EUROPEAN PATENT SPECIFICATION

Temporal decorrelation method for robust speaker verification
Zeitliche Dekorrelationsverfahren zur störsicheren Sprechererkennung
Procédé de décorrélations temporelles pour vérification robuste de locuteur

Designated Contracting States:
DE FR GB IT NL

Priority: 28.02.1991 US 662086

Date of publication of application:

Inventors:
• Netsch, Lorin P.
 Allen, TX 75002 (US)

Representative:
Blanco White, Henry Nicholas et al
ABEL & IMRAY
Northumberland House
303-306 High Holborn
London WC1V 7LH (GB)

References cited:
US-A- 4 054 749
WO-A-91/18386

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates generally to speech processing, and more particularly to a system and method for robust speaker verification employing temporal decorrelation.

Description of the Related Art

Current system and methods of speaker voice verification require voice enrollment prior to actual verification usage. During such enrollment, a model of the speech particular to each speaker to be verified is created. This is usually done by gathering speech data from several utterances known to come from a given speaker and then processing the data to form models unique to the speaker. The unique models are stored along with information that identifies the speaker of the models.

During actual verification usage, speakers first claim their identity. The system requests the speaker speak an utterance which is then compared to the stored speech models for the speaker with the claimed identity. If the spoken utterance and speech models agree closely, then the speaker is declared to be the same as the claimed identity.

Present methods of speech processing measure vectors of speech parameters from an utterance over small periods of time, called frames, during which it is assumed that the acoustical signal is not changing appreciably. Often, these parameter vectors undergo an orthogonalizing linear transformation, or some other transformation, to create statistically uncorrelated speech parameter vectors, also known as speech feature vectors. The resulting parameter or feature vectors can be used to model an individual's speech.

Currently, some speaker verification systems group together the speech vectors from all frames of a given person's speech and use them to determine average statistical properties of the speech vectors over entire utterances. Sometimes these systems estimate average statistical properties of the distortion of the speech vectors due to different handsets and channels. The average statistical properties are subsequently used to verify the speaker.

Other speaker verification systems group speech vectors that correspond to the same speech sounds in a process called alignment. Dynamic Time Warping (DTW) or Hidden Markov Modeling (HMM) are among the more well-known methods for alignment. The system estimates the statistical properties of the speech vectors corresponding to each group separately. The resulting collection of statistical properties of the groups of speech vectors form the reference model for the speaker to be verified. Verification systems often separate the collection of statistical properties into multiple models representing individual words, syllables, or phones.

It is important to note that all of these present art systems utilize statistical properties of the speaker's data at the speech vector level. Hence, the systems implicitly assume independence of the statistical properties associated with each group of speech vectors.

One of the problems faced by many speaker verification applications include unavoidable distortion or variation of the speech signal. A distorted speech signal results in distorted speech vectors. If the vectors are considered individually, as current verification systems do, it is difficult to determine whether the speech came from an assumed true speaker or an impostor because of the distortion of the speech vector. This degrades speaker verification performance.

For example, in telecommunications applications, where one wishes to control access to resources by voice identification over the telephone, use of different telephone handsets and channels often distorts and varies a person's speech. In other applications, such as an automated teller for banking, the use of different microphones causes variation of the speech signal. It is also important to note that with current speaker verification systems, since only one telephone handset or microphone is used at a time, the variation of the speech signal is consistent so long as only that particular handset or microphone is used.

Accordingly, improvements which overcome any or all of these problems are desirable.

EP-A 0 397 399 describes a system for speaker voice verification which includes computing speech feature vectors, linear transformation discarding the least significant features, aligning references and input utterances, and integrating over time the Euclidian distance between the reference and input feature parameters.

WO-A 91/18386, which was filed and published after the priority date of the present application, describes a method of speaker voice verification in which a word-level tertiary vector is multiplied by a transformation matrix to produce a parameter data vector, each component of which is compared with the corresponding component of a reference vector; a weighted sum of the differences is used as a measure of similarity between the reference and input utterances of a word.

It is an object of the present invention to provide a system and method for robust speaker verification which compensates for distortion or variation of the speech signal due to use of different telephone handsets, telephone channels, or microphones.

It is another object of the present invention to provide a system and method for improving the performance of speaker verification.

