EUROPEAN PATENT SPECIFICATION

(54) 9-Aminotetrahydroacridines and related compounds, a process for their preparation and their use as medicaments

9-Aminotetrahydroacridinederivate und verwandte Derivate, Verfahren zur ihrer Herstellung und ihre Anwendung als Arzneimittel

9-Aminotetrahydroacridines et composés apparentés, procédé pour les préparer et leur utilisation comme médicaments

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

(43) Date of publication of application: 19.08.1992 Bulletin 1992/34

(73) Proprietor: HOECHST MARION ROUSSEL, Inc.
Kansas City, Missouri 64137-1405 (US)

(72) Inventors:
• Shutske, Gregory Michael
 Flemington, NJ 08822 (US)
• Kapples, Kevin James
 Little York, NJ 08834 (US)
• Tomer, John Dick
 Perkasie, PA 18944 (US)

(74) Representative: Losert, Wolfgang Dr. et al
Hoechst AG
Patent- und Lizenzabteilung
Gebäude K 801
D-65926 Frankfurt am Main (DE)

(56) References cited:
EP-A- 0 371 388
EP-A- 0 449 172

• JOURNAL OF MEDICINAL CHEMISTRY. vol. 32, no. 8, August 1989, WASHINGTON US pages 1805 - 1813; G.M.SHUTSKE ET AL: '9-Amino-1,2,3,4-tetrahydroacridin-1-ols: synthesis and evaluation as potential Alzheimers disease therapeutics’

• SYNTHESIS. no. 1, January 1978, STUTTGART DE page 43; A.A. AKHREM ET AL: 'A convenient one-step synthesis of tetrahydrobenzisoxazoles via 1,3-cycloaddition of nitroly oxide derivatives to cyclohexane-1,3-dione derivatives’

• JOURNAL OF HETEROCYCLIC CHEMISTRY. vol. 27, no. 6, September 1990, PROVO US pages 1617 - 1621; G. M. SHUTSKE: 'A novel synthesis of the isoxazolo[5,4,3-k]acridine ring system’

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
Description

The present invention relates to 9-aminotetrahydroacridines and related compounds a process for their preparation and their use as medicaments.

J. Heterocyclic Chem. 27, 1617 (1990) discloses the compound
9-amino-3,4-dihydroacridin-1(2H)-one.

Synthesis, no. 1, (1978), page 43, discloses the compound
6,7-dihydro-3-(3-nitrophenyl)-benzisoxazol-4(5H)-one.

In these publications, the compounds disclosed differ from the present compounds in that the saturated ring containing the -oxo or -OH group is not further substituted with an -OH or -CO(C1-C6)alkyl group.

The present invention provides 9-amino-1,2,3,4-tetrahydroacridines and related compounds of formula 1

![Chemical Structure 1]

wherein Y is C=O or CHOH; R1 is hydrogen or (C1-C6)alkyl; R2 is hydrogen, (C1-C6)alkyl, or phenyl(C1-C6)alkyl; R3 is OR4 wherein R4 is hydrogen, COR5 wherein R5 is (C1-C6)alkyl, X is hydrogen, (C1-C6)alkyl, halogen, (C1-C6)alkoxy, hydroxy, or trifluoromethyl, the geometric or optical isomers thereof, the N-oxides thereof, or the pharmaceutically acceptable acid addition salts thereof, which are useful in relieving memory dysfunction and are thus indicated in the treatment of Alzheimer's disease.

Preferred 9-amino-1,2,3,4-tetrahydroacridines and related compounds of the present invention are those wherein

Y is C=O or CHOH and R3 is OR4 wherein R4 is hydrogen.

The present invention also relates to 9-aminoisilyldihydroacridinones of formula 2

![Chemical Structure 2]

wherein R1 is hydrogen or (C1-C6)alkyl, R2 is hydrogen, (C1-C6)alkyl, or phenyl(C1-C6)alkyl,

R6 is phenyl or fluoro; and X is hydrogen, (C1-C6)alkyl, halogen, (C1-C6)alkoxy, hydroxy, or trifluoromethyl and dihydrobenzisoxazolines of formula 3

![Chemical Structure 3]
wherein X is hydrogen, (C₁₋C₆)alkyl, halogen, (C₁₋C₆)alkoxy, hydroxy, or trifluoromethyl, which are useful as intermediates for the preparation of the 9-amino-tetrahydroacridinol and related compounds of the present invention.

As used throughout the specification and appended claims, the term "alkyl" refers to a straight or branched chain hydrocarbon radical containing no unsaturation and having 1 to 8 carbon atoms. Examples of alkyl groups are methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 1-pentyl, 3-hexyl, 4-heptyl, 2-octyl and the like. The term "alkoxy" refers to a monovalent substituent which consists of alkyl group linked through an ether oxygen having its free valence bond from the ether oxygen. Examples of alkoxy groups are methoxy, ethoxy, propoxy, 1-butoxy, 1-pentoxy, 3-hexoxy, 4-heptoxy, 2-octoxy and the like. The term "alkanoyl" refers to a compound formed by a combination of an alkyl group and hydroxy radical. Examples of alkanols are methanol, ethanol, 1- and 2-propanol, 2,2-dimethylethanol, hexanol, octanol and the like. The term "alkanolic acid" refers to a compound formed by combination of a carboxyl group with a hydrogen atom or alkyl group. Examples of alkanolic acids are formic acid, acetic acid, propanoic acid, 2,2-dimethylacetic acid, hexanoic acid, octanoic acid and the like. The term "halogen" refers to a member of the family fluorine, chlorine, bromine, or iodine. The term "alkanoyl" refers to the radical formed by removal of the hydroxy function from an alkanolic acid. Examples of alkanoyl groups are formyl, acetyl, propionyl, 2,2-dimethylacetyl, hexanoyl, octanoyl, decanoyl and the like. The term "alkanolic acid anhydride" refers to a compound formed by combination of two alkanoyl radicals and one oxy radical. Examples of alkanolic acid anhydrides are acetic acid anhydride, propanoic acid anhydride, 2,2-dimethylacetic acid anhydride, hexanoic acid anhydride octanoic acid anhydride and the like. The term "(C₁₋C₆)" as applied to any of the aforementioned groups refers to a group having a carbon skeleton containing up to and including 6 carbon atoms.

The compounds of the present invention which lack an element of symmetry exist as optical antipodes and as the racemic forms thereof. The optical antipodes may be prepared from the corresponding racemic forms by standard optical resolution techniques, involving, for example, the separation of diastereomeric salts of those instant compounds characterized by the presence of a basic amino group and an optically active acid, or by synthesis from optically active precursors.

In the formulas of the 9-aminotetrahydroacridinol presented herein the hydroxyl groups attached to the cyclohexane ring system may be either in the cis or trans configuration, i.e., the hydroxyl groups may be, respectively, on the same side or on opposite sides of the average plane of the cyclohexane ring. Unless otherwise specified, each formula contemplates both the cis and trans isomers. In the structural formula used herein, heavy lines (-----) indicate that the substituent is above the average plane of the cyclohexane ring and broken lines (----) indicate that the substituent is below the average plane of the ring. A wavy line (~~~) indicates the substituent may be above or below the average plane of the ring.

The present invention comprehends all optical isomers and racemic forms thereof of the compounds disclosed and claimed herein and the formulas of the compounds shown herein are intended to encompass all possible optical isomers of the compounds so depicted.

