duit particulaire ou en poudre à la plaque de
support du lit, et
un dispositif (17, 19) destiné à extraire le
produit fluidisé de l’appareil caractérisé en ce
que l’épaisseur d’une partie au moins de l’une
au moins des première et seconde parties de
bord (24, 34) a subi une réduction provoquant
une augmentation de sa longueur le long de la
première surface latérale générale de manière
que la projection orthogonale sur la première
surface latérale générale de l’ouverture délimi-
tée entre la première et la seconde partie de
bord soit réduite ou éliminée.

2. Appareil selon la revendication 1, dans lequel
la première et la seconde partie de bord (24,
34) sont placées sur les côtés opposés d’une
découpe formée dans la feuille métallique.
3. Appareil selon la revendication 1 ou 2, dans lequel la première surface latérale générale est sensiblement plane.

4. Appareil selon l’une quelconque des revendications 1 à 3, dans lequel la première et la seconde partie de bord (24, 34’) se recouvrent au moins partiellement en projection orthogonale sur la première surface latérale.

5. Appareil selon la revendication 1, dans lequel une partie au moins de la seconde partie de bord (34) a été comprimée afin que son épaisseur soit réduite.

6. Appareil selon la revendication 1 ou 4, dans lequel une portion au moins (43) de la première partie de bord (24) a été étrière.

7. Appareil selon l’une quelconque des revendications 1 à 6, dans lequel les premières parties de bord (24) comportent une portion externe (46) délimitant un bord libre (32) et une portion interne de raccordement (43) séparée de la portion externe par une courbure relativement nette, une section des parties interne et externe en direction sensiblement perpendiculaire au bord libre formant un premier et un second angle aigu respectivement avec la surface latérale générale, le second angle aigu étant nettement inférieur au premier.

8. Appareil selon la revendication 7, dans lequel la portion externe (46) est sensiblement parallèle au premier plan général.

9. Appareil selon la revendication 7 ou 8, dans lequel l’épaisseur de la portion interne (43) a été réduite par étrorage.

10. Appareil selon l’une quelconque des revendications 1 à 9, dans lequel chaque ouverture (22) est allongée (figure 10A) et est délimitée entre deux bords sensiblement parallèles ou de même étendue.

11. Appareil selon l’une quelconque des revendications 1 à 10, dans lequel les ouvertures de la plaque de support de lit fluidisé sont placées par paires d’ouvertures dirigées en sens pratiquement opposés, une partie enfoncée de la plaque étant disposée entre les ouvertures de chaque paire.

12. Procédé de fabrication d’une plaque de support de lit fluidisé (13) destinée à un appareil à lit fluidisé selon la revendication 1, à partir d’une feuille métallique (23), le procédé compréhendant :

- la formation de plusieurs fentes ou découpages séparées mutuellement dans la feuille métallique, chaque fente étant délimitée entre des première et seconde parties opposées de bord (24, 34), et

- le pressage de la première partie de bord au moins (24) en dehors du plan délimité par la feuille métallique (23) afin qu’une ouverture se forme,

- caractérisé par la déformation, après formation de la fente, de l’une au moins des première et seconde parties de bord (24, 34) afin que sa longueur soit accrue suivant la plan de la feuille métallique.

13. Procédé selon la revendication 12, dans lequel une partie de bord au moins est déformée afin qu’elle assure un recouvrement au moins partiel des parties opposées de bord (24, 34), en vue perpendiculaire au plan de la feuille métallique (23).

14. Procédé selon la revendication 12 ou 13, dans lequel l’épaisseur de paroi d’une portion au moins de ladite partie de bord au moins (24, 34) est réduite afin qu’elle donne l’augmentation de longueur.

15. Procédé selon la revendication 14, dans lequel la portion de la partie de bord (34) est pincée ou comprimée entre deux parties d’outil (35, 37) coopérant avec les surfaces opposées de la partie de bord.

16. Procédé selon la revendication 14 ou 15, dans lequel la portion (43) de la partie de bord (24) est étrière.

17. Procédé selon les revendications 12 à 16, dans lequel chaque ouverture (22) est formée par un outil de poinçonnage (25, 26) ayant un bord de coupe (28) et déplacé en direction sensiblement perpendiculaire au plan délimité par la feuille métallique (23) afin qu’il découpe la fente dans la feuille, l’outil de poinçonnage étant déplacé en outre par rapport à la feuille métallique afin qu’il repousse la première partie de bord (24) en dehors du plan formé par la feuille métallique.

18. Procédé selon la revendication 17, dans lequel une portion externe (46) de la première partie de bord (24) adjacente à son bord libre (32) est retenue pratiquement par rapport à l’outil de poinçonnage si bien qu’une portion interne de raccordement (43) de la première partie de bord (24) est étrière.
19. Procédé selon la revendication 18, dans lequel l'outil de poinçonnage (25, 26) a un bord aigui-isé d'outil (42) ayant la même étendue que l'extrémité libre (32) ou étant pratiquement para-lèle à cette extrémité.

20. Procédé selon la revendication 19, dans lequel l'outil de poinçonnage comprend une première et une seconde portion de surface sensiblement plane séparées par le bord aiguisé (42) de l'outil pour la formation des portions interne et externe (43, 46) respectivement de la pre-mière partie de bord (24), la première surface plane délimitant un premier angle aigu avec le plan formé par la feuille métallique (23) et la première et la seconde surface plane délimi-tant entre elles un angle qui est inférieur à l'angle supplémentaire du premier angle aigu.