SYSTEM FOR CONTROLLING A SPARK IGNITION ENGINE TO MAXIMIZE FUEL EFFICIENCY

SYSTEM ZUR REGELUNG EINER ZÜNDBRENNKRAFTMASCHINE AUF MAXIMALEN BRENNSTOFF-WIRKUNGSGRAD

SYSTEME DE REGULATION D'UN MOTEUR A ALLUMAGE POUR MAXIMISER L'EFFICACITE DU CARBURANT

Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LU NL SE

Priority: 22.06.1990 US 542445

Date of publication of application:
06.07.1992 Bulletin 1992/28

Proprietor: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, MA 02139 (US)

Inventor: VAN DUYNE, Edward, A.
Framingham, MA 01701 (US)

Representative: Deans, Michael John Percy et al
Lloyd Wise, Tregear & Co.,
Commonwealth House,
1-19 New Oxford Street
London WC1A 1LW (GB)

References cited:
US-A- 4 913 118

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention)
Description

This invention relates to the control of a spark ignition engine to maximise fuel efficiency. For years, automotive engineers have attempted to improve the efficiency of internal combustion automobile engines and present day engines are indeed much more efficient than earlier ones. However, the application of closed-loop computer control around maximum efficiency has been overlooked since it was thought to be too complicated or too expensive. One way to optimize total engine efficiency is to compute the output torque versus the fuel delivered and then find the point of minimum brake specific fuel consumption (BSFC). The measurement of BSFC has been done in the laboratory for years, but has never been used in a closed-loop system on a car. Although the measurement works well in a laboratory where torque can be measured with a dynamometer, real-time torque measurement on a vehicle is expensive and a better alternative is to measure cylinder pressure because it provides so much information.

From measured cylinder pressure, the indicated mean effective pressure (IMEP) can be derived. This parameter is a measure of the average internal cylinder pressure that is applied to the piston to generate torque. It is an accurate torque representative except for the amount of torque lost to internal engine friction. With the IMEP, it is possible to calculate the indicated specific fuel consumption (ISFC). With a measure of ISFC, it is possible to operate an engine very close to its maximum efficiency level at all times. It is also possible to estimate the brake mean effective pressure (BMEP) from the IMEP, assuming some knowledge of friction as a function of engine speed and load. This approach would allow direct control around approximate brake specific fuel consumption (BSFC) for maximum efficiency at all times.

The above approach has not been followed in the past because of emission control regulations. It is generally perceived that the three-way catalyst is the only feasible way to meet emissions regulations. A three-way catalyst, however, requires a stoichiometric air/fuel mixture to achieve the chemical reaction necessary to reduce emissions and, therefore, lean burn has been mostly ignored. So, even though it is recognized that maximum efficiency occurs at lean air/fuel ratios for most speed and load conditions of an internal combustion engine, lean burn has not been exploited because of three-way catalyst requirements. As will become clear below, with the right combination of components and accurate control of these components, a lean burn engine can be designed to pass current emissions regulations.

Some of the components to carry out the present invention have existed for only a short time. Microprocessors are now available which can calculate ISFC of BSFC in real time as well as having the capability to control the large variation in air/fuel ratio and ignition timing necessary to achieve reliable lean burn. Good fuel atomizers have been around for some time, but typically work well only in a specific flow range. High power ignitions have also been known for a long time, but have been very inefficient. As will be discussed below, maximizing combustion efficiency can be coupled with a minimization of total emissions, potentially eliminating the need for a catalyst entirely while passing present emissions standards.

In the past, lean burn control has typically been done by open-loop systems. Because such systems are open-loop, they do not permit new engines to run at peak efficiency because the engine has to be set up to run well at 50,000 miles and beyond. U.S. Patent No. 4,606,956 discloses such a system, even though it attempts to close the control loop around an exhaust gas sensor to correct for an air/fuel ratio that is off the target air/fuel ratio. This system cannot account for engine wear that might change the appropriate target air/fuel ratio. U.S. Patent No. 4,825,838 uses the misfire limit as a way to close the loop using vibrations detected by an exhaust gas sensor for feedback. This system does not optimize efficiency because the misfire limit can be well beyond the air/fuel ratio for maximum efficiency. U.S. Patent No. 4,887,575 discloses a system for determining and controlling the mixture ratio supplied to an internal combustion engine in which the air/fuel mixture ratio is estimated from the maximum internal pressure of an engine cylinder. The system of the '575 patent attempts to maintain substantially a stoichiometric mixture at all times and is merely a way of accurately estimating where that air/fuel ratio occurs.

Daimler Benz AG in UK-A-2 150 321 disclose an apparatus and process for optimizing the efficiency of fuel consumption of a fuel-injection internal combustion engine. The pressure inside the cylinders, along with the instantaneous air supply measurements, are used to calculate the proper amount of fuel to be injected into the cylinders.

The present invention provides a system for controlling a spark ignition engine to maximize fuel efficiency over its entire range of operating conditions comprising: apparatus for controlling the amount of fuel delivered to the engine; apparatus for measuring the internal cylinder pressure in at least one cylinder of the engine, apparatus for estimating the air mass entering the engine, apparatus for calculating the approximate efficiency of the engine, and apparatus for varying the amount of fuel delivered to the engine to maximize such efficiency over the entire range of operating conditions of the engine; characterised in that said efficiency calculating apparatus is adapted to calculate such efficiency as represented by the indicated specific fuel consumption or the approximate brake specific fuel consumption from the amount of fuel delivered, the internal cylinder pressure and the estimated air mass entering the engine; and in that said fuel varying apparatus is adapted to maximize efficiency by minimizing the indicated specific fuel consumption or the approximate brake specific fuel consumption.

