EUROPEAN PATENT SPECIFICATION

Leather modifier, process for modifying leather and modified tanned leather

Maeda, Masahiko, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)
Yanagisawa, Norio, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)
Misugi, Yoshihiko, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)
Yasuhi, Maki, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)

Maeda, Masahiko, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)
Yanagisawa, Norio, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)
Misugi, Yoshihiko, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)
Yasuhi, Maki, c/o Yodogawa Works of Settsu-shi, Osaka-fu (JP)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Field of the Invention

The present invention relates to a leather modifier, a process for modifying leather and a modified tanned leather. More particularly, the present invention relates to a leather modifier comprising a fluorine-containing phosphorus compound, a process for modifying leather comprising treating a tanned leather with a leather modifier in a step for fatting the leather, and a tanned leather modified by said process.

Description of the Related Art

A process for producing a leather comprises steps of pretreatment, tanning and finishing. The finishing step includes treatment with a fatting agent and top finish.

The tanning step herein used means treatment of the leather with a widely used inorganic or mineral tanning agent such as a chromium base tanning agent, an aluminum base tanning agent and a zirconium base tanning agent, and includes treatment of the leather with a metal which can form a complex ion. A chromium-tanned leather is one of typical tanned leathers and has excellent flexibility, elasticity, tensile strength, heat resistance and dye-affinity.

Recently, irrespective of kinds of leather, tanned leathers for clothes, furniture, insteps of shoes, gloves and the like are not finished or are slightly finished. Thereby, a tanned leather having inherent touch, surface, appearance and feeling of natural leather can be obtained.

However, elimination of the finishing results in serious drawbacks as increase of water absorbance, decrease of water-proofing caused by formation of water droplets, or decrease of stain-proofing against oils. These drawbacks may be obstacles in practical use, for example, in view of repair of leather goods.

To overcome the drawbacks of the tanned leather, various fatting agents are used in the fatting step to protect the leather fibers from water or chemicals (hydrophobic treatment), and to improve the properties of the leather such as touch, puff, gloss, flexibility and other appearance.

In addition, to increase water- and oil-repellency of the leather, a fluorine-containing compound is conventionally used, and various fluoroacrylate polymers, fluorocarboxylic acids and their chromium complex, and fluoroalkyl phosphates are used.

The fatting effects cannot be achieved by the conventional fatting agents without adversely affecting the appearance, touch, feeling, flexibility, air-permeability and other desirable properties.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a tanned leather which has improved properties such as shrink proofing, color fastness, weather resistance, color fastness to rubbing and deep color effect, as well as durable water- and oil-repellency, natural feeling and flexibility without finishing.

Another object of the present invention is to provide a leather modifier which can provide a tanned leather which has improved properties such as shrink proofing, color fastness, weather resistance, color fastness to rubbing and deep color effect, as well as durable water- and oil-repellency, natural feeling and flexibility without finishing.

A further object of the present invention is to provide a process for modifying a tanned leather to give a tanned leather which has improved properties such as shrink proofing, color fastness, weather resistance, color fastness to rubbing and deep color effect, as well as durable water- and oil-repellency, natural feeling and flexibility without finishing.

According to the first aspect of the present invention, there is provided a leather modifier comprising a compound which is obtainable through a reaction of an ethylene oxide derivative having a fluorine-containing group with a phosphorus compound.

According to the second aspect of the present invention, there is provided a process for modifying a leather, which comprises tanning a leather and treating the tanned leather with a leather modifier of the present invention in place of or in combination with a fatting agent.

According to the third aspect of the present invention, there is provided a modified tanned leather which has been treated with a leather modifier of the present invention in place of or in combination with a fatting agent.