The novel 9-aminotetrahydroacridinol of the present invention are prepared by the processes delineated in Reaction Schemes A and B.

To prepare a 9-amino-1,2,3,4-tetrahydroacridin-1,4-diol 9 of the present invention, a 2-nitrobenzhydroxamic chloride 4 is condensed with a cyclohexan-1,3-dione enamine 5 to provide a 6,7-dihydro-3-(2-nitropheryl)benzisoxazol-4 (5h)-one 6 which is reductively cyclized to a 9-amino-3,4-dihydroacridine-1(2H)-one 7, rearranged to a 4-alkanoyloxy-9-amino-3,4-dihydroacridine-1(2H)-one 8, and reduced and cleaved to a diol 9. See Reaction Scheme A.

The condensation of a hydroxamic acid chloride 4 with an enamine 5 (e.g., an enamine where R⁰ and R³ are alkyl, or together form a heterocycle such as morpholine) to a benzisoxazole 6 is performed in an etheral solvent such as 1,2-dimethylethane, 2-methoxyethyl ether, dioxane, and tetrahydrofuran, tetrahydrofuran being preferred. While the condensation temperature is not narrowly critical, it is preferred to perform the reaction at the reflux temperature of the reaction medium.
The reductive cyclization of a benzisoxazolone 6 to an aminoacridinone N-oxide 7 is conducted by hydrogenating benzisoxazole 6 in the presence of a catalyst under acidic conditions in an ethereal solvent. Among catalysts, there may be mentioned platinum, palladium, rhodium and ruthenium, unsupported or supported on, for example, carbon, alumina, or calcium carbonate. Palladium-on-carbon is preferred. Included among ethereal solvents are 1,2-dimethoxyethane, 2-methoxyethyl ether, dioxane, and tetrahydrofuran. Tetrahydrofuran is preferred. Acidic reaction conditions are obtained by conducting the reaction in dilute mineral acid, i.e., dilute hydrochloric, hydrobromic, nitric, or phosphoric acid. 5% Hydrochloric acid is preferred. Under these conditions, the hydrogenation proceeds at a reasonable rate under a hydrogen pressure within the range of about atmospheric pressure to about 100 psi. A hydrogenation pressure of about 50 psi is preferred.

The rearrangement of an acridinone N-oxide 7 to a 4-alkanoyloxyacridinone 8 is effected by means of an alkanoic acid anhydride of formula 16

\[(R^5\text{CO})_2\text{O}\]

wherein R^5 is alkyl, the anhydride 16 acting as a reactant and the reaction solvent. The preferred anhydride is acetic anhydride. The rearrangement proceeds readily at the reflux temperature of the medium; reduced rearrangement temperatures to as low as ambient temperature may be employed, however.

The reduction and cleavage are carried out by treating a 4-alkanoyloxy-9-aminoacridinone 8 with an alkali metal aluminum hydride, for example, lithium, sodium, or potassium aluminum hydride, in an ethereal solvent, for example, diethyl ether, 1,2-dimethoxyethane, 2-methoxyethyl ether, dioxane, or tetrahydrofuran. Lithium aluminum hydride and tetrahydrofuran are the preferred alkali metal hydride and ethereal solvent, respectively. The temperature at which the reduction and cleavage are performed is not critical; however, it is preferred to perform the reaction at ambient temperature. Under the aforesaid conditions, a mixture of the cis-and trans-acridindiol 9a and 9b, respectively, is formed, which is separated by flash chromatography.
Among alkanol components, there may be mentioned methanol, ethanol and 1-, or 2-propanol. Tetrahydrofuran/methanol is the preferred solvent. Potassium fluoride and sodium bicarbonate are the preferred alkali fluoride and alkali bicarbonate, respectively. It is also preferable to perform the oxidative cleavage initially at about 0°C and finally at about 25°C.

The reduction of a 9-amino-3-hydroxyacidin-1(2H)-one 14 to a 9-aminoacidindiol 15 is conducted in an ethereal solvent (e.g., diethyl ether, 1,2-dimethoxyethane, 2-methoxyethyl ether, dioxane, or tetrahydrofuran) by means of an alkali metal trialkylborohydride of formula 17 (e.g., lithium, sodium, or potassium trimethyl, triethyl, tri-1-, or 2-propylborohydride) at ambient temperature. Lithium triethylborohydride in tetrahydrofuran is the preferred reduction medium. Under the aforesaid conditions, a mixture of the cis- and trans-acidindiol 15a and 15b, respectively, is formed, which is separated by flash chromatography.

A 9-aminoacidin-1,2-diol 18 may be prepared from a 2-aminobenzonitrile 10 and a 6-(phenyl(dimethyl)silyl)-1,3-cyclohexadiene 19 by following the processes shown in Reaction Scheme B.

Alkylation of the amino group of the 9-aminoacidindiol derivatives thereof, 9-aminoacidinones and 9-aminoacridinones of the present invention, i.e., compounds of the formulas 8, 9, 13, 14, and 15 to provide 9-alkylaminoo- and 9-dialkyaminooacidindolos, -1-hydroxyacidinones, and -silylacidinones, may be preformed by utilizing conventional processes.

The 9-aminoacidinones of the present invention are useful as agents for the relief of memory dysfunction, particularly dysfunctions associated with decreased cholinergic activity such as those found in Alzheimer's disease. Relief of memory dysfunction activity of the instant compounds is demonstrated in the dark avoidance assay, an assay for the determination of the reversal of the effects of scopolamine induced memory deficits associated with decreased levels of acetylcholine in the brain. In this assay, three groups of 15 male C57BL mice were used—a vehicle/vehicle control group, a scopolamine/vehicle group, and a scopolamine/drug group. Thirty minutes prior to training, the vehicle/vehicle control group received normal saline subcutaneously, and the scopolamine/vehicle and scopolamine/drug groups received scopolamine subcutaneously (3.0 mg/kg, administered as scopolamine hydrobromide). Five minutes prior to training, the vehicle/vehicle control and scopolamine/vehicle groups received distilled water and the scopolamine/drug group received the test compound in distilled water.

The training/testing apparatus consisted of a plexiglass box approximately 48 cm long, 30 cm high and tapering from 26 cm wide at the top to 3 cm wide at the bottom. The interior of the box is divided equally by a vertical barrier into a light compartment (illuminated by a 25-watt reflector lamp suspended 30 cm from the floor) and a dark compartment (covered). A hole (2.5 cm wide and 6 cm high) at the bottom of the barrier and a trap door that could be dropped to prevent an animal from passing between the two compartments is present. A Coulbourn Instruments small animal shocker was attached to two metal plates that ran the entire length of the apparatus, and a photocell was placed in the dark compartment 7.5 cm from the vertical barrier and 2 cm above the floor. The behavioral session was controlled by a PDP 11/34 minicomputer.

At the end of the pretreatment interval, an animal was placed in the light chamber directly under the light fixture, facing away from the door to the dark chamber. The apparatus was then covered and the system activated. If the mouse passed through the barrier to the dark compartment and broke the photocell beam within 180 seconds, the trap door dropped to block escape to the light compartment and an electric shock was administered at an intensity of 0.4 milliamps for three seconds. The animal was then immediately removed from the dark compartment and placed in its
home cage. If the animal failed to break the photocell beam within 180 seconds, it was discarded. The latency is seconds for each mouse was recorded.