It is a further object of the present invention to provide a system and method which reduce the amount of storage necessary for speaker-specific speech information.
The invention provides an automated temporal decorrelation system for speaker voice verification, comprising a collector for receiving speech from an unknown speaker claiming a specific identity into a plurality of input vectors for each word spoken; a word-level speech feature calculator operable to utilize a temporal decorrelation transformation for generating word-level speech feature vectors from said speech inputs received from said collector thereby creating whole-word vectors which are statistically uncorrelated over entire words with said speech inputs; word-level speech feature storage for storing word-level speech feature vectors known to belong to the speaker having said specific identity; a word-level vector scorer to calculate a similarity score between said word-level speech feature vectors received from said word-level speech feature calculator and those received from said word-level speech feature storage; and speaker verification decision circuitry for determining, based on said similarity score received from said word-level vector scorer, whether said unknown speaker is said speaker having said specific identity.

The invention also provides a temporal decorrelation method for speaker voice verification, comprising the steps of: collecting speech inputs from an unknown speaker claiming a specific identity into a plurality of input vectors for each word spoken; transforming said plurality of input vectors using a temporal decorrelation transformation, to establish word-level speech feature vectors, thereby creating whole-word vectors which are statistically uncorrelated over entire words with said speech inputs; retrieving previously-stored word-level speech feature vectors known to belong to the speaker having said specific identity; calculating a similarity score between said word-level speech feature vectors created in said step of establishing and said retrieved previously-stored vectors; and determining, based on said similarity score, whether said unknown speaker is said speaker having said specific identity.

Preferred embodiments of the present invention provide a temporal decorrelation system and method for speaker voice verification that use the statistically optimal correlation between measured features of speech across whole words to verify the speaker's identity. The present invention exploits correlations between groups of speech vectors representing the sounds of individual words in an utterance. Since these correlations span whole words, it is possible to find statistical features that span entire words which are relatively independent of distortions that remain constant during an entire utterance. Decorrelation processing using these statistical features, as embodied in the present invention, provides a verification system less sensitive to distortion and variations which are consistent during an utterance, resulting in improved speaker verification performance.

The temporal decorrelation system and method of the present invention also reduce the number of parameters that must be stored to represent a specific speaker's voice, thereby reducing the amount of storage necessary for speaker specific speech information.

One system and method according to the present invention will now be described by way of example with reference to the accompanying drawings, in which:

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example of a general speaker verification system;
FIG. 2 is a block diagram of showing alignment processing without the present invention;
FIG. 3 is a block diagram depicting utterance scoring without the present invention;
FIGs. 4a-b are block diagrams of steps performed by an enrollment processor according to a preferred embodiment of the present invention; and
FIG. 5 is a block diagram of a speaker verification processor according to a preferred embodiment of the present invention;
FIG. 6 is a block diagram of alignment processing according to a preferred embodiment of the present invention;
FIG. 7 is a block diagram showing whole-word transformation according to a preferred embodiment of the present invention; and
FIG. 8 is a block diagram depicting utterance scoring according to a preferred embodiment of the present invention.

Corresponding numerals and symbols in the different figures refer to corresponding parts unless otherwise indicated.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A preferred embodiment of the present invention is best understood by first considering Figure 1, illustrating a general speaker verification system. As indicated above, speaker voice verification requires voice enrollment prior to actual verification usage. To enroll a known speaker, enrollment system 5 enables a known speaker to provide utterances to speech collector 10 by microphone, telephone handset, channel, or the like. Speech collector 10 collects speech parameter vectors from such utterances and provides them to modeling unit 15. Modeling unit 15 forms models unique to the known speaker based on these speech parameter vectors. These speaker-unique models are stored, along with information that identifies the speaker of the models, in storage 20.

In some instances, several repetitions of the same word or phrase are collected and parameter vectors corresponding to the same portions of speech are subjected to alignment (grouping of vectors). The resulting groups of vectors are then averaged by modeling unit 15 to provide a good estimate or model of the speaker's
specific reference speech parameter vectors. The resulting set of parameter vectors form the reference model for the speaker to be verified. Often the parameter vectors are divided to form several separate models representing portions of speech such as individual words, syllables, or phones.

During actual speaker verification, a speaker first inputs his claimed identity to input portion 30 of verification system 25. This can be accomplished by various means such as keying in an identifying under (digit entry) via a telephone keypad, using a credit card with recorded information, voice recognition of an identification phrase, or any other suitable means. Verification system 25 uses this claimed identity to retrieve the corresponding speech models from storage 20. Once verification system 25 retrieves the speech models for the claimed identity, verification system 25 may request that the speaker speak an utterance, or use the utterance provided to claim an identity.