In a preferred embodiment, apparatus is provided
which is responsive to a desired engine power output beyond wide open throttle plate and apparatus is also provided for delivering a greater quantity of fuel beyond the wide open throttle plate position minimum indicated fuel consumption point. It is preferred that the apparatus for controlling the amount of fuel delivered to the engine be a fuel injection system including a fuel atomizing device. The amount of fuel delivered to the engine may also be controlled by an externally controllable carburetor.

It is preferred that internal cylinder pressure be measured by a ring-type pressure sensor mounted around a spark plug between the spark plug and the cylinder head of the engine. Air mass entering the engine may be estimated from intake manifold pressure, intake air temperature and engine speed. Air mass entering the engine may also be estimated by a mass flow sensor in the intake stream. It is also preferred that the system include apparatus for adjusting ignition timing as a function of cylinder pressure to locate the peak pressure point at approximately 15° beyond top dead center or to maximize IMEP.

The invention is hereinafter more particularly described by way of example only with reference to the accompanying drawings, in which:-

Fig. 1 is a graph of indicated mean effective pressure versus fuel/air ratio for different throttle settings;
Fig. 2 is a graph of indicated specific fuel consumption versus fuel/air ratio for different throttle settings;
Fig. 3 is a graph of brake mean effective pressure versus fuel/air ratio for different throttle settings;
Fig. 4 is a graph of brake specific fuel consumption versus fuel/air ratio for different throttle settings;
Fig. 5 is a graph of brake mean effective pressure versus fuel/air ratio for different throttle settings and extended to represent the improved operating range produced by a high power ignition system;
Fig. 6 is a graph of brake specific fuel consumption versus fuel/air ratio for different throttle settings and extended to represent the improved operating range produced by a high power ignition system and illustrating that the minimum occurs at a leaner air/fuel ratio;
Fig. 7 is a pressure/volume diagram for different values of spark timing advance;
Fig. 8 is a graph of brake mean effective pressure versus fuel/air ratio showing the equivalence ratio that a specific embodiment of control system constructed according to the present invention will follow for this particular engine;
Fig. 9 is a graph of brake specific fuel consumption versus fuel/air ratio showing the equivalence ratio that the said control system will follow to achieve maximum efficiency;
Fig. 10 is a block diagram of a basic embodiment of system, in accordance with the present invention to achieve control around maximum efficiency;
Fig. 11 is a control flow chart that a microprocessor will use to optimize air/fuel ratio by minimizing indicated specific fuel consumption or brake specific fuel consumption;
Fig. 12 is a cross-sectional view of a throttle plate and pedal position sensor to provide an input signal to the controller for dual mode operation;
Fig. 13 is a block diagram of an embodiment of complete engine control system in accordance with the invention for more accurate control around maximum efficiency;
Fig. 14 is a graph of emissions versus air/fuel or ratio illustrating improved operating range produced by a high power ignition system; and
Fig. 15 includes graphs of pressure versus time of two types of pressure transducers detecting knock.

We shall explain below how a substantial improvement in efficiency can be achieved without sacrificing peak power. Using electronics to control the fuel injection and ignition timing, it is possible to run always at peak efficiency for all speed and load conditions. The system closes the control loop around maximum efficiency with feedback from a cylinder pressure sensor. The system operates by calculating the approximate indicated specific fuel consumption (ISFC) or brake specific fuel consumption (BSFC) and minimizes it for all speed and load conditions. In effect, the system learns what air/fuel ratios produce the maximum efficiency and uses these ratios as its target air/fuel ratio for each speed and load point. With appropriate controls, the engine can be run lean under low loads (up to the point where the throttle is wide open) after which the mixture is made richer for heavier loads by throttling in the manner of a diesel engine up to the point where a stoichiometric mixture is achieved. The embodiments of control system described, combined with a high power ignition system and good fuel atomization, will raise the air/fuel ratio at which the minimum ISFC or BSFC occurs.

A brief description of engine theory will now be given so as to provide a fuller understanding of the present invention. The mean effective pressure represents the constant pressure that if applied to the piston during the expansion stroke would yield the work of the full cycle. The indicated mean effective pressure (IMEP) can be derived from this cylinder pressure. IMEP can be calculated by integrating the pressure-volume diagram. This diagram is determined by measuring the pressure in the cylinder and the rotation of the engine since its displaced volume is assumed known. IMEP is an accurate torque representation except for the amount of torque lost to internal engine friction. Fig. 1 shows the IMEP curves for different throttle settings when the air/fuel ratio is varied. With the IMEP, it is possible to calculate the indicated specific fuel consumption (ISFC). The ISFC does not take into account the internal friction of the engine but the minimum point on the curve occurs close to the same air/fuel ratio as the minimum BSFC. The minimum ISFC for a given speed and load typically occurs at a lean
air/fuel ratio. Fig. 2 shows the ISFC curves of different throttle settings when the air/fuel ratio is varied. By calculating the ISFC it is possible to operate an engine very close to its maximum efficiency level at all times. The control system of the present invention will adjust the amount of fuel injected while the engine is operating until a minimum ISFC is determined for all speed and load conditions. The system will effectively learn what air/fuel ratio produces the maximum efficiency and use that as its target air/fuel ratio for each speed and load point.