DETAILED DESCRIPTION OF THE INVENTION

In the present invention, the fluorine-containing organic group which may be represented by the formula: Rₜ is intended to mean, in general, a fluorine-containing aliphatic group such as a saturated or unsaturated, straight or branched fluorine-containing aliphatic group. The carbon atoms in the group may be interrupted by an oxygen atom. That is, the group may have at least one ether linkage.
The ethylene oxide derivative having the fluorine-containing group to be used in the present invention is preferably represented by the following formula:

\[R_f^- R^1 - CH\text{CH}_2 \]

wherein \(R_f \) is a C\(_3\)-C\(_{21}\) fluoroalkyl group, fluoroalkenyl group or fluoroether group or a mixture thereof; and \(R^1 \) is a group of the formula:

\[-(SO_2N)_{\text{m}}^- R^2^- \]

\[R^3 \]

wherein \(R^2 \) is a C\(_1\)-C\(_{20}\) alkylene group or a group having a phenyl group which may have a double or triple bond or an ether linkage at an arbitrary position therein, or it may form a ring, and any hydrogen atom bonded to a carbon atom of \(R^2 \) may be substituted with a halogen atom; \(R^3 \) is a C\(_1\)-C\(_8\) alkyl or hydroxyalkyl group; and \(m \) is 0 or 1.

Specific examples of the ethylene oxide derivative (I) are

\[CF_3CF_2(CF_2CF_2)_3CH_2CHCH_2^- \]

\[(CF_3)_2CF(CF_2CF_2)_3CH_2CHCH_2^- \]

\[CF_3CF_2(CF_2CF_2)_4CH_2CHCH_2^- \]

\[C_8F_{17}CH\text{CHCH}_2^- \]

and

\[CF_3CF_2(CF_2CF_2)_3SO_2NCH_2CHCH_2^- \]

Examples of the phosphorus compound are pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid, phosphorus pentoxide, and the like.

The reaction is carried out by heating a mixture of the ethylene oxide derivative and the phosphorus compound while stirring. A reaction temperature is usually from 30 to 200\(^\circ\)C, preferably from 50 to 150\(^\circ\)C, and a reaction time is usually from 0.5 to 15 hours, preferably from 1 to 8 hours. An amount of the ethylene oxide derivative is from 0.3 to 3 moles, preferably from 0.6 to 2 moles per one mole of the phosphorus atom.

The reaction product mainly contains the compounds of the formulas (II), (III) and (IV). Also, the compounds of the formulas (V) and (VI) are present:

\[R_f^- R^1 - CH\text{CH}_2OPO(OH)_2^- \]

\[R_f^- R^1 - CH\text{CH}_2OH \]

\[OPO(OH)_2^- \]

\[R_f^- R^1 - CH\text{CH}_2OH \]

\[OH \]

\[HO-(CH\text{CH}_2O)_n^- \]

\[R^- R_f^- \]
(n is an integer of 2 or larger)

Phosphate esters of the compound (V) (VI)

wherein R₃ and R₁ are the same as defined above.

The leather modifier of the present invention contains, as an active ingredient, at least one of the above compounds in an amount of 5 to 95 % by weight based on the whole weight of the modifier. In addition to the above active compound, the leather modifier of the present invention contains a surfactant, a neutral oil, water and the like. Optionally, the leather modifier may contain other known additives such as a preservative.

The modification of leather with the leather modifier of the present invention is carried out in the fatting step in an aqueous bath with using 100 to 200 % by weight of the leather modifier of the present invention and optionally the fatting agent based on the weight of the leather at a temperature of 20 to 60°C for 30 to 90 minutes.

The leather to be modified according to the present invention may be any leather which has been tanned with a conventional metal base tanning agent such as a chromium, zirconium or aluminum base tanning agent or retanned with an organic or inorganic tanning agent. The leather may be cow hide, ox hide pig skin, sheep skin, goat skin, horse hide and the like as well as suede.

It may be expected that the finishing of the leather would be difficult if the leather were treated with a compound having the R₃ group, since the surface energy of the leathers is lowered with the R₃ group. When the leather is treated with the leather modifier of the present invention, the leather has ideal properties without finishing.