In fixed text verification systems, verification system 25 has knowledge of the text of each speaker's verification utterance. After the utterance is collected from the speaker, it is converted to a sequence of input speech vectors in a manner similar to enrollment. These input speech vectors are then aligned with the reference model vectors corresponding to the speaker with the claimed identity using DTW, HMM, or other algorithms resulting in a correspondence between each input speech vector and a reference model (parameter) vector. An example of this type of alignment is shown in Figure 4, where input speech vectors v1-v8 are aligned with the reference model (parameter) vectors r1-r4. Reference parameter vectors r1 and r2 correspond to a first word, while r3 and r4 correspond to a second word.

After alignment, verification system 25 compares the input speech signal of the spoken utterance to the retrieved speech models in speech model comparator 35. The comparison is made between each of the input speech vectors and its mapped reference vector to determine the amount of similarity between the vectors. Comparator 35 establishes a similarity score 310, as illustrated in Figure 3, calculated for the entire verification utterance, based on the closeness of the input speech signal to the models retrieved from storage 20. This closeness is the sum of similarity measurements 320 between the input speech vectors and the mapped reference vectors. Similarities of vectors may be determined by several methods including statistical maximum likelihood calculations or vector quantization. If the utterance score indicates that the reference and input vectors are similar enough over the entire utterance to meet criteria for success, (i.e., the spoken utterance and speech models agree closely), then verification system 25 decides the speaker is indeed the same as the claimed identity. In some systems, if the claimed identity is verified, then the input speech vectors are averaged with the mapped reference vectors to produce an updated set of speech reference models which replace the models kept in storage 20.

In a preferred embodiment of the present invention, enrollment and verification both use HMM alignment of the input speech parameter vectors with the reference model parameter vectors. However, the vectors making up each word are subsequently concatenated to form single vectors representing whole words in the utterance. The whole-word vectors are subjected to word-specific orthogonalizing linear transformations to create whole-word vectors which are statistically uncorrelated over entire words. The resulting wholeword vectors are used to determine the measure of similarity between the input speech utterance and the stored speech parameters.

More specifically, Fig. 4a shows a block diagram of a preferred embodiment which determines the known speaker speech feature vectors from the speaker's input speech during enrollment. Beginning with Block 100, the speaker to be enrolled says a known verification utterance. This speech signal undergoes a Linear Prediction Coefficient (LPC) calculation to produce vectors of linear prediction coefficients. In the preferred embodiment, these vectors consist of ten coefficients plus two elements to define energy and pitch. Frame parameter vector calculator 110 uses the LPC vectors in a non-linear process to determine energy, spectral, difference energy, and difference spectral speech parameters. These global speech parameters are transformed by global feature vector transformer 120 into speech feature vectors for the known speaker. The global feature vector transform is a predetermined linear transformation which is calculated prior to enrollment. It is constructed by determining vector statistics from a database representing a large number of speakers. The vector statistics are used in an eigenvector analysis to design the linear transformation which determines uncorrelated features which optimally discriminate between speakers.

The speech feature vector formation described above is just one way of creating speech features. There are other feature calculation methods, such as calculation of cepstral coefficients, or use of feature vectors directly derived from the LPC coefficients such as parcor or log area ratio coefficients. The present invention should not be limited in any manner to a particular speech feature vector calculation method.

Fig. 4b illustrates a block diagram of the preferred embodiment of enrolling the known speaker by creating word-level speech models specific to the speaker from the speech feature vectors. Feature vector alignment processor 140 receives the speech feature vectors from global feature vector transformer 120, and aligns these features with previously determined speaker independent reference word model feature vectors 130 representing acoustical observations for each word of the verification utterance. Reference word model feature vectors 130 are statistical representations of each word in the known speaker's enrollment input speech, and are
created from a previously collected speech database using a large number of speakers. According to a preferred embodiment, alignment processor 140 employs a Viterbi search HMM algorithm to align the speech and reference models, thereby producing a mapping between input speech feature vectors and reference speech feature vectors 130. As stated before, other well-known algorithms, such as Dynamic Time Warping (DTW), may also be used to perform the alignment. In the preferred embodiment, the mapping is such that there is at least one input speech feature vector mapping to each reference vector 130, and each input speech vector maps to only one reference vector 130.

In the preferred embodiment, feature averaging circuitry 150 averages the input speech feature vectors that map to the same reference vector 130 to produce averaged reference model vectors which characterize the speech of the enrolled speaker for each word. This creates a set of vectors from the known speaker corresponding to the speaker independent reference word model vectors. Note that this results in the same number of averaged input speech vectors as there are reference vectors. Other means of combining the input speech feature vectors rather than averaging may be performed, including selection of each individual input vector which best matches each reference vector.