Fig. 3 shows the BMEP curves of different throttle settings when the air/fuel ratio is varied. This figure shows that the BMEP is almost a direct reduction of the IMEP and can be derived by knowing the friction level as a function of speed and load. Engine efficiency is typically measured in brake specific fuel consumption (BSFC). A way to optimize total engine efficiency is to compare the output torque versus fuel delivered and find the point of minimum BSFC. This technique works in a laboratory where torque can be measured with a dynamometer but in a real-time vehicle, torque measurement is expensive and does not give as much useful information as cylinder pressure. Fig. 4 shows the BSFC curves of different throttle settings when the air/fuel ratio is varied. Note that the minimum points of the BSFC curves have almost the same air/fuel ratio as the minimum points of the ISFC curves. The curves in the two figures, Fig. 1 and Fig. 2, correlate closely enough with the curves in Figs. 3 and 4 that one can get approximately the same results by closing the control loop on ISFC as can be achieved with BSFC. It is also the case that BMEP can be approximated by a direct reduction of the IMEP knowing the friction level as a function of speed and load. Thus, BSFC can be calculated as a function of internal cylinder pressure, fuel mass flow and air mass flow for a known engine. These graphs were derived with a conventional ignition system. With a high power ignition, the curves in Fig. 3 will extend further down as the engine gets leaner without falling off due to misfire. As shown in Fig. 5, the extended lines represent the added operating range produced by a high power ignition system. Fig. 6 shows the corresponding extended BSFC curves where the minimum now occurs at a leaner air/fuel ratio. The extended graphs of Figs. 5 and 6 demonstrate the efficiency gained from running leaner when one compares points of similar BMEP. With reference to Fig. 5, note that the BMEP is equal for one-half throttle lean burn versus one-quarter throttle stoichiometric air/fuel ratio. Since the BMEP is equal, power output is also the same. Relating these points to corresponding points in Fig. 6, it is possible to calculate the efficiency gained from running lean. Calculations show an approximately thirty-three percent gain for running a lean air/fuel ratio at that particular load. This increase in efficiency is greater the smaller the load is as seen in the bigger gap in efficiency between the one-fourth and one-half throttle curve as between the one-half and three-quarter throttle curve of Fig. 6. These graphs thus show that the leaner one can operate efficiently, the bigger the gain in fuel economy in light to medium load operation.

Fig. 7 is a pressure-volume diagram illustrating the importance of accurate spark timing advance. The timing advance can have a dramatic effect on output power and efficiency. Setting the timing advance based on the pressure curve is one important reason for having a pressure sensor rather than a torque measuring device. Thus, the control system can set proper spark timing for all speeds, loads and air/fuel ratios. Proper spark timing is critical for a variable air/fuel ratio engine because the combustion burn time changes significantly with air/fuel-ratio. It is possible to set the spark timing based on either location of peak pressure or point of maximum IMEP. It has been written that setting peak pressure to about 15° past top dead center (TDC) will produce maximum efficiency, but because the system of the present invention will be operating very lean, peak IMEP timing may be used.

A system constructed in accordance with the present invention may use a dual mode of control as shown in Fig. 8. Using Otto-cycle throttling in the low to medium loads, the system will maintain an air/fuel ratio in-the-lean realm where IFSC or BSFC is minimum until the throttle plate is wide open. This mode is illustrated by a line 10. Above the wide open throttle point, the air/fuel ratio will be varied the way a diesel engine throttles richening the mixture until the engine reaches full load. This mode of operation is illustrated by a line 12. This dual mode operation will make it possible to achieve high fuel efficiency without sacrificing power output and also take advantage of reduced pumping losses since the throttle is always open wider than it would be in an engine operating at the stoichiometric ratio.

The air/fuel ratio control of the present invention is necessary because gasoline can only be ignited efficiently up to a specific ratio depending on the type of engine. Beyond the point of maximum efficiency, it is not beneficial to operate any leaner. The control system according to the invention can be used on stratified charge engines which create a small volume of richer mixture in which to ignite the leaner mixture. Stratified charge engines require significant redesign of the basic Otto-cycle engine. The intention of the control system of this invention is to control any spark ignition engine so as to operate at its peak efficiency at all times. While the gain in efficiency from operating lean is clear, what is unique about the present invention is that by operating at the optimum air/fuel ratio at all times, the system maximizes fuel economy. Coupling this with a dual mode throttling system, the engine will not suffer a loss of peak power. If an engine were to run in a very lean mode at all times, it would get a thirty to fifty percent reduction in power output. This lean burn power limit is shown in Fig. 8 at the top of the curve 10. If one were to compensate for that peak power loss by increasing the size of the engine, one would not benefit from the reduction in pumping losses that a smaller displacement engine would have at a point of equivalent power output. Over an average driving cycle, a dual
mode engine controlled according to the invention can get a gain of twenty percent or more in fuel economy over an existing engine as compared with a lean burning engine of equivalent peak power which may get a ten percent gain.

Fig. 9 shows the path 14 of BSFC that the control system will follow to achieve maximum efficiency in mode 1. Mode 2 is shown by the curve 16. The fuel efficiency gain, of course, depends on the average load on the engine and its lean limit. The leaner the engine can run, the higher the efficiency gain at low to medium loads. Similarly, the lower the average load on the engine, the higher the efficiency gain will be. By maximizing the throttle opening, one minimizes pumping losses which can account for a large percentage of the wasted energy in an Otto-cycle engine. An added increase in efficiency comes from the higher level of oxygen available to combustion. Further, there is the reduction in heat input resulting in lower peak temperatures which reduce losses to the cooling system.