Twenty-four hours later, the animals were again tested in the same apparatus except that no injections were made and the mice did not receive a shock. The test day latency in seconds for each animal was recorded and the animals were then discarded.

The high degree of variability (due to season of the year, housing conditions, and handling) found in one trial passive avoidance paradigm is well known. To control for this fact, individual cutoff (CO) values were determined for each test, compensating for interest variability. Additionally, it was found that 5 to 7% of the mice in the scopolamine/vehicle control groups were insensitive to scopolamine at 3 mg/kg, sc. Thus, the CO value was defined as the second highest latency time in the control group to more accurately reflect the 1/15 expected control responders in each test group. Experiments with a variety of standards repeated under a number of environmental conditions led to the development of the following empirical criteria: for a valid test, the CO value had to be less than 120 sec and the vehicle/vehicle control group had to have at least 5/15 animals with latencies greater than CO. For a compound to be considered active the scopolamine/compound group had to have at least 3/15 mice with latencies greater than CO.

The results of the dark avoidance test are expressed as the number of animals per group (%) in which this scopolamine induced memory deficit is blocked as measured by an increase in the latency period. Relief of memory dysfunction activity for representative compounds of the present invention is presented in Table 1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose (mg/kg, sc)</th>
<th>Percent of Animals with Scopolamine Induced Memory Deficit Reversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-amino-1,2,3,4-tetrahydro-1,3-acridinediol maleate, mp 158-160°C</td>
<td>3.0</td>
<td>27</td>
</tr>
<tr>
<td>9-amino-1,2,3,4-tetrahydro-1,3-acridinediol maleate, mp 179-180°C</td>
<td>3.0</td>
<td>20</td>
</tr>
<tr>
<td>9-amino-1,2,3,4-tetrahydro-1,4-acridinediol, mp 200°C (dec) physostigmine</td>
<td>0.31</td>
<td>20</td>
</tr>
</tbody>
</table>

Scopolamine induced memory deficit reversal is achieved when the present 9-amino tetrahydroacridines are administered to a subject requiring such treatment as an effective oral, parenteral or intravenous dose of from 0.01 to 100 mg/kg of body weight per day. A particularly effective amount is about 25 mg/kg of body weight per day. It is to be understood, however, that for any particular subject, specific dosage regimens should be adjusted according to the individual need and the professional judgment of the person administering or supervising the administration of the aforesaid compound. It is to be further understood that the dosages set forth herein are exemplary only and that they do not, to any extent, limit the scope or practice of the invention.

The 9-amino tetrahydroacridines of the present invention exhibit low toxicity (lethality) as determined in the primary overt effects assay. In this assay, groups of four male Wistar rats (125-300g) are used. Prior to testing, the animals are housed for at least 24 hrs in a climate controlled room with food and water available ad libitum. On the day of testing, the animals are removed from their home cages and placed 4/box in white translucent plastic boxes (45 x 25 x 29 cm) with metal bar covers and transported to the test room. Food and water are not available at any time during the day of testing.

Compounds are prepared using distilled water and, if insoluble, a surfactant is added and the resulting suspension is kept constantly agitated.

Prior to drug administration, all animals are examined for any overt abnormalities which may subsequently be confused as a drug effect. These include eye position, eye clarity, blood around eyes or nose, unusual gait, abnormal behavior during handling and abnormal behavior in the plastic boxes. Core temperatures are then determined (either rectally or intraperitoneally).

Animals are then administered drug intraperitoneally with the control group receiving vehicle.

Animals are observed in the plastic boxes continuously for one hour after drug administration and any overt effects are noted. A complete examination is made on each animal at 1, 2, 4 and 6 hrs postdrug and the results are recorded. The room should be quiet during testing. Obvious effects seen between these times are recorded. The animals are given food and water after 6 hours and kept for 24 hrs, when their general condition is observed. Time of death is noted for each animal and the time at which the first and last deaths occur are reported.

The results are expressed as the number of deaths per group. Toxicity of representative compounds of the present invention is presented in Table 2.
TABLE 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dose (mg/kg, sc)</th>
<th>Number of Deaths per Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-amino-1,2,3,4-tetrahydro-1,3-acridinediol maleate, mp 158-160°C</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>9-amino-1,2,3,4-tetrahydro-1,3-acridinediol maleate, mp 179-180°C</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>9-amino-1,2,3,4-tetrahydro-1,4-acridinediol, mp 200°C (dec)</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

Compounds of the invention include:

a. 9-methylamino-1,2,3,4-tetrahydro-1,4-acridinediol;
b. 9-(2-phenylethylamino)-1,2,3,4-tetrahydro-1,4-acridinediol;
c. 9-amino-8-methyl-1,2,3,4-tetrahydro1,4-acridinediol;
d. 9-amino-7-fluoro-1,2,3,4-tetrahydro-1,4-acridinediol;
e. 9-amino-6-methoxy-1,2,3,4-tetrahydro1,4-acridinediol;
f. 9-amino-6-hydroxy-1,2,3,4-tetrahydro1,4-acridinediol;
g. 9-amino-5-trifluoromethyl-1,2,3,4-tetrahydro1,4-acridinediol;
h. 9-amino-7-fluoro-3,4-dihydroacridin-1(2H)-one;
i. 9-amino-6-methoxy-3,4-dihydroacridin-1(2H)-one;
j. 9-amino-6-hydroxy-3,4-dihydroacridin-1(2H)-one, 1(2H)-one; and
k. 9-amino-5-trifluoromethyl-3,4-dihydroacridin1(2H)-one.

Effective amounts of the compounds of the invention may be administered to a subject by any one of various methods, for example, orally as in capsules or tablets, parenterally in the form of sterile solutions or suspensions, and in some cases intravenously in the form of sterile solutions. The basic final products and intermediates, while effective themselves, may be formulated and administered in the form of their pharmaceutically acceptable acid addition salts for purposes of stability, convenience of crystallization, increased solubility and the like.

Preferred pharmaceutically acceptable addition salts include salts of mineral acids, for example, hydrochloric acid, sulfuric acid, nitric acid and the like, salts of monobasic carboxylic acids such as, for example, acetic acid, propionic acid and the like, salts of dibasic carboxylic acids such as, for example, maleic acid, fumaric acid, oxalic acid and the like, and salts of tribasic carboxylic acids such as, for example, carboxy succinic acid, citric acid and the like.

The active compounds of the present invention may be administered orally, for example, with an inert diluent or with an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the aforesaid compounds may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, chewing gums and the like. These preparations should contain at least 0.5% of active compound, but may be varied depending upon the particular form and may conveniently be between 4% to about 75% of the weight of the unit. The amount of present compound in such composition is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that an oral dosage unit form contains between 1.0-300 mgs of active compound.

The tablets, pills, capsules, troches and the like may also contain the following ingredients: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, corn starch and the like; a lubricant such as magnesium stearate or Sterolite; a glidant such as colloidal silicon dioxide; and a sweetening agent such as sucrose or saccharin or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring may be added. When the dosage unit is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil. Other dosage unit forms may contain other various materials which modify the physical form of the dosage unit, for example, as coatings. Thus tablets or pills may be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used.

For the purposes of parenteral therapeutic administration, the active compounds of the invention may be incorporated into a solution or suspension. These preparations should contain at least 0.1% of the aforesaid compound, but may be varied between 0.5 and about 50% of the weight thereof. The amount of active compound in such compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention are prepared so that a parenteral dosage unit contains between 0.5 to 100 mgs of the active compound.