In the fatting step, when the leather modifier of the present invention comprising the above compound is used in place of or in addition to the fatting agent, the hydroxyl group bonded to the phosphorus atom in the formula (II) or (III) forms a coordinate bond with the metal (e.g. chromium) ion and the compound is bonded to the leather fibers. The mechanism for the bonding of the leather modifier with the leather fibers may be the same as that in case of a monoalkyl phosphate (MAP) as described by Sato et al. in "Fatting Effects from the View Point of Surface Chemistry", Hikaku-Kagaku (Leather Chemistry), 24(3), 107-115 (1988). Accordingly, on the surface of the leather, the long chain fluorine-containing groups are oriented, whereby the surface energy of the leather is lowered, water- and oil-repellency is imparted to the leather.

As already explained, the fluoroalkyl phosphate is known as a modifier of the chromium tanned leather (cf. Japanese Patent Kokai Publication Nos. 104353/1984 and 215900/1990 and U.S. Patent No. 3,996,207). However, such modifier cannot impart sufficient water- and oil-repellency to the leather and deteriorates the touch and feeling of the leather which are most important properties of the leather. Therefore, such modifier is not practically applicable.

The reaction product according to the present invention contains the diol (IV) and the compounds (V) and (VI) in addition to the phosphorus compounds (II) and (III), these compounds synergistically improves the finishing effects of the leather, in particular, the touch and feeling are greatly improved, and the leather becomes flexible. Of course, the water- and oil-repellency is not deteriorated, and is rather improved. In addition, color fading which may have caused by the conventional finishing agent can be prevented by the leather modifier of the present invention.

An additional characteristics of the present invention is that the finishing of the leather can be avoided. That is, when the leather which is treated with the conventional modifier is not finished, the leather goods should be repaired since the fatting with the conventional fatting agent cannot impart the water resistance and the soil proofing to the leather. Further, when the leather is finished with the conventional finishing agent, it is difficult to maintain the original surface properties, touch and flexibility of the leather while maintaining air permeability. Finally, such treatment cannot be applied to suede finished leather.

After the treatment with the leather modifier of the present invention, the leather may be finished by a conventional manner, if desired.

The leather modified with the leather modifier of the present invention can be used in the same fields as the conventional leather. For example, the modified leather can be used for assembling or producing clothes, furniture, shoes, gloves and the like.

The leather modified with the leather modifier of the present invention does not suffer from the so-called color fading and has improved properties such as shrink proofing, color fastness, weather resistance, color fastness to rubbing and deep color effect. In addition, it has durable water- and oil-repellency, natural feeling and flexibility. According to the present invention, the finishing of the leather can be neglected.

PREFERRED EMBODIMENTS OF THE INVENTION

The present invention will be illustrated by following Examples.

A shaved chromium-tanned cow hide was treated with a leather modifier which was prepared by reacting the ethylene oxide derivative and the phosphorus compound according to the present invention and then subjected to the various tests. For comparison, a leather which had been treated with a fatting agent outside the present invention and a leather which had been impregnated with a fluoroalkyl group-containing acryl copolymer were used.
Example 1

Preparation of Sample Modifiers

As an active ingredient, a test compound of the present invention which was prepared by reacting the ethylene oxide derivative having the fluorine-containing group with the phosphorus compound, or comparative polyfluroalkyl phosphate or monoalkyl phosphate (MAP) was mixed with the following compounds to prepare a sample modifier.

0.01 to 50 % by weight of the active ingredient
0 to 50 % by weight of an silicone oil
50 to 99.99 % by weight of aqueous ammonia.

Test compound and fatting agents

1. A reaction product of

\[(\text{CF}_3)_2\text{CF}(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CHCH}_2 \]

with pyrophosphoric acid.