Fig. 10 is a block diagram of an embodiment of a basic system constructed according to the invention that will achieve control around maximum efficiency by learning what air/fuel ratio has the optimum fuel efficiency. This system includes a microprocessor 20 which controls the amount of fuel injected by a fuel injector 22 and also controls ignition timing by means of an ignition system 24. The microprocessor 20 responds to signals from a cylinder pressure sensor 26, an intake manifold pressure sensor 28, an intake air temperature sensor 30 and an rpm sensor 32. The microprocessor 20 calculates the air mass entering the engine based on the intake manifold pressure and intake air temperature at the present rpm. The pressure data is then analyzed to determine the amount of positive work done on the piston (IMEP). Thereafter, the microprocessor calculates the ISFC or approximate BSFC and compares that to a previously stored value.

Learning takes place when the microprocessor uses an offset air/fuel ratio and calculates a new value for efficiency. The new value will be compared to the old value in a target array and if the BSFC is lower, the new air/fuel ratio will replace the old ratio in the target array. If the new value is higher than the old, then the old value will remain and the next time the engine is in this range, the microprocessor will try an offset in another direction. If the new value is lower than the old, then the next time the engine is in this range, the microprocessor keeps the offset in this direction. This process continues until a minimum is found, at which time the computer will smooth the data in the target array to make the transitions smoother and reduce the time it takes to get all points to their minimum BSFC.

The microprocessor will continue to try new offset values and update the target array with new numbers because as the engine wears, or things change such as engine temperature, humidity, in the air and air density, they will all have an effect on the engine's efficiency. The system of the invention will automatically adjust the air/fuel ratio to the maximum efficiency point for all of these conditions. If a sensor fails, the computer will use the target array it has generated to keep running until the sensor is replaced.

In the system, pressure data from the cylinder pressure sensor 26 is used to adjust timing advance. As the engine adjusts the amount of fuel injected, the ignition timing needs to change significantly in order to keep the point of peak pressure at about 15° past top dead center (TDC). As the controller offsets from the target array, it will set a new fuel injection time, adjust timing, then calculate the new BSFC and compare it with the value stored in the target array in a manner to optimize both fuel injection time and ignition timing over the whole range of engine operation. The new timing advance will also be stored in the target array so that the system will maintain peak torque for all air/fuel ratios, even when the engine is accelerating too quickly to operate completely closed loop.

The cylinder pressure sensor 26 is critical to the operation of a lean running engine because it gives so much useful information to the controller. It is used to calculate IMEP and then ISFC and adjust timing, but it can also detect misfire and engine knocking. Having a pressure sensor is very cost effective because it eliminates other sensors that now provide these functions. It is also possible to use the misfire limit detected by the pressure sensor 26 to approximate the point of maximum efficiency and close the control loop. A misfire is determined when the IMEP falls below zero or by detecting irregularities in the pressure trace. This technique does not always optimize efficiency because the misfire limit can be well beyond the air/fuel ratio of maximum efficiency. It is important to be aware of misfire so that if the control system tries an offset that was too lean, engine operation can recover quickly.

A direct measure of mass flow of air is unnecessary because it can be calculated with knowledge of the intake manifold pressure, intake air temperature and rpm. This approach makes for a less expensive system but one that is less accurate as well. The lower accuracy can be compensated for with the microprocessor 20 having an air table in memory. Such a system could try to estimate air mass flow by measuring just pressure or throttle plate position, but this causes more uncertainty in the calculation of ISFC and could shift its minimum point.

The equation for mass of a perfect gas is \(PV = nRT \). Mass flow of air can be estimated by \(m(a) = \frac{5}{2} \times \frac{P(L) + V(d) + M(t)}{R + T(t)} \) for a four stroke engine. In this equation, \(P \) is manifold pressure, \(V(d) \) is displacement volume of the engine, \(M(t) \) equals molecular weight of air, \(R \) is the universal gas constant and \(T(t) \) is the temperature of the intake air. This way of calculating mass flow is not consistently accurate because it assumes the air is a perfect gas. For more accuracy, an air mass flow sensor can be used. The mass flow of fuel is calculated by \(m(f) = \frac{m(a)}{1 + (injector)} \).
on time). The IMEP is calculated by integrating the pressure volume diagram. The pressure volume diagram is determined by measuring the pressure in the cylinder and the rotation of the engine since its displaced volume is known. The equation from which ISFC is calculated is ISFC = (\(F_1 + F_2\)) / m(a), ev = volumetric efficiency, D is density of the intake air which is equal to m(a) / Vd.

ISFC is minimized in the control system if an approximation of FMEP is not available. The equation for BMEP is BMEP = IMEP - FMEP. The FMEP is an experimentally derived value that is stored in memory as an equation based on speed and load. The equation for calculating BSFC is BSFC = [(F1 + F2) / m(a)] + (\(e\)v = D / bMMEP). BSFC is minimized in the control system if an approximation of FMEP is available.

By having the important cylinder pressure information available, one can optimize efficiency under any condition. By using a simple system, the computing power required is increased but the system becomes more cost effective.