The solutions or suspensions may also include the following components: a sterile diluent such as water for injec-
tion, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of toxicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

The following Examples are for illustrative purposes only:

EXAMPLE 1

6,7-Dihydro-3-(2-nitrophenyl)-1,2-benzisoxazol-4(5H)-one

To a solution of 1,3-cyclohexadione morpholine enamime (20.8 g), tetrahydrofuran (150 ml), and triethylamine (2 ml) at reflux was added a solution of 2-nitrobenzhydroxamic chloride (17.7 g) in tetrahydrofuran (100 ml) drop wise over 2 hrs. The reaction mixture was heated under reflux for 1 hr and then evaporated. The residue was partitioned between 3N hydrochloric acid and ethyl acetate. The ethyl acetate layer was washed with 3N hydrochloric acid, 10% sodium carbonate solution, saturated sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and the filtrate was evaporated. The residue was chromatographed on silica gel with ethyl acetate as the eluent. The appropriate fractions were collected and evaporated. The residue was recrystallized from dichloromethane/hexanes to yield 15.0 g (66%) of product, mp 125-127°C.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Calculated for C_{13}H_{10}N_{2}O_{4}</th>
<th>60.47%</th>
<th>3.90%</th>
<th>10.85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Found:</td>
<td>60.81%</td>
<td>4.13%</td>
<td>10.88%</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 2

9-Amino-3,4-dihydroacridin-1(2H)-one N-oxide

A mixture of 6,7-dihydro-3-(2-nitrophenyl)-1,2-benzisoxazole-4(5H)-one, (7.0 g), 5% palladium-on-carbon (0.7 g), 5% hydrochloric acid (11 ml), and tetrahydrofuran (200 ml) was hydrogenated at 50 psi. After one hr, methanol (1 l) was added, and the mixture was filtered through celite. The filtrate was concentrated, and the concentrate was flash chromatographed (silica, 3-20% methanol/ethyl acetate; 40% methanol/dichloromethane). The appropriate fractions were collected and concentrated. The residue was triturated with methanol/diethyl ether to yield 5.4 (83%) of product, mp 290°C (dec).

EXAMPLE 3

4-acetoxy-9-amino-3,4-dihydroacridin-1(2H)-one

A solution of 9-amino-3,4-dihydroacridin-1(2H)-one N-oxide (5.4 g) and acetic anhydride (60 ml) was heated to reflux and then concentrated. The residue was stirred in saturated sodium bicarbonate solution for one hr. The mixture was filtered and the filter cake was washed with water and dried under vacuum at 40°C for three hrs to yield 1.93 g of product, mp 208°C (dec). An additional 1.38 g, mp 208°C (dec), of product was obtained by extraction of the filtrate with ethyl acetate, evaporation of ethyl acetate extract, and trituration of the residue with diethyl ether; total 52% yield.

EXAMPLE 4

9-Amino-1,2,3,4-tetrahydroy-1,4-acridinediol

To a solution of 4-acetoxy-9-amino-3,4-dihydroacridin-1(2H)-one (1.5 g) in dry tetrahydrofuran (75 ml), was added lithium aluminum hydride (1.0 M in tetrahydrofuran, 11.1 ml) drop wise, with stirring. Stirring was continued for 15 rains. The reaction mixture was quenched with methanol, concentrated, and the residue was flash chromatographed (silica, 3:10:87 methanol-triethylamine dichloromethane). The appropriate fractions were collected and evaporated.

An additional experiment was run on the same scale. The fractions were combined and distributed between methyl ethyl ketone and 10% sodium hydroxide solution. The organic fraction was dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated under vacuum. Recrystallization of the residue of the more polar fractions from water/methanol yielded 800 mg (31%) of 9-amino-1,2,3,4-tetrahydro-1,4-acridinediol, mp 200°C(dec).
Recrystallization of the residue of the less polar fractions from water gave 304 mg (11.9%) of 9-amino-1,2,3,4-tetrahydro-1,4-acridinediol, mp 183°C (dec).

EXAMPLE 5

N-[5-(Phenyldimethylsilyl)-3-oxocyclohex-1-eny]-2-aminobenzonitrile

A solution of anthranilonitrile (3.33 g), and 5-(phenyldimethylsilyl)-1,3-cyclohexanedione (6.61 g), and toluene (180 ml) containing 0.51 g of p-toluenesulfonic acid monohydrate was heated under reflux with collection of water in a Dean-Stark trap. After 3 hr, the reaction mixture was diluted with ethyl acetate, and the solution was washed with saturated sodium bicarbonate solution and water, dried over anhydrous magnesium sulfate, filtered, and the filtrate was evaporated. The residue was flash chromatographed on silica gel, eluting with dichloromethane and then, successively 5%, 10%, and 15% ethyl acetate in dichloromethane. The appropriate fractions were collected and evaporated to give 6.37 g (68%) of product, mp 126-129°C.

EXAMPLE 6

9-Amino-3,4-dihydro-3-(phenyldimethylsilyl)acridin-1(2H)-one

A mixture of N-[5-(phenyldimethylsilyl)-3-oxocyclohex-1-eny]-2-aminobenzonitrile (6.3 g) in tetrahydrofuran (180 ml) containing potassium carbonate (2.76 g) and cuprous chloride (0.18 g) was refluxed for 4 hrs. The reaction mixture was diluted with methanol (100 ml) and then flushed over a column of Florisil. The appropriate fractions were collected and evaporated to give 5.05 g (80%) of product, mp 178-180°C.

EXAMPLE 7

9-Amino-3,4-dihydro-3-(fluorodimethylsilyl)acridin-1(2H)-one

A mixture of 9-amino-3,4-dihydro-3-(phenyldimethylsilyl)acridin-1(2H)-one (5.0 g), dichloromethane (80 ml) and tetrafluoroboric acid etherate (25 ml) was stirred overnight at ambient temperature. The reaction mixture was poured into saturated potassium carbonate solution and extracted with ethyl acetate. The suspension was filtered through celite and the organic phase was separated. The aqueous phase was extracted with ethyl acetate and the combined organic phases were dried over anhydrous magnesium sulfate, filtered, and the filtrate evaporated to give 3.79 g (90%) of product, which is used in Example 6 without purification and without delay.

EXAMPLE 8

9-Amino-3,4-dihydro-3-hydroxyacridin-1(2H)-one

A solution of 9-amino-3,4-dihydro-3-(fluorodimethylsilyl)acridin-1(2H)-one (3.7 g) 1.1-tetrahydrofuran:methanol (70 ml), potassium fluoride (7.45 g), and sodium bicarbonate (10.7 g) was chilled in an ice/water bath, and 30% aqueous hydrogen peroxide (44 ml) was added slowly. Upon completion of the addition, the bath was removed and stirring was continued for 3 hr. The reaction mixture was poured into water (250 ml) and a little diethyl ether was added. The mixture was filtered and the filter cake was washed with water and diethyl ether to give 2.6 g (89%) of product, mp 205°C (dec).
EXAMPLE 9

9-Amino-1,2,3,4-tetrahydro-1,3-acridinediol maleate

A suspension of 9-amino-3,4-dihydro-3-hydroxyacridin-1(2H)-one (2.07 g) in tetrahydrofuran (125 ml), lithium triethylborohydride (1 molar in tetrahydrofuran, 27 ml) was allowed to stand for 0.5 hrs. The reaction mixture was quenched with methanol. The mixture was preadsorbed on silica, and flash chromatographed on silica gel (1:2, 17-dichloromethane:triethylamine). The appropriate fractions were collected. Evaporation of the more polar fractions gave 0.541 (25.8%) of 9-amino-1,2,3,4-tetrahydro-1,3-acridinediol, mp 139-141°C.