2. A mixture of the compounds (a) and (b) in a weight ratio of 70:30;

(a): \((\text{CF}_3)_2\text{CF}(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CH}(_\text{OH})\text{CH}_2\text{OPO(OH)}_2\)

(b):

\[(\text{CF}_3)_2\text{CF}(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CHCH}_2\text{OH} \]

\[\text{OPO}(_\text{OH})_2 \]

3. \(\text{CF}_3\text{CF}(_\text{CF}_2\text{CH}_2\text{OPO(OH)}_2\)

4. \(\text{C}_{16}\text{MAP}\)

5. \(\text{C}_{27}\text{F}_{15}\text{COOH-NH}_4\)

6. \(\text{TG-620 (a fluoroalkyl group-containing acryl copolymer manufactured by Dakin Industries Ltd.)}\)

EMB: (sulfonated oil base fatting agent manufactured by Hoechst AG).

Preparation of the composition (1)

The above ethylene oxide derivative (52.6 g) was charged in a 200 ml four-necked flask and heated to 60°C while stirring. Then pyrophosphoric acid (8.3 g) was added. An internal temperature rose to 120°C. After confirming decrease of the internal temperature to 100°C, the flask was again heated and the mixture was stirred at 110 to 115°C for 3 hours to obtain the composition (1).

Preparation of the mixture (2)

\((\text{CF}_3)_2\text{CF}(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CH}(_\text{OH})\text{CH}_2\text{OH} (10 g)\) was dissolved in 1,1,2-trichloro-1,2,2-trifluoroethane (R-113). To the solution, phosphorus oxychloride (8.5 g) was dropwise added at 0°C. After the addition of phosphorus oxychloride, the mixture was warmed to room temperature and stirred, followed by evaporating off R-113 and excessive phosphorus oxychloride. The residue was dropwise added to a large amount of iced water. After stirring for 3 hours, a precipitated solid product was filtered and dried to obtain the mixture (2).

Preparation of the compound (3)

Using \(\text{CF}_3\text{CF}(_\text{CF}_2\text{CH}_2\text{O})_2\text{OH} (10 g)\) and phosphorus oxychloride (9.9 g), the same procedures as in the preparation of the mixture (2) were repeated to obtain the compound (3).
Example 2

Treatment Procedures of Chromium-tanned leather

A chromium-tanned leather was treated as follows:

i) Washing with water and dewatering
ii) Neutralization
iii) Fatting and dewatering
iv) Washing with water and dewatering
v) Drying

The treatment or processing of the leather with the leather modifier of the present invention can be carried out by the conventional method except that the leather modifier of the present invention is added to a wet processing drum in the wet processing step. That is, in the above treatment procedures, the steps ii) and iii) were carried out in a rotating drum.

The washing steps were carried out in flowing water. In the neutralization step, an aqueous solution of at least one neutralizing agent was added to the drum in about twice amount of the weight of the leather, and the drum was rotated at about 30°C for about 60 minutes to adjust pH of the bath at 5.5 to 6.0. Examples of the neutralizing agent are ammonium formate, ammonium acetate, sodium carbonate, sodium bicarbonate, sodium formate and sodium acetate.

After neutralization, the bath liquid was drained, and the neutralized leather was removed from the drum and washed in flowing water sufficiently.

In the fatting step, each modifier containing the composition (1) and the mixture or the compound (2) to (5) in an amount of 6% by weight based on the leather weight and a neutral oil (e.g. liquid paraffin) in an amount of 1% by weight based on the leather weight were mixed with water in an amount of 1.5 times the leather weight.

Each mixture and the leather were charged in the drum and the drum was rotated at 50°C for 60 minutes while keeping pH at 5.5 to 6.0.

Thereafter, the leather was washed with flowing water and dewatered followed by air drying in a room. The dried leather was subjected to the property tests in Example 3.

In case of the compound (6), the EMB treated leather was air dried, dipped in a 1.04 % by weight solution of the compound (6) in n-heptane and then redried.