This averaging process may be repeated using several enrollment utterances so that the averaged reference model vectors for each word characterize better the speech of the enrolled speaker. The averaged reference model vectors corresponding to each word are usually stored in the system for subsequent verification processing. If a further reduction in memory storage is desired, storage of the averaged reference model vectors is not required.

Word-level vector transformer 160 first concatenates all of the averaged input speech vectors received from feature averaging circuitry 150 corresponding to each word to produce a single word-level averaged input speech vector for each word. Word-level vector transformer 160 transforms the word-level vectors using a word-level linear transformation. The word-level linear transformation is calculated prior to an enrollment using word-level vector statistics from a database representing a large number of speakers, and is designed to produce uncorrelated word-level speech features which optimally discriminate between speakers. As the last step during enrollment, word-level speech feature storage 170 stores data identifying the known speaker and all of the word-level speech feature vectors for the known speaker received from word-level vector transformer 160.

Fig. 5 is a block diagram of the preferred embodiment of a speaker verification processor according to the present invention. During verification processing, an unknown speaker claims that his identity is that of a speaker that has already been enrolled on the system. The task of the verification system is to determine whether this is true. To accomplish this, the verification system prompts the speaker to say his verification utterance. The verification utterance is collected and the verification processor calculates speech feature vectors in speech feature vector calculator 210. Such calculations involve the same processing discussed above in connection with Fig. 4a. Word-level speech feature calculator 220 uses the speech features output from speech feature vector calculator 210 together with the claimed speaker word list to form word-level speech feature vectors for the unknown speaker.

The processing performed by word-level speech feature calculator 220 is the same as that described in connection with Fig. 4b, except that the word-level speech feature vectors are not directly stored in a word-level speech feature storage. Instead, the word-level speech feature vectors from the unknown speaker are input to word-level vector scorer 230. Thus, word-level speech feature calculator 220 uses HMM alignment to map the input speech vectors to the speaker specific reference model vectors which correspond to each word for the speaker with the claimed identity. An example is shown in Figure 6, where input speech vectors v1 through v8 are mapped (step 350) to reference vectors r1 and r2 for word 1 and reference vectors r1 and r4 for word 2.

Word-level vector scorer 230 calculates a similarity score between the word-level speech feature vectors of the unknown speaker coming from word-level speech feature vector calculator 220 with those which were previously stored in word-level speech feature storage 170. In the preferred embodiment, the similarity score is the sum, over all words, of the Euclidean distances between the word-level speech feature vectors of the unknown speaker and those which were stored for the claimed identity. There are many other similarity score measurements which may be used, such as Mahalanobis distance.

The similarity measurement of the present invention is significantly different from prior art. Rather than making a similarity comparison between each input speech vector and the mapped reference model vector, the input speech vectors mapped to each reference model vector are averaged (Figure 6, step 360) to produce an averaged input speech vector corresponding to each reference model vector (a1-a4). The averaged input speech vectors making up each word are concatenated to form a single whole-word input speech vector for each word. In the example of Figure 6, a1 and a2 are concatenated to form the whole-word vector for word 1, and a3 and a4 are concatenated to form the whole-word vector for word 2.

The process of forming whole-word input speech vectors 390, 395 and whole-word reference feature vectors 410, 415 is illustrated in figure 7. Each whole-word input speech vector 370, 375 is transformed by a predetermined linear transformation termed the temporal decorrelation transform (TDT) 380 specifically deter-
mined for each word to produce a decorrelated whole-word input speech feature vector 390,395, respectively. In a similar manner, whole-word reference speech vectors 400,405 for each word (11-14 in Figure 6) are concatenated to produce a single whole-word reference vector for each word. Whole-word reference speech vectors 400,405 are transformed by the same TDTs 380 to form whole-word reference feature vectors 410,415, respectively.

As shown in Figure 8, whole-word input speech feature vectors 390.395 and whole-word reference feature vectors 410,415 are then compared (step 420) to determine individual whole-word feature vector similarity scores 420. An utterance score is the sum of similarity scores 420. Use of a statistical maximum likelihood calculation to indicate similarity is preferred, although other well-known methods such as vector quantization could be used. Due to the decorrelation provided by TDTs 380, many of the features in the whole-word feature vectors 410,415 may be discarded. In the preferred embodiment of the present invention, only about 20% of the whole-word features per vector were utilized.

Returning to Figure 5, the resulting similarity score from word-level vector scorer 230 is input to speaker verification decision circuitry 240 which compares the score with a predetermined threshold. If the score is below the threshold, then the system decides that the unknown speaker is who he claimed. On the other hand, if the score is above the threshold, then the system allows the unknown speaker up to two more attempts before it decides that the unknown speaker's identity is not the same as the claimed identity.