It is noted that all of the hardware subsystems used in the described system exist today. As to software, those skilled in the art will readily be able to design software to implement the system. Further, the system can be adapted for use on any spark ignition engine regardless of type. The system will optimize efficiency by setting proper air/fuel ratios and accurate spark timing for all load levels of the engine. The control optimization will be performed according to the flow chart shown in Fig. 11. As shown in Fig. 11, the procedure is as follows:

1. Follow the target array for injection time and ignition timing. Take data long enough to be confident of accuracy.
2. Check if timing is accurate. If it is accurate, proceed to step 3 below. If timing is not accurate, change timing until it is accurate and store the correct timing in the target array and return to step 1.
3. Calculate ISFC (measured).
4. Compare ISFC (measured) with ISFC (target). If they are equal, proceed to step 5 below. If they are not equal, replace ISFC (target) with ISFC (measured) in the target array and go back to step 1.
5. Check injection offset value. If it is zero, set it to -1.
6. Follow the target array with offset values for injection time and ignition timing. Take data long enough to be confident of the accuracy.
7. Check if timing is accurate. If it is, proceed to step 8 below. If it is not, change it until it is accurate and store the correct timing offset in the offset array, then go back to step 6.
8. Calculate ISFC (measured) based on the data.
9. If ISFC (measured) is less than ISFC (target), add the offset values to the values in the target array and replace the old values of injection time, ignition timing and ISFC with the new values, then go back to step 1. Otherwise, go to step 10.
10. If ISFC (measured) is equal to ISFC (target) and the injection time offset was negative, add the offset values to the values in the target array and replace the old values of injection time, ignition timing and ISFC with the new values; then go back to step 1. Otherwise, go to step 11.
11. If ISFC (measured) is equal to ISFC (target) and the injection time offset was positive, change offset value to zero, then go back to step 1. Otherwise, go to step 12.
12. If ISFC (measured) is greater than ISFC (target), change the sign of the offset value and go back to step 1.

If the system gets stuck in the same loop ten times, it will either go back to the beginning or continue on by averaging the ten cycles and using the average values on which to base further decisions.

In the above, the following definitions are used:

OFFSET: The injection time offset will be a percentage of the total injection time for that point in the target array. One percent has been used as an example but this value can vary depending on the accuracy required and the rate of change in the engine at the particular time. The ignition timing offset is the amount of degrees of change in ignition advance from the target ignition timing that is required to achieve accurate timing.

ACCURATE TIMING: This occurs when the spark advance is set so that peak cylinder pressure occurs at about 15° past top dead center.

EQUAL: Equal means close enough to be able to make valid changes in control parameters. It may also mean equal within a predetermined percentage either side of the value used for comparison.
CONFIDENCE IN DATA: This expression means data is taken for at least two engine cycles and the data values are equal or the data values are averaged over enough cycles to be valid. In the array, the computer will store injection time, ISFC, and ignition timing.

In order to achieve full power, a throttle input device will measure the throttle plate position until the point of wide open throttle. Then it will allow further pedal input to indicate a request for more power and the controller will gradually increase the fuel delivery rate until the stoichiometric air/fuel ratio is reached.

Fig. 12 shows a device that can provide an input signal to the controller for dual mode operation. A throttle input device 40 includes a potentiometer 42 that changes resistance as a function of rotation of its shaft. The shaft of the potentiometer 42 rotates with a disk 44 which is turned by a throttle cable 46. A throttle plate shaft 48 supports a throttle plate 50 for rotation in an intake manifold 52. The shaft 48 is affixed to a disk 54 which rotates with the disk 44 until the throttle plate 50 is wide open, that
is, when the throttle plate 50 is vertical. As the disk 44 rotates farther, the throttle plate 50 remains in its wide open position while disk 44 will continue to rotate the shaft of the potentiometer 42. A spring 56 operates between disks 44 and 54 to put a force on tab 58 on disk 44 and tab 60 on disk 54, forcing the two tabs together. A spring 62 operates between the disk 44 and the base 64 of the device 40 that applies a force on tab 66 on disk 44 and on tab 68 mounted on the base 64 which holds the throttle plate 50 closed against the force of the throttle cable 46.

The throttle input device 40 works by measuring the rotation of the disk 44 which is a direct function of throttle pedal position through throttle cable 46, assuming that the force of spring 62 is sufficient to overcome all friction forces acting on a throttle pedal (not shown). As the throttle pedal is depressed, thereby activating throttle cable 46, the disk 44 will rotate with the disk 54 assuming that the force of spring 56 is sufficient to overcome all friction forces and air pressure acting on the throttle plate 50. The disks 44 and 54 will rotate together until a tab 70 on the disk 54 makes contact with a tab 72 on the intake manifold section 52. Tab 70 makes contact with tab 52 at wide open throttle when throttle plate 50 is vertical. Thereafter, the disk 44 can continue to rotate further against the force of both springs 56 and 62 continuing to rotate the potentiometer 42 farther. The microprocessor 20 (Fig. 10) is connected to the throttle input device 40 by means of a wire 74 and the microprocessor 20 is presumed to know the resistance value of the potentiometer 42 at the point that the tab 70 makes contact with the tab 72 at which time the throttling mode is switched so as to operate in mode 2 throttling.

Otto-diesel throttling control will increase the engine's power output over a lean burn engine of equivalent displacement and increase fuel economy relative to a lean burn engine of equivalent output. The throttle position sensor will also help give a more accurate mass flow calculation but is more important for allowing a reversion to a richer air/fuel ratio beyond wide open throttle.