9-Amino-1,2,3,4-tetrahydro-1,3-acridinediol (mp 139-141°C) was dissolved in methanol and treated with maleic acid (1.1 eq.). Diethyl ether was added and the precipitate was collected to give the maleate, mp 158-160°C.

<table>
<thead>
<tr>
<th>Analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated for C_{12}H_{14}N_{2}O_{2}:C_{4}H_{4}O_{4}:</td>
</tr>
<tr>
<td>Found:</td>
</tr>
</tbody>
</table>

Evaporation of the less polar fractions gave 0.784 g (37.3%) of 9-amino-1,2,3,4-tetrahydro-1,3-acridinediol, mp 158-162°C. The maleate had mp 179-180°C.

<table>
<thead>
<tr>
<th>Analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated for C_{12}H_{14}N_{2}O_{2}:C_{4}H_{4}O_{4}:</td>
</tr>
<tr>
<td>Found:</td>
</tr>
</tbody>
</table>
REACTION SCHEME A

\[\text{4} \quad \text{5} \quad \text{6} \quad \text{7} \quad \text{8} \quad \text{9} \]

wherein \(R^\circ, R^\circ, R^\circ, \) and \(X \) are as hereinbefore defined.
REACTION SCHEME B

wherein R^{10}, R^{11}, and X are as hereinbefore defined.
wherein Y is C=O or CHOH; R¹ is hydrogen or (C₁-C₆)alkyl; R² is hydrogen, (C₁-C₆)alkyl, or phenyl(C₁-C₆)alkyl; R³ is OR⁴ wherein R⁴ is hydrogen or COR⁵ wherein R⁵ is (C₁-C₆)alkyl, X is hydrogen, (C₁-C₆)alkyl, halogen, (C₁-C₆)alkoxy, hydroxy, or trifluoromethyl, the geometric or optical isomers thereof, N-oxides thereof, or the pharmaceutically acceptable acid addition salts thereof.

2. A compound according to claim 1, wherein R¹, R² and X are hydrogen, and R³ is OR⁴ where R⁴ is hydrogen or COR⁵ where R⁵ is (C₁-C₆)alkyl.

3. A compound according to claim 2, wherein Y is CHOH and R³ is OH.

4. A compound according to claim 3, which is 9-aminoo-1,2,3,4-tetrahydro-1,4-acridinediol, having a melting point of 200°C (dec), or 9-amino-1,2,3,4-tetrahydro-1,4-acridinediol, having a melting point of 183°C (dec), or 9-amino-1,2,3,4-tetrahydro-1,3-acridinediol, having a melting point of 158-162°C, or 9-amino-1,2,3,4-tetrahydro-1,3-acridinediol, having a melting point of 139-141°C.

5. A pharmaceutical composition, which comprises as the active ingredient a compound as defined in claim 1 and a suitable carrier therefor.

6. Use of a compound as defined in claim 1 for the preparation of a medicament having memory dysfunction relieving activity.

7. A process for the preparation of a compound as defined in claim 1, which comprises
 a) reductively cyclizing a compound of the formula 6

 wherein X is as defined, to afford an N-oxide of the formula 1, wherein X is as defined, Y is C=O and R¹ and R² are hydrogen,

 b) optionally reacting a compound of the formula 1, as obtained in step a) with an alkanoic acid anhydride of the formula (R⁶CO₃)₂O, where R⁶ is (C₁-C₆)alkyl, to afford a compound of the formula 1, wherein X is as defined, Y is C=O, R¹ and R² are hydrogen, and R³ is OCOR⁵ where R⁵ is as defined.

 c) optionally reacting a compound of the formula 1 as obtained in step b) with an alkali metal aluminium hydride, to form a compound of the formula 1 wherein X is as defined, R¹ and R² are hydrogen, R³ is OH and Y is -CHOH, or

 d) oxidatively cleaving the Si(R¹⁰)₂R¹¹-group, wherein R¹⁰ is (C₁-C₆)alkyl and R¹¹ is fluoro, from a compound of the formula 13
8. A compound of the formula 2

wherein X, R¹ and R² are as defined in claim 1 and R⁶ is phenyl or fluoro.

9. A compound of the formula 6

wherein X is as defined in claim 1.

Claims for the following Contracting States: ES, GR

1. A process for the preparation of a compound of the formula 1

wherein Y is C=O or CHO; R¹ is hydrogen or (C₁-C₆)alkyl; R² is hydrogen, (C₁-C₆)alkyl, or phenyl(C₁-C₆)alkyl; R³ is OR⁴ wherein R⁴ is hydrogen or COR⁵ wherein R⁵ is (C₁-C₆)alkyl, X is hydrogen, (C₁-C₆)alkyl, halogen, (C₁-
C₆alkoxy, hydroxy, or trifluoromethyl, the geometric or optical isomers thereof, N-oxides, thereof, or the pharmaceutically acceptable acid addition salts thereof, which comprises

a) reductively cyclizing a compound of the formula 6

wherein X is as defined, to afford an N-oxide of the formula 1, wherein X is as defined, Y is C=O and R¹ and R² are hydrogen,

b) optionally reacting a compound of the formula 1, as obtained in step a) with an alkanolic acid anhydride of the formula (R⁶CO₂)₂O, where R⁶ is (C₁-C₆)alkyl, to afford a compound of the formula 1, wherein X is as defined, Y is C=O, R¹ and R² are hydrogen, and R³ is OCO(R⁶ where R⁶ is as defined,

c) optionally reacting a compound of the formula 1 as obtained in step b) with an alkali metal aluminum hydride, to form a compound of the formula 1 wherein X is as defined, R¹ and R² are hydrogen, R³ is OH and Y is -CH₂OH, or

d) oxidatively cleaving the Si(R¹⁰)₂R¹¹-group, wherein R¹⁰ is (C₁-C₆)alkyl and R¹¹ is fluoro, from a compound of the formula 13

wherein X, R¹⁰ and R¹¹ are as defined and the group Si(R¹⁰)₂R¹¹ is in the 2- or 3-position, to form a compound of the formula 1 wherein X is as defined, R¹ and R² are hydrogen, Y is C=O and R³ is OH in the 2- or 3-position,

e) optionally reducing a compound of the formula 1 as obtained in step d), with an alkali metal trialkylborohydride to form a compound of the formula 1, wherein X is as defined, R¹ and R² are hydrogen, Y is CH₂OH and R³ is OH in the 2- or 3-position; and

f) optionally alkylating a compound of the formula 1, wherein R¹ and R² are hydrogen, to form a compound of the formula 1, wherein at least one of R¹ and R² is not hydrogen.