In the preferred embodiment, if speaker verification decision circuitry 240 determines that the unknown speaker's identity is the same as the claimed identity, then feature update averaging circuitry 250 performs a weighted average of the word-level speech features of the input speech from word-level speech feature calculator 230 with those from word-level speech feature storage 170. The resulting averaged word-level speech features replace those kept in word-level speech feature storage 170 for the claimed speaker identity. This yields an improved model of word-level speech features for the claimed speaker.

The preferred embodiment of the present invention creates a word specific temporal decorrelation linear transformation (TDT) for each word of the vocabulary that a speaker will say. Since there are a large number of parameters that must be determined for each TDT, it is useful to employ a speech database consisting of utterances from many different speakers in which the vocabulary words are repeated several times by each speaker.

In order to create a TDT, covariance matrices of whole-word vectors for each vocabulary word are calculated for each speaker in the database. These whole-word vectors are formed by a process similar to that for verification as shown in Figure 2. Using HMM alignment, utterance parameter vectors from each speaker are aligned with predetermined reference model vectors representing each word in the vocabulary. After alignment, the utterance vectors mapped to each reference vector are averaged to form averaged utterance vectors, one for each reference vector. The averaged utterance vectors for each word are concatenated to form whole-word vectors. The whole-word vectors corresponding to each vocabulary word are used to calculate covariance matrices for each speaker and each word. The covariance matrices corresponding to the same word for all speakers are then pooled. This results in one covariance matrix for each vocabulary word. Each of the covariance matrices is used in an eigenvector orthogonalization calculation to generate eigenvector matrices for each word. Additionally, all whole-word vectors for each word (regardless of speaker) are used to determine a covariance matrix for each word that represents global word-level vector covariance. The two covariance matrices thus formed for each vocabulary word are used in an eigenvector discriminant calculation to determine the linear transformation that defines uncorrelated word-level features which optimally discriminate between speakers. The eigenvector matrices representing the decorrelated whole-word transformations are known as TDTs.

As mentioned above, the amount of storage for speaker specific data is reduced by use of the present invention. This occurs because only the whole-word reference features required to perform the similarity calculations are stored. Since only about 20% of the features are used for the similarity calculation, storage can be reduced by about 80% as compared to storing all of the reference vectors.

The present invention employs temporal decorrelation involving scoring of word-level vectors to determine the similarity with stored speaker-dependent reference models. A simple extension of the concept to speech recognition technology can be made by performing alignment as described above, and then determining a wordlevel score based on similarity with speaker-independent models. This score could be used to guide recognition at the word-level.

While a specific embodiment of the invention has been shown and described, various modifications and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.

Claims

1. An automated temporal decorrelation system for speaker voice verification, comprising:

 a collector (210) for receiving speech from an unknown speaker claiming a specific identity and for generating a plurality of input vectors
(v1-v5, v6-v8) for each word spoken; a word-level speech feature calculator (220) operable to utilize a temporal decorrelation transformation for generating word level speech feature vectors from said speech inputs received from said collector (210), thereby creating whole-word vectors (390, 395) which are statistically uncorrelated over entire words with said speech inputs; word-level speech feature storage (20) for storing word-level speech feature vectors (410, 415) known to belong to the speaker having said specific identity; a word-level vector scorer (230) to calculate a similarity score between said word-level speech feature vectors (11, 12) received from said word-level speech feature calculator and those (R1, R2) received from said word-level speech feature storage; and speaker verification decision circuitry (240) for determining, based on said similarity score received from said word-level vector scorer, whether said unknown speaker is said speaker having said specific identity.

5

2. A system according to claim 1, wherein said word-level speech feature calculator (220) employs HMM alignment to map said input speech vectors to speaker independent reference model vectors which correspond to each word associated with said speaker having said specific identity.

10

3. A system according to claim 1 or claim 2, wherein said word level vector scorer comprises concatenation circuitry for concatenating said plurality of input vectors making up a single word to form single vectors representing whole words in said speech inputs.

15

4. A system according to any one of claims 1 to 3, wherein said similarity score is a sum, over all words, of Euclidean distances between said word-level speech feature vectors from said word-level speech feature calculator and those which were stored in said word-level speech feature storage.