Fig. 13 shows an embodiment of a complete system constructed according to the present invention that will achieve more accurate control around maximum efficiency by controlling the throttle plate and directly measuring air mass flow by means of an air mass flow sensor 80. There are many ways to optimize the fuel efficiency on an engine. The most effective way is to put microprocessor 20 in control of fuel injection 22, ignition timing by means of a high power ignition system 24 and-throttle plates by means of a throttle plate motor 82 with the cylinder pressure sensor 26 feeding information back so that efficiency is optimized. The microprocessor 20 will also monitor throttle pedal input, engine temperature, intake pressure, air mass flow and rpm. With control of the throttle plates, the microprocessor 20 can optimize engine efficiency without having any change in drivability. The throttle pedal input will simply represent an rpm target or IMEP level that the computer should achieve. This manner of control will allow the microprocessor 20 to control the fuel injection 22 to deliver a full rich mixture to be used under hard acceleration and a lean mixture when the engine is at low loads. The system will also allow the control algorithm to avoid any air/fuel ratio that may cause excess emissions or have destructive effects on the engine.

The present control system will automatically optimize for greatest efficiency by minimizing ISFC or BSFC. The engine's lean limit will be monitored by the pressure sensor 26 which will sense the point at which IMEP falls below zero. In this way, the engine can be operated lean without misfiring. The pressure sensor 26 can also be used to detect knock and to adjust timing to prevent knock should it occur. Further improvements can be made with better fuel atomization and a high power ignition system. A gain can also be achieved by increasing the compression ratio, because a lean mixture burns slower, preventing knock even at higher compression. These refinements are necessary for lowering total emissions output and improve efficiency as well.

Fig. 14 shows emissions curves representing improved operating range resulting from a high power ignition system, illustrating that emissions are lower at leaner air/fuel ratios. With a high power ignition system and better fuel atomization, the present control system will increase the leanness of the optimum air/fuel ratio achieving a reduction of emissions as shown by the curves in Fig. 14. The reason for extending the lean operating point is to get over the hump in emissions of oxides of nitrogen in the lean range just above the stoichiometric air/fuel ratio. Running an engine leaner than stoichiometric will lower the total emissions until the engine passes the point of minimum BSFC or maximum efficiency. This is the case since when the engine is running at its maximum efficiency air/fuel ratio, the conversion of fuel energy to mechanical energy is the most nearly complete. Running an engine leaner than this point will cause it to encounter worse combustion and eventually to misfire. The described system maintains the engine operating in the range of maximum efficiency and minimum emissions.

Fig. 15 shows pressure traces from two types of pressure transducers detecting knock. As will be appreciated by those skilled in the art, the control of ignition timing needs to respond to engine detonation. Such control can be achieved by monitoring the smoothness of the pressure wave. When an engine knocks, the pressure wave oscillates wildly around top dead center, responding to the shock wave detonation.

Claims

1. A system for controlling a spark ignition engine to maximize fuel efficiency over its entire range of operating conditions comprising: apparatus for controlling the amount of fuel delivered to the engine; appa-
ratus for measuring the internal cylinder pressure in at least one cylinder of the engine, apparatus for estimating the air mass entering the engine, apparatus for calculating the approximate efficiency of the engine, and apparatus for varying the amount of fuel delivered to the engine to maximize such efficiency over the entire range of operating conditions of the engine, characterised in that said efficiency calculating apparatus is adapted to calculate such efficiency as represented by the indicated specific fuel consumption or the approximate brake specific fuel consumption from the amount of fuel delivered, the internal cylinder pressure and the estimated air mass entering the engine, and in that said fuel varying apparatus is adapted to maximize efficiency by minimizing the indicated specific fuel consumption or the approximate brake specific fuel consumption.

2. The system of Claim 1, further characterised in that the apparatus for controlling the amount of fuel delivered to the engine comprises a fuel injection system.

3. The system of Claim 2, further characterised in that the fuel injection system includes a fuel atomizing device.

4. The system of Claim 1, further characterised in that the apparatus for controlling the amount of fuel delivered to the engine comprises an externally controllable carburettor.

5. The system of Claim 1, further characterised in that the apparatus for measuring the internal cylinder pressure comprises a ring-type pressure sensor mounted around a spark plug between the spark plug and the cylinder head of the engine.

6. The system of Claim 1, further characterised in that the apparatus for estimating the air mass entering the engine comprises an intake manifold pressure sensor, an intake air temperature sensor, and means for determining engine speed.

7. The system of Claim 6, further characterised in that the air mass is calculated for a four stroke engine by the equation \(m(a) = (\pi_i V_d + M) / 2 \pi R T_i \) where \(m(a) \) is the mass of air, \(\pi_i \) is intake manifold pressure, \(V_d \) is the displacement volume of the engine, \(M \) is the molecular weight of air, \(R \) is the universal gas constant and \(T_i \) is intake air temperature.

8. The system of Claim 7, further characterised in that the air mass calculation is performed by a microprocessor.

9. The system of Claim 1, further characterised in that the apparatus for estimating the air mass entering the engine comprises a mass flow sensor in the intake stream.

10. The system of Claim 1, characterised further in that the apparatus for adjusting ignition timing as a function of cylinder pressure to locate the peak pressure point at approximately 15° after top dead centre or to maximize IMEP (indicated mean effective pressure).

11. The system of Claim 1, further characterised in that the indicated specific fuel consumption (ISFC) is computed by the equation

\[
\text{ISFC} = \frac{(F_1+F)}{(ev+Di/IMEP)}
\]

where \(ev \) is volumetric efficiency of the engine, \(F = m(f)/m(a) \), where \(m(f) \) is the mass flow of fuel and \(m(a) \) is the mass flow of air, and \(Di \) is density of intake air.