2. A process according to claim 1, wherein R¹, R² and X are hydrogen.

3. A process according to claim 2, wherein Y is CH₂OH and R³ is OH.

4. A process according to claim 3, wherein 9-amino-1,2,3,4-tetrahydro-1,4-acridinediol, having a melting point of 200° C (dec), or 9-amino-1,2,3,4-tetrahydro-1,4-acridinediol, having a melting point of 183° C (dec), or 9-amino-1,2,3,4-tetrahydro-1,3-acridinediol, having a melting point of 158-162° C, or 9-amino-1,2,3,4-tetrahydro-1,3-acridinediol, having a melting point of 139-141° C, is prepared.

5. Use of a compound as defined in claim 1 for the preparation of a medicament having memory dysfunction relieving activity.
6. A compound of the formula 2

\[
\begin{align*}
R^1 & \quad N \quad R^2 \\
\text{X} & \quad \text{Si} \left(\text{CH}_3 \right)_2 \text{R}^6 \\
\end{align*}
\]

wherein X, R^1 and R^2 are as defined in claim 1 and R^6 is phenyl or fluoro.

7. A process for the preparation of a compound as defined in claim 6, which comprises cyclizing a compound of the formula

\[
\begin{align*}
\text{X} & \quad \text{Si} \left(\text{CH}_3 \right)_2 \text{R}^6 \\
\end{align*}
\]

wherein X is as defined and R^6 is phenyl, to form a compound of the formula 2, wherein X is as defined, R^1 and R^2 are hydrogen and R^6 is as defined, and optionally fluorinating the compound obtained to form a compound of the formula 2, wherein R^6 is fluoro.

8. A compound of the formula 6

\[
\begin{align*}
\text{X} & \quad \text{NO}_2 \\
\end{align*}
\]

wherein X is as defined in claim 1.

9. A process for the preparation of a compound according to claim 8, which comprises condensing a compound of the formula 4
wherein X is as defined, with a compound of the formula

wherein R⁸ and R⁹ are (C₁₋C₆)alkyl or together with the N-atom form morpholine.

Patentansprüche

Patentansprüche für folgende Vertragsstaaten : AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, PT, SE

1. Verbindung der Formel

 in welcher Y für C=O oder CHOH steht; R¹ für Wasserstoff oder (C₁₋C₆)-Alkyl steht; R² Wasserstoff, (C₁₋C₆)-Alkyl oder Phenyl-(C₁₋C₆)-alkyl darstellt; R³ für OR⁴ steht, wobei R⁴ Wasserstoff oder COR⁶ ist, wobei R⁶ (C₁₋C₆)-Alkyl ist; X für Wasserstoff, (C₁₋C₆)-Alkyl, Halogen, (C₁₋C₆)-Alkoxy, Hydroxy oder Trifluormethyl steht; die geometrischen oder optischen Isomere davon, N-Oxide davon oder die pharmazeutisch verträglichen Säureadditionsalze davon.

2. Verbindung gemäß Anspruch 1, in welcher R¹, R² und X für Wasserstoff stehen und R³ OR⁴ darstellt, wobei R⁴ Wasserstoff oder COR⁶ ist, wobei R⁶ (C₁₋C₆)-Alkyl ist.

3. Verbindung gemäß Anspruch 2, in welcher Y für CHOH steht und R³ -OH darstellt.

4. Verbindung gemäß Anspruch 3, bei der es sich um 9-Amino-1,2,3,4-tetrahydro-1,4-acridindiol mit einem Schmelzpunkt von 200°C (Zers.) oder 9-Amino-1,2,3,4-tetrahydro-1,4-acridindiol mit einem Schmelzpunkt von 183°C (Zers.) oder 9-Amino-1,2,3,4-tetrahydro-1,3-acridindiol mit einem Schmelzpunkt von 159-162°C oder 9-Amino-1,2,3,4-tetrahydro-1,3-acridindiol mit einem Schmelzpunkt von 139-141°C handelt.

5. Pharmazeutische Zusammensetzung, die als Wirkstoff eine Verbindung gemäß Anspruch 1 sowie eine geeignete Trägersubstanz dafür enthält.

7. Verfahren zur Herstellung einer Verbindung gemäß Anspruch 1, das die folgenden Schritte umfaßt:

 a) Reduktives Zyklisieren einer Verbindung der Formel 6

 in welcher X die vorstehend angewiesene Bedeutung zukommt, zur Bildung eines N-Oxids der Formel 1, in welcher Y die vorstehend angewiesene Bedeutung zukommt, Y für C=O steht und R¹ und R² Wasserstoff darstellen,

 b) Wahlweise Umsetzen einer Verbindung der Formel 1, wie sie durch Schritt a) erhalten wurde, mit einem Alkanolsäureanhydrid der Formel (R⁶CO)₂O, in welcher R⁶ für (C₁-C₅)-Alkyl steht, zur Bildung einer Verbindung der Formel 1, in welcher X die vorstehend angewiesene Bedeutung zukommt, Y für C=O steht, R¹ und R² für Wasserstoff stehen und R³ für COOR⁶ steht, wobei R⁶ die vorstehend angewiesene Bedeutung zukommt,

 c) Wahlweise Umsetzen einer Verbindung der Formel 1, wie sie durch Schritt b) erhalten wurde, mit einem Alkalimetall-Aluminiumhydrid zur Bildung einer Verbindung der Formel 1, in welcher X die vorstehend angewiesene Bedeutung zukommt, R¹ und R² für Wasserstoff stehen, R³ für OH steht und Y-CHOH darstellt, oder

 d) Oxidative Abspaltung der SiR⁷₁₀₂R¹₁₁-Gruppe, in welcher R⁷ für (C₁-C₅)-Alkyl und R¹₁₁ für Fluor steht, zur Bildung einer Verbindung der Formel 13

8. Verbindung der Formel 2

in welcher X, R¹ und R² die in Anspruch 1 angewiesene Bedeutung zukommt und R⁶ für Phenyl oder Fluor steht.

9. Verbindung der Formel 6
in welcher X die in Anspruch 1 angewiesene Bedeutung zukommt.

Patentansprüche für folgende Vertragsstaaten: ES, GR

1. Verfahren zur Herstellung einer Verbindung der Formel 1

in welcher Y für C=O oder CHOH steht; R¹ für Wasserstoff oder (C₁-C₆)-Alkyl steht; R² Wasserstoff, (C₁-C₆)-Alkyl oder Phenyl-(C₁-C₆)-alkyl darstellt; R³ für OR⁴ steht, wobei R⁴ Wasserstoff oder COR⁵ ist, wobei R⁵ (C₁-C₆)-Alkyl ist, X für Wasserstoff, (C₁-C₆)-Alkyl, Halogen, (C₁-C₆)-Alkoxy, Hydroxy oder Trifluormethyl steht; der geometrischen oder optischen Isomere davon, von N-Oxiden davon oder der pharmazeutisch verträglichen Säureadditionsalze davon, das die folgenden Schritte umfaßt:

a) Reduktives Zyklisieren einer Verbindung der Formel 6

in welcher X die vorstehend angewiesene Bedeutung zukommt, zur Bildung eines N-Oxids der Formel 1, in welcher X die vorstehend angewiesene Bedeutung zukommt, Y für C=O steht und R¹ und R² Wasserstoff darstellen,

b) Wahlweise Umsetzen einer Verbindung der Formel 1, wie sie durch Schritt a) erhalten wurde, mit einem Alkanolsäureanhydrid der Formel (R²CO)₂O, in welcher R² für (C₁-C₆)-Alkyl steht, zur Bildung einer Verbindung der Formel 1, in welcher X die vorstehend angewiesene Bedeutung zukommt, Y für C=O steht, R¹ und R² für Wasserstoff stehen und R₃ für COOR⁵ steht, wobei R⁵ die vorstehend angewiesene Bedeutung zukommt,