20

5. A temporal decorrelation method for speaker voice verification, comprising the steps of:

25

ollecting (210) speech inputs from an unknown speaker claiming a specific identity and for generating a plurality of input vectors (v1-v5, v6-v8) for each word spoken; transforming (220) said plurality of input vectors (v1-v5, v6-v8), using a temporal decorrelation transformation, to establish word-level speech feature vectors, thereby creating whole-word vectors (390, 395) which are statistically uncorrelated over entire words with said speech inputs; retrieving previously-stored (20) word-level speech feature vectors (410, 415) known to belong to the speaker having said specific identity; calculating a similarity score between said word-level speech feature vectors (I1, I2) created in said step of establishing and said retrieved previously-stored vectors (R1, R2); and determining (240), based on said similarity score, whether said unknown speaker is said speaker having said specific identity.

30

6. A method according to claim 5, wherein said step of establishing (220) word-level speech feature vectors comprises employing HMM alignment to map said input speech vectors to speaker independent reference model vectors which correspond to each word associated with said speaker having said specific identity.

35

7. A method according to claim 5 or claim 6, wherein said step of scoring comprises concatenating said plurality of input vectors making up a single word to form single vectors representing whole words in said speech inputs.

40

8. A method according to any one of claims 5 to 7, wherein said similarity score is a sum, over all words, of Euclidean distances between said word-level speech feature vectors (I1, I2) created in said step of establishing and said retrieved previously-stored vectors (R1, R2).

45

9. A temporal decorrelation method for reducing the amount of storage necessary for speaker specific speech information, comprising the steps of:

establishing word-level speech feature vectors having a dimension from a spoken utterance; reducing the dimension of said word-level speech feature vectors by applying a temporal decorrelation linear transformation to said word-level feature vectors; and storing said word-level feature vectors.

50

10. A method according to any one of claims 5 to 8, wherein the amount of storage necessary for said word-level speech feature vectors has been reduced by a method as claimed in claim 9.

55

Patentansprüche

1. Automatisches System zur zeitlichen Dekorrelation für die Sprecherstimmenverifizierung mit
einem Kollektor (210) zum Empfangen von Sprache von einem unbekannten Sprecher, der eine bestimmte Identität beansprucht, und zum Erzeugen mehrerer Eingabevektoren (v1-v5, v6-v8) für jedes gesprochene Wort; einem Element (220) zum Berechnen wortorientierter Sprachmerkmale, das so betrieben werden kann, daß es eine zeitliche Dekorrelationstransformation zum Erzeugen von Vekto- ren wortorientierter Sprachmerkmale aus den von dem Kollektor (210) empfangenen Spracheingaben verwendet, wodurch Ganzwortvektoren (390, 395) gebildet werden, die über ganze Wörter zu den Spracheingaben statistisch unkorreliert sind; einem Speicher (20) wortorientierter Sprach-

merkmale zum Speichern von Vektoren (410, 415) wortorientierter Sprachmerkmale, von denen bekannt ist, daß sie zu dem Sprecher mit der bestimmten Identität gehören; einem Element (230) zum Bewerten wortori-
tierter Vektoren, um eine Bewertung der Ähnlichk-

lichkeit zu berechnen, die zwischen den von dem Element zum Berechnen wortorientierter Sprachmerkmale empfangenen Vektoren (I1, I2) wortorientierter Sprachmerkmale und den von dem Speicher wortorientierter Sprachmerkmale empfangenen Vektoren (R1, R2) besteht; unter einer Sprachverifizierungsentscheidungs-

schaltungsanordnung (240), die auf der Grund-
lage der zu dem Element zum Bewerten wortori-
tierter Vektoren empfangenen Ähnlich-

keitsbewertung entscheidet, ob der unbekannte Sprachender Sprecher der eine Bewertung der Ähnlichkeit berechnet wird, die zwischen den bei dem Erzeugungsschritt gebildeten Vektoren (I1, I2) wortorientierter Sprachmerkmale und wiederausgelesenen vorher gespeicherten Vektoren (R1, R2) besteht, und auf der Grundlage der Ähnlichkeitsbewertung entschieden wird, ob der unbekannte Sprachender Sprecher ist, der die bestimmte Identität aufweist.