12. The system of Claim 1, further characterised in that the specific fuel consumption (BSFC) is computed by the equation

\[
\text{BSFC} = \frac{(F_1+F)}{(ev+Di/BMEP)}
\]

where \(ev \) is volumetric efficiency of the engine, \(F = m(f)/m(a) \), where \(m(f) \) is the mass flow of fuel and \(m(a) \) is the mass flow of air, and \(Di \) is density of intake air.

13. The system of Claim 1, further characterised in that the mass flow of fuel is calculated by \(m(f) = \text{mass flow of injector} \div \text{duration of injection} \).

14. The system of Claim 1, further characterised in including a fuel mass flow sensor.

Patentansprüche

1. Ein System zur Kontrolle eines funkengezündeten Brennkraftmotors, das die Ausnutzung des Brennstoffeinsatzes über den gesamten Bereich der Betriebsbedingungen optimiert und folgende Komponenten enthält: Apparat zur Kontrolle der Brennstoffmenge, die zum Motor geliefert wird, Apparat zum Messen des Zylinderinnendrucks in wenigstens einem Zylinder des Motors, Apparat zum Auswerten der Luftmenge, die in den Motor gelangt, Apparat zum Berechnen des ungefähren Wirkungsgrades des Motors und Apparat zur Veränderung der Brennstoffmenge, die dem Motor zugeführt wird, um den Wirkungsgrad des Motors über den gesamten Bereich der Betriebsbedingungen zu maximieren, gekennzeichnet dadurch, daß der den Wirkungsgrad berechnende Apparat ausgelegt ist den Wirkungsgrad, der sich bildet aus dem indizierten spezifischen Brennstoffverbrauch oder dem ungefähren effektiven spezifischen Brennstoffverbrauch von der gelieferten Brennstoffmenge, dem Zylinderinnendruck und der ausgewerteten in den Motor ein-
tretenden Luftmasse zu bestimmen, und weiterhin ist der die Brennstoffmenge verändernde Apparat ausgelegt, den Wirkungsgrad durch die Minimierung des indizierten spezifischen Brennstoffverbrauchs oder des ungefähren effektiven spezifischen Brennstoffverbrauchs zu maximieren.

2. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der Apparat der die Brennstoffmenge, die zum Motor gelangt, kontrolliert, eine Brennstoffeinspritzanlage aufweist.

3. Das System nach Anspruch 2, dadurch gekennzeichnet, daß das Brennstoffeinspritzsystem ein Brennstoffzerstäubungsystem einschließt.

4. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der Apparat der die Brennstoffmenge, die zum Motor gelangt, kontrolliert, einen von außen regelbaren Vergaser aufweist.

5. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der Apparat zur Messung des Zylinderinnendrucks, einen ringförmigen Drucksensor enthält, der um die Zündkerze zwischen der Zündkerze und dem Zylinderkopf des Motors montiert ist.

6. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der Apparat zur Auswertung der Luftmenge, die in den Motor gelangt, einen Ansaugdrucksensor, einen Ansauglufttemperaturensensor und ein Mittel zur Bestimmung der Motordrehzahl aufweist.

7. Das System nach Anspruch 6, dadurch gekennzeichnet, daß die Luftmenge für einen 4-Taktmotor durch die Formel
 \[m(a) = \frac{\pi D^2 \cdot L}{4} \]
 wobei \(m(a) \) die Menge der Luft, \(\pi D^2 L \) den Ansaugdruck, \(Vd \) der Zylinderinhalt, \(\pi D^2 \) das Molekulargewicht der Luft, \(R \) die universelle Gaskonstante und \(T \) die Ansauglufttemperatur ist.

8. Das System nach Anspruch 7, dadurch gekennzeichnet, daß die Luftmengenberechnung mittels eines Mikroprozessors durchgeführt wird.

9. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der Apparat zur Auswertung der Luftmenge, die in den Motor gelangt, einen Massenstromsensor aufweist, der im Ansaugstrom liegt.

10. Das System nach Anspruch 1, dadurch gekennzeichnet, daß es einen Apparat zur Verstellung des Zündzeitpunkts in Abhängigkeit vom Zylinderdruck aufweist, zur Bestimmung des Maximaldrucks bei ungefähren 15° nach dem oberen Totpunkt oder um den indizierten Mitteldruck \((\text{IM})\) zu maximieren.

11. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der indizierte spezifische Brennstoffverbrauch \((\text{isB})\) durch folgende Formel berechnet wird:
 \[\text{isB} = \left(\frac{F}{1+F} \right) + \left(\frac{ev \cdot D}{\text{Di} \cdot \text{eM}} \right) \]
 wobei \(ev \) der Füllungsgrad des Motors, \(F = \frac{m(t)}{m(a)} \), wobei \(m(t) \) der Brennstoffmassenstrom und \(m(a) \) der Luftmassenstrom und \(\text{Di} \) die Dichte der Ansaugluft ist.

12. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der effektive spezifische Brennstoffverbrauch \((\text{esB})\) berechnet wird durch die Formel
 \[\text{esB} = \left(\frac{F}{1+F} \right) + \left(\frac{ev \cdot D}{\text{Di} \cdot \text{eM}} \right) \]
 wobei \(ev \) der Füllungsgrad des Motors, \(F = \frac{m(t)}{m(a)} \), wobei \(m(t) \) der Brennstoffmassenstrom und \(m(a) \) der Luftmassenstrom \(\text{Di} \) die Dichte der Ansaugluft ist und \(\text{eM} \) der effektive Mitteldruck ist.