c) Wahlweise Umsetzen einer Verbindung der Formel 1, wie sie durch Schritt b) erhalten wurde, mit einem Alkalimetall-Aluminiumhydrid zur Bildung einer Verbindung der Formel 1, in welcher X die vorstehend angewiesene Bedeutung zukommt, R¹ und R² für Wasserstoff stehen, R₃ für OH steht und Y-CHOH darstellt, oder
d) Oxidative Abspaltung der Si(R^{10})_2R^{11}\text{-Gruppe, in welcher } R^{10} \text{ für } (C_1-C_3)\text{-Alkyl und } R^{11} \text{ für Fluor steht, zur Bildung einer Verbindung der Formel 13}

\[
\begin{align*}
\text{\(\text{X} - \text{N} - H_2\text{O} - \text{Si} (R^{10})_2 R^{11}\) (13)}
\end{align*}
\]

in welcher X, R^{10} und R^{11} die vorstehend angewiesene Bedeutung zukommt und die Gruppe Si(R^{10})_2R^{11} sich in der 2- oder 3-Stellung befindet, zur Bildung einer Verbindung der Formel 1, in welcher X die vorstehend angewiesene Bedeutung zukommt, R^1 und R^2 für Wasserstoff stehen, Y für C=O steht und R^3 OH in der 2- oder 3-Stellung darstellt,

e) Wahlweise Reduzieren einer Verbindung der Formel 1, wie sie durch Schritt d) erhalten wurde, mit einem Alkalimetall-Trialkylborhydrid zur Bildung einer Verbindung der Formel 1, in welcher X die vorstehend angewiesene Bedeutung zukommt, R^1 und R^2 für Wasserstoff stehen, Y für CHOH steht und R^3 OH in der 2- oder 3-Stellung darstellt, und

f) Wahlweise Alkylieren einer Verbindung der Formel 1, in welcher R^1 und R^2 Wasserstoff sind, zur Bildung einer Verbindung der Formel 1, in welcher mindestens einer der Substituenten R^1 und R^2 nicht für Wasserstoff steht.

2. Verfahren gemäß Anspruch 1, wobei R^1, R^2 und X für Wasserstoff stehen.

3. Verfahren gemäß Anspruch 2, wobei Y für CHOH steht und R^3 OH darstellt.

4. Verfahren gemäß Anspruch 3, bei dem 9-Amino-1,2,3,4-tetrahydro-1,4-acridindiol mit einem Schmelzpunkt von 200°C (Zers.) oder 9-Amino-1,2,3,4-tetrahydro-1,4-acridindiol mit einem Schmelzpunkt von 189°C (Zers.) oder 9-Amino-1,2,3,4-tetrahydro-1,3-acridindiol mit einem Schmelzpunkt von 158-162°C oder 9-Amino-1,2,3,4-tetrahydro-1,3-acridindiol mit einem Schmelzpunkt von 139-141°C hergestellt wird.

6. Verbindung der Formel 2

\[
\begin{align*}
\text{\(\text{X} - \text{N} - H_2\text{O} - \text{Si} (CH_3)_2 R^6\) (2)}
\end{align*}
\]

in welcher X, R^1 und R^2 die in Anspruch 1 angewiesene Bedeutung zukommt und R^6 für Phenyl oder Fluor steht.

7. Verfahren zur Herstellung einer Verbindung gemäß Anspruch 6, umfassend die Zyklisierung einer Verbindung der Formel
in welcher X die vorstehend angewiesene Bedeutung zukommt und R⁶ für Phenyl steht, zur Bildung einer Verbindung der Formel 2, in welcher X die vorstehend angewiesene Bedeutung zukommt, R¹ und R² für Wasserstoff stehen und R⁶ die vorstehend angewiesene Bedeutung zukommt, und wahlweise Fluorieren der erhaltenen Verbindung zur Bildung einer Verbindung der Formel 2, in welcher R⁶ für Fluor steht.

8. Verbindung der Formel 6

in welcher X die in Anspruch 1 angewiesene Bedeutung zukommt.

9. Verfahren zur Herstellung einer Verbindung gemäß Anspruch 8, umfassend das Kondensieren einer Verbindung der Formel 4

in welcher X die vorstehend angewiesene Bedeutung zukommt, mit einer Verbindung der Formel 5

in welcher R⁵ und R⁹ (C₁₋₆)-Alkyl sind oder zusammen mit dem N-Atom Morpholin bilden.
Revendications

Revendications pour les États contractants suivants : AT, BE, CH, DE, DK, FR, GB, IT, LI, LU, NL, PT, SE

1. Composé de formule

\[
\begin{array}{c}
\text{R}^1 \\
\text{N} \\
\text{R}^2 \\
\text{X} \\
\text{Y} \\
\text{R}^3
\end{array}
\]

dans laquelle Y est C=O ou CHOH; R1 est un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1}-C\textsubscript{6}; R2 est un atome d'hydrogène ou un groupe alkyle en C\textsubscript{1}-C\textsubscript{6} ou phényl-alkyle(C\textsubscript{1}-C\textsubscript{6}); R3 est un radical OR4 dans lequel R4 est un atome d'hydrogène, ou COOR5 dans lequel R5 est un groupe alkyle en C\textsubscript{1}-C\textsubscript{6}. X est un atome d'hydrogène ou d'halogène ou un groupe alkyle en C\textsubscript{1}-C\textsubscript{6}, alcoxy en C\textsubscript{1}-C\textsubscript{6}, hydroxy ou trifluorométhyle, ses isomères optiques ou géométriques, ses N-oxydes, ou ses sels d'addition avec des acides pharmaceutiquement acceptables.

2. Composé selon la revendication 1, dans lequel R1, R2 et X représentent des atomes d'hydrogène et R3 est OR4, R4 étant un atome d'hydrogène, ou COOR5, R5 étant un groupe alkyle en C\textsubscript{1}-C\textsubscript{6}.

3. Composé selon la revendication 2, dans lequel Y est CHOH et R3 est OH.

4. Composé selon la revendication 3, qui est le 9-amino-1,2,3,4-tétrahydro-1,4-acridinediol, ayant un point de fusion de 200°C (décomposé), ou le 9-amino-1,2,3,4-tétrahydro-1,4-acridinediol, ayant un point de fusion de 183°C (décomposé), ou le 9-amino-1,2,3,4-tétrahydro-1,3-acridinediol, ayant un point de fusion de 158-162°C, ou le 9-amino-1,2,3,4-tétrahydro-1,3-acridinediol, ayant un point de fusion de 139-141°C.

5. Composition pharmaceutique, comprenant en tant que composant actif un composé tel que défini dans la revendication 1, et un véhicule approprié pour celui-ci.

6. Utilisation d'un composé selon la revendication 1, pour la fabrication d'un médicament ayant une activité de soulagement d'un dysfonctionnement de la mémoire.