5. Zeitliches Dekorrelationsverfahren zur Sprecher-
stimmenverifizierung, bei dem

Spracheingaben von einem unbekannten Sprecher gesammelt werden (210), der eine bestimmte Identität beansprucht, und mehrere Eingabevektoren (v1-v5, v6-v8) für jedes gesprochene Wort erzeugt werden; die mehreren Eingabevektoren (v1-v5, v6-v8) unter Verwendung einer zeitlichen Dekorrelati-

onstransformation transformiert werden (220), um Vekten wortorientierter Sprachmerkmale zu erzeugen, wodurch Ganzwortvektoren (390, 395) gebildet werden, die über ganze Wörter zu den Spracheingaben statistisch unkorreliert sind: vorher gespeicherte (20) Vektoren (410, 415) wortorientierter Sprachmerkmale wiederausgelesen werden, von denen bekannt ist, daß sie zu dem Sprecher mit der bestimmten Identi-
tität gehören; eine Bewertung der Ähnlichkeit berechnet wird, die zwischen den bei dem Erzeugungsschritt gebildeten Vektoren (11, I2) wortorientierter Sprachmerkmale und wiederausgelesenen vorher gespeicherten Vektoren (R1, R2) besteht, und auf der Grundlage der Ähnlichkeitsbewertung entschieden wird, ob der unbekannte Sprecher der Sprecher ist, der die bestimmte Identität aufweist.

6. Verfahren nach Anspruch 5, bei dem beim Erzeu-
gen (220) der Vektoren wortorientierter Sprach-

merkmale eine HMM-Ausrichtung verwendet wird, um die Vektoren eingegebener Sprache auf sprecherunabhängige Referenzmodellvektoren abzbilden, die jedem zu dem Sprecher mit der bestimmten Identität gehörenden Wort entsprechen.

7. Verfahren nach Anspruch 5 oder Anspruch 6, bei dem beim Bewerten mehrere Eingabevektoren, die ein einzelnes Wort bilden, verkettet werden, so daß einzelne Vektoren gebildet werden, die ganze Wörter der Spracheingaben repräsentieren.

8. Verfahren nach einer der Ansprüche 5 bis 7, bei dem die Ähnlichkeitsbewertung eine über alle Wörter gebildete Summe der euklidischen Abstände zwischen den Vektoren wortorientierter Sprachmerkmale von dem Element zum Berechnen wortorientier-
tierter Sprachmerkmale und den in dem Speicher wortorientierter Sprachmerkmale gespeicherten Vektoren ist.
9. Zeitliches Dekorrelationsverfahren zur Reduzierung des für sprecherspezifische Sprachinformationen notwendigen Speicherbedarfs, bei dem:

Vektor von Wortorientierter Sprachmerkmale, die eine Dimension aufweisen, aus einer gesprochenen Außerung erzeugt werden; die Dimension der Vektoren Wortorientierter Sprachmerkmale durch Anwendung einer linearen zeitlichen Dekorrelationstransformation auf die Vektoren Wortorientierter Sprachmerkmale reduziert wird; und die Vektoren Wortorientierter Sprachmerkmale gespeichert werden.

10. Verfahren nach einem der Ansprüche 5 bis 8, bei dem der für die Vektoren Wortorientierter Sprachmerkmale notwendige Speicherbedarf durch ein Verfahren nach Anspruch 9 vermindert wurde.

Revisions

1. Système de décroissance temporelle automatisée pour un contrôle de la voix d’un locuteur, comprenant :

un collecteur (210) pour recevoir des signaux vocaux d’un locuteur inconnu revendant une identité spécifique et pour produire une pluralité de vecteurs d’entrée (v1-v5, v6-v8) pour chaque mot prononcé ;
un calculateur (220) de caractéristiques des signaux vocaux au niveau des mots, pouvant fonctionner de manière à utiliser une transformation de décroissance temporelle pour produire des vecteurs caractéristiques de signaux vocaux au niveau des mots, à partir desdits signaux vocaux d’entrée reçus en provenance dudit collecteur (210), en créant ainsi des vecteurs de mots complets (390, 395), qui sont décroissés du point de vue statistique, sur des mots entiers avec lesdits signaux vocaux d’entrée ;
une mémoire (20) de caractéristiques de signaux vocaux au niveau des mots pour mémoriser des vecteurs caractéristiques (410, 415) de signaux vocaux au niveau des mots, dont on sait qu’ils appartiennent au locuteur possédant ladite identité spécifique ;
un dispositif (230) de calcul du score entre vecteurs au niveau des mots pour calculer un score ou degré de similitude entre lesdits vecteurs caractéristiques (11, 12) de signaux vocaux au niveau de mots, reçus dudit dispositif de calcul de caractéristiques de signaux vocaux au niveau de mots, et ceux (R1, R2) reçus de ladite mémoire de caractéristiques de signaux vocaux au niveau de mots ; et un circuit (240) de décision de contrôle du locuteur pour déterminer, sur la base dudit score de similitude reçu du dispositif de calcul du score de similitude de vecteurs au niveau des mots, si ledit locuteur inconnu est ledit locuteur qui possède ladite identité spécifique.