13. Das System nach Anspruch 1, dadurch gekennzeichnet, daß der Brennstoffmassenstrom berechnet wird durch:
 \[m(t) = \text{Massenstrom der Einspritzung/Dauer der Einspritzung} \]

14. Das System nach Anspruch 1, dadurch gekennzeichnet, daß ein Brennstoffmassenstromsensor enthalten ist.

Revendications

1. Ensemble de commande d'un moteur à allumage par étincelles, destiné à rendre maximal le rendement en carburant dans toute la plage de conditions de fonctionnement, comprenant un appareil de réglage de la quantité de carburant transmise au moteur, un appareil de mesure de la pression interne d'au moins un cylindre du moteur, un appareil d'estimation de la masse d'air pénétrant dans le moteur, un appareil de calcul du rendement approximatif du moteur, et un appareil destiné à faire varier la quantité de carburant transmise au moteur afin que le rendement soit maximal dans toute la plage des conditions de fonctionnement du moteur, caractérisé en ce que l'appareil de calcul de rendement est destiné à calculer ce rendement représenté par la consommation spécifique indiquée de carburant ou la consommation spécifique approximative au frein de carburant à partir de la quantité de carburant distribuée, de la pression interne du cylindre et de la masse d'air estimée pénétrant dans le moteur, en ce que l'appareil destiné à faire varier le carburant est destiné à rendre maximal le rendement par réduction au minimum de la consommation spécifique indiquée de carburant ou de la consommation spécifique approximative au frein du carburant.
2. Ensemble selon la revendication 1, caractérisé en outre en ce que l'appareil de réglage de la quantité de carburant distribuée au moteur comporte un ensemble d'injection de carburant.

3. Ensemble selon la revendication 2, caractérisé en outre en ce que l'ensemble d'injection de carburant comprend un dispositif d'atomisation de carburant.

4. Ensemble selon la revendication 1, caractérisé en outre en ce que l'appareil de réglage de la quantité de carburant distribuée au moteur comprend un carburateur qui peut être commandé depuis l'extérieur.

5. Ensemble selon la revendication 1, caractérisé en outre en ce que l'appareil de mesure de la pression interne d'un cylindre comprend un capteur de pression de type annulaire monté autour d'une bougie d'allumage entre celle-ci et la culasse du moteur.

6. Ensemble selon la revendication 1, caractérisé en outre en ce que l'appareil d'estimation de la masse d'air entrant dans le moteur comporte un capteur de pression dans le collecteur d'admission, un capteur de température d'air d'admission, et un dispositif destiné à déterminer la vitesse du moteur.

7. Ensemble selon la revendication 6, caractérisé en outre en ce que la masse d'air est calculée pour un moteur à quatre temps suivant l'équation :

\[m(a) = \frac{(P_i + V_d + M)}{2 + R + T_i} \]

\[m(a) = \text{masse d'air, } P_i = \text{pression dans le collecteur d'admission, } V_d = \text{déplacement volumétrique du moteur, } M = \text{masse moléculaire de l'air, } R = \text{constante des gaz parfaits et } T_i = \text{température de l'air d'admission.} \]

8. Ensemble selon la revendication 7, caractérisé en outre en ce que le calcul de la masse d'air est réalisé à l'aide d'un microprocesseur.

9. Ensemble selon la revendication 1, caractérisé en outre en ce que l'appareil d'estimation de la masse d'air entrant dans le moteur comporte un capteur de débit massique placé dans le courant d'admission.

10. Ensemble selon la revendication 1, caractérisé en outre en ce qu'il comporte en outre un appareil d'ajustement du moment de l'allumage en fonction de la pression dans le cylindre afin que la pression de crête apparaîsse à 15° environ après le point mort haut ou de manière que la pression moyenne efficace indiquée (IMEP) soit maximale.

11. Ensemble selon la revendication 1, caractérisé en outre en ce que la consommation spécifique indiquée de carburant (ISFC) est calculée à l'aide de l'équation :

\[ISFC = \frac{(F/1 + F_e)(ev + D_i/IMEP)}{m(f) - m(a) - m(a) - m(a) + m(a) + m(a)} \]

\[ev \text{ étant le rendement volumétrique du moteur, } F = \frac{m(f) + m(a)}{m(a) + m(a) + m(a)}, \text{ m(f) étant le débit massique d'air et } D_i \text{ la masse volumique de l'air d'admission.} \]

12. Ensemble selon la revendication 1, caractérisé en outre en ce que la consommation spécifique au frein du carburant (BSFC) est calculée à l'aide de l'équation :

\[BSFC = \frac{(F/1 + F_e)(ev + D_i/IMEP)}{m(f) - m(a) - m(f) + m(a) + m(a)} \]

\[ev \text{ étant le rendement volumétrique du moteur, } F = \frac{m(f) + m(a)}{m(a) + m(a) + m(a)}, \text{ m(f) étant le débit massique du carburant et } m(a) \text{ étant le débit massique de l'air, } D_i \text{ étant la masse volumique de l'air d'admission.} \]

13. Ensemble selon la revendication 1, caractérisé en outre en ce que le débit massique de carburant est calculé par la relation \(m(f) = (\text{débit massique d'injecteur})/\text{(durée d'injection).} \]

14. Ensemble selon la revendication 1, caractérisé en outre en ce qu'il comprend un capteur de débit massique de carburant.
FIG. 13