7. Procédé pour la préparation d'un composé selon la revendication 1, comprenant

a) la cyclisation réductrice d'un composé de formule 6

\[
\begin{array}{c}
\text{X} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{O}
\end{array}
\]

dans laquelle X est tel que défini, pour l'obtention d'un N-oxyde de formule 1, dans lequel X est tel que défini, Y est C=O et R1 et R2 représentent des atomes d'hydrogène,

b) éventuellement la mise en réaction d'un composé de formule 1, tel qu'obtenue dans l'étape a), avec un anhydride d'acide alc anoïque de formule (R5CO)\textsubscript{2}O, dans laquelle R5 est un groupe alkyle en C\textsubscript{1}-C\textsubscript{6}, pour l'obtention d'un composé de formule 1 dans lequel X est tel que défini, Y est C=O, R1 et R2 représentent des atomes d'hydrogène et R3 est COOR5, R5 étant tel que défini.
c) éventuellement la mise en réaction d'un composé de formule 1, tel qu'obtenu dans l'étape b), avec un hydrure d'aluminium et de métal alcalin, pour la formation d'un composé de formule 1 dans lequel X est tel que défini, R¹ et R² représentent des atomes d'hydrogène, R³ est OH et Y est -CHOH, ou
d) la coupure oxydante du groupe Si(R¹⁰)₂R¹¹, dans lequel R¹⁰ est un groupe alkyle en C₁-C₆ et R¹¹ est un atome de fluor, à partir d'un composé de formule 13

\[\begin{array}{c}
\text{X} \\
\text{N} \end{array} \begin{array}{c}
\text{H}_2 \text{O} \\
\text{S} (\text{R}^{10})_2 \text{R}^{11} \end{array} \]

8. Composé de formule 2

\[\begin{array}{c}
\text{X} \\
\text{N} \end{array} \begin{array}{c}
\text{R}^1 \\
\text{R}^2 \\
\text{S} (\text{CH}_3)_2 \text{R}^6 \\
\end{array} \]

9. Composé de formule 6
dans laquelle X, R¹ et R² sont tels définis dans la revendication 1, et R⁶ est le groupe phényle ou un atome de fluor.

dans laquelle X est tel que défini dans la revendication 1.

Recommandations pour les Etats contractants suivants : ES, GR

1. Procédé pour la préparation d'un composé de formule 1
dans laquelle Y est C=O ou CHOH; R1 est un atome d'hydrogène ou un groupe alkyle en C1-C6; R2 est un atome d'hydrogène ou un groupe alkyle en C1-C6 ou phényl-alkyle(C1-C6); R3 est un radical OR dans lequel R4 est un atome d'hydrogène, ou COOR dans lequel R5 est un groupe alkyle en C1-C6; X est un atome d'hydrogène ou d'halogène ou un groupe alkyle en C1-C6, alcoxy en C1-C6, hydroxy ou trifluorométhyle,
ou de ses isomères optiques ou géométriques, de ses N-oxides, ou de ses sels d'addition avec des acides pharmaceutiquement acceptables, comprenant

a) la cyclisation réductrice d'un composé de formule 6

b) éventuellement la mise en réaction d'un composé de formule 1, tel qu'obtenu dans l'étape a), avec un anhydride d'acide alcanoïque de formule (R5CO)2O, dans lequel R5 est un groupe alkyle en C1-C6, pour l'obtention d'un composé de formule 1 dans lequel X est tel que défini, Y est C=O, R1 et R2 représentent des atomes d'hydrogène et R3 est OCOR5, R5 étant tel que défini,
c) éventuellement la mise en réaction d'un composé de formule 1, tel qu'obtenu dans l'étape b), avec un hydrure d'aluminium et de métal alcalin, pour la formation d'un composé de formule 1 dans lequel X est tel que défini, R1 et R2 représentent des atomes d'hydrogène, R3 est OH et Y est -CHOH, ou
d) la coupure oxydante du groupe Si(R10)2R11, dans lequel R10 est un groupe alkyle en C1-C6 et R11 est un atome de fluor, à partir d'un composé de formule 13

e) éventuellement la réduction d'un composé de formule 1, tel qu'obtenu dans l'étape d), à l'aide d'un trialkylborohydure de métal alcalin, pour la formation d'un composé de formule 1 dans lequel X est tel que défini, R1 et R2 sont des atomes d'hydrogène, Y est CHOH et R5 est OH en position 2 ou 3, et
f) éventuellement l'alkylation d'un composé de formule 1, dans lequel R1 et R2 représentent des atomes d'hydrogène, pour la formation d'un composé de formule 1 dans lequel au moins l'un des radicaux R1 et R2 n'est pas un atome d'hydrogène.
2. Procédé selon la revendication 1, dans lequel R^1, R^2 et X représentent des atomes d'hydrogène.

3. Procédé selon la revendication 2, dans lequel Y est CHO et R^2 est OH.

4. Procédé selon la revendication 3, dans lequel on prépare le 9-amino-1,2,3,4-tétrahydro-1,4-acridinediol, ayant un point de fusion de 200°C (décomposé), ou le 9-amino-1,2,3,4-tétrahydro-1,4-acridinediol, ayant un point de fusion de 183°C (décomposé), ou le 9-amino-1,2,3,4-tétrahydro-1,3-acridinediol, ayant un point de fusion de 158-162°C, ou le 9-amino-1,2,3,4-tétrahydro-1,3-acridinediol, ayant un point de fusion de 139-141°C.

5. Utilisation d'un composé selon la revendication 1, pour la fabrication d'un médicament ayant une activité de soulagement d'un dysfonctionnement de la mémoire.

6. Composé de formule 2

\[
\begin{align*}
R^1 & \quad N \quad R^2 \\
2 & \\
X & \quad \text{Si} \quad (\text{CH}_3)_2 R^5
\end{align*}
\]

dans laquelle X, R^1 et R^2 sont tels définis dans la revendication 1, et R^6 est le groupe phényle ou un atome de fluor.

7. Procédé pour la préparation d'un composé tel que défini dans la revendication 6, comprenant la cyclisation d'un composé de formule

\[
\begin{align*}
X & \quad \text{C} \quad \text{N} \\
\text{O} & \\
\text{S} & \quad (\text{CH}_3)_2 R^5 \\
X & \quad \text{H}
\end{align*}
\]

dans laquelle X est tel que défini et R^6 est le groupe phényle, pour la formation d'un composé de formule 2 dans lequel X est tel que défini, R^1 et R^2 représentent des atomes d'hydrogène et R^6 est tel que défini, et éventuellement la fluoruration du composé obtenu, pour la formation d'un composé de formule 2 dans lequel R^6 est un atome de fluor.

8. Composé de formule 6

\[
\begin{align*}
X & \quad \text{N} \quad \text{O}_2 \\
\text{O} & \\
\text{N} & \quad \text{O}
\end{align*}
\]
dans laquelle X est tel que défini dans la revendication 1.

9. Procédé pour la préparation d'un composé selon la revendication 8, comprenant la condensation d'un composé de formule 4

\[
\begin{align*}
\text{N} & \quad \text{O} \\
\text{C} & \quad \text{Cl} \\
\text{X} & \\
\text{NO}_2
\end{align*}
\]

dans laquelle X est tel que défini, avec un composé de formule 5

\[
\begin{align*}
\text{R}^1 & \quad \text{N} \\
\text{R}^2 & \\
\text{R}^3 & \\
\text{O}
\end{align*}
\]

dans laquelle \(R^1 \) et \(R^2 \) représentent des groupes alkyle en C\(_1\)-C\(_6\) ou forment ensemble, avec l'atome d'azote, un cycle morpholine.