2. Système selon la revendication 1, dans lequel ledit calculateur (220) de caractéristiques de signaux vocaux au niveau des mots utilise un alignement HMM pour mettre en correspondance lesdits vecteurs de signaux vocaux d’entrée avec des vecteurs modèles de référence indépendants du locuteur qui correspondent à chaque mot associé audit locuteur possédant ladite identité spécifique.

3. Système selon la revendication 1 ou 2, dans lequel ledit dispositif de calcul du score de similitude de vecteurs au niveau des mots comprend un circuit de concaténation servant à concaténer ladite pluralité de vecteurs d’entrée constituant un seul mot pour former des vecteurs individuels représentant des mots complets dans lesdits signaux vocaux d’entrée.

4. Système selon l’une quelconque des revendications 1 à 3, dans lequel ledit score de similitude est une somme, réalisée sur tous les mots, de distances euclidiennes entre lesdits vecteurs caractéristiques de signaux vocaux au niveau des mots, délivrés par ledit calculateur de caractéristiques de signaux vocaux au niveau des mots et les vecteurs qui ont été mémorisés dans ladite mémoire de caractéristiques de signaux vocaux au niveau des mots.

5. Procédé de décroissance temporelle pour contrôler la voix d’un locuteur, comprenant les étapes consistant à :

collecter (210) des signaux vocaux d’entrée provenant d’un locuteur inconnu revendant une identité spécifique et produire une pluralité de vecteurs d’entrée (v1-v5, v6-v8) pour chaque mot prononcé ;
transformer (220) ladite pluralité de vecteurs d’entrée (v1-v5, v6-v8) en utilisant une transformation de décroissance temporelle, pour établir des vecteurs caractéristiques de signaux vocaux au niveau des mots, en créant ainsi des vecteurs de mots complets (390, 395), qui sont décroissés statistiquement, sur les mots entiers, avec lesdits signaux vocaux d’entrée ;
récupérer des vecteurs (410, 415) de caractéristiques de signaux vocaux au niveau des mots, préalablement mémorisés (20) et dont on
sait qu'ils appartiennent au locuteur possédant ladite identité spécifique;
calculer un score de similitude entre lesdits vecteurs caractéristiques (I1, I2) de signaux vocaux au niveau des mots, créés lors de ladite étape d'établissement, et lesdits vecteurs récupérés préalablement mémorisés (R1, R2); et
déterminer (240), sur la base dudit score de similitude, si ledit locuteur inconnu est ledit locuteur possédant ladite identité spécifique.

6. Procédé selon la revendication 5, selon lequel ladite étape d'établissement (220) de vecteurs caractéristiques de signaux vocaux au niveau des mots consiste à utiliser un alignement HMM pour mettre en correspondance lesdits vecteurs de signaux vocaux d'entrée avec des vecteurs modèles de référence indépendants du locuteur qui correspondent à chaque mot associé audit locuteur possédant ladite identité spécifique.

7. Procédé selon la revendication 5 ou 6, selon lequel ladite étape de calcul d'un score comprend la concaténation de ladite pluralité de vecteurs d'entrée constituant un seul mot pour former des vecteurs uniques représentant des mots complets dans lesdits signaux vocaux d'entrée.

8. Procédé selon l'une quelconque des revendications 5 à 7, selon lequel ledit score de similitude est une somme, considérée sur tous les mots, de distances euclidiennes entre lesdits vecteurs caractéristiques (I1, I2) de signaux vocaux au niveau des mots, créés lors de ladite étape d'établissement et lesdits vecteurs extraits, préalablement mémorisés (R1, R2).

9. Procédé de décorrélélation temporelle pour réduire la quantité de mémoire nécessaire pour une information de signaux vocaux spécifiques à un locuteur, comprenant les étapes consistant à :

- établir des vecteurs caractéristiques de signaux vocaux au niveau des mots, possédant une dimension à partir d'une prononciation de mots prononcés;
- réduire la dimension desdits vecteurs caractéristiques de signaux vocaux au niveau des mots par application d'une transformation linéaire de décorrélélation temporelle auxdits vecteurs caractéristiques au niveau des mots; et
- mémoriser lesdits vecteurs caractéristiques au niveau des mots.

10. Procédé selon l'une quelconque des revendications 5 à 8, selon lequel la quantité de mémoire nécessaire pour lesdits vecteurs caractéristiques de signaux vocaux au niveau des mots a été réduite au

moyen d'un procédé tel que revendiqué dans la revendication 9.
Figure 1.
Figure 2

Figure 3
Figure 6

Figure 7
Figure 9