Example 3

Evaluation of Properties of Leathers

With each leather treated in Example 2, its feeling, water-repellency, oil-repellency and water absorbance were evaluated.

a) Feeling

Hand feeling of the treated leather was evaluated by ten panels (five men and five women) according to the following criteria:

1: Very stiff
3: Normal
5: Very soft

The results are as follows:

<table>
<thead>
<tr>
<th>Ingredient No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>EMB</th>
<th>EMB + (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of men</td>
<td>4.2</td>
<td>3.3</td>
<td>2.5</td>
<td>4.0</td>
<td>2.5</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Average of women</td>
<td>4.8</td>
<td>3.5</td>
<td>2.2</td>
<td>4.2</td>
<td>2.3</td>
<td>3.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>

b) Water-repellency

Water-repellency of the treated leather was evaluated according to JIS L 1092-1977.
The results are as follows:

<table>
<thead>
<tr>
<th>Ingredient No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>EMB</th>
<th>EMB + (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On grain side</td>
<td>95</td>
<td>60</td>
<td>90</td>
<td>60</td>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>On flesh side</td>
<td>100</td>
<td>95</td>
<td>85</td>
<td>70</td>
<td>70</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

c) Oil repellency

Oil-repellency of the treated leather was evaluated according to the AATCC standard test 118-1972. The results are as follows:

<table>
<thead>
<tr>
<th>Ingredient No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>EMB</th>
<th>EMB + (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On grain side</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>On flesh side</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

d) Water absorbance

Water absorbance of the treated leather was evaluated according to JIS K-6550. The results are as follows:

<table>
<thead>
<tr>
<th>Ingredient No.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>EMB</th>
<th>EMB + (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>25</td>
<td>51</td>
<td>28</td>
<td>50</td>
<td>65</td>
<td>25</td>
</tr>
</tbody>
</table>

Example 4

After shaving, the leather was dyed and neutralized as follows:

Washing thoroughly in flowing water
 +
Neutralization: Sodium formate, 1.5 %
Sodium bicarbonate, 1.5 %
Water, up to 100 %
PH, 6
Drum rotation for 60 minutes
Washing thoroughly in flowing water
 +
Dyeing: Luganil Black NT (BASF), 6 %
Water, up to 100 %
at 50°C
Drum rotation for 60 minutes

Addition of 2 % of formic acid and drum rotation for 10 minutes

Addition of 3 % of Lulanil Black NT and drum rotation for 30 minutes

Washing thoroughly in flowing water

Retanning: Baychron F (Bayer AG), 2 %
Water, up to 100 %
Drum rotation at 30°C for 90 minutes
Kept standing overnight

Washing with water

Neutralization in the same manner as above

Washing with water

Fatting

Thereafter, the leather was treated with the composition of the present invention (7) or the comparative compound or agents (8) to (11) according to the procedures in Table 1. Then, the leather sample Nos. 1 to 7 were subjected to the property tests.

Ingredient
Composition (7):

A reaction product of

\((\text{CF}_3)_2\text{CF}(\text{CF}_2\text{CF}_2)_n\text{CH}_2\text{CHCH}_2\)\(^\text{0}/\)

wherein \(n\) is an integer of 2 to 9, each compound being present in an amount of 5 % by weight \((n = 2)\), 50 % by weight \((n = 3)\), 24 % by weight \((n = 4)\), 11 % by weight \((n = 5)\), 4.5 % by weight \((n = 6)\), 3.5 % by weight \((n = 7)\), 1.5 % by weight \((n = 8)\) and 0.5 % by weight \((n = 9)\), with pyrophosphoric acid.
Compound (B):

\[\text{CF}_3(\text{CF}_2)_7\text{CH}_2\text{CH}_2\text{OPO(OH)}_2 \]

(9) C\text{\textsubscript{18}}-MAP
(10) Scotch Guard (trade mark) 233A (3M)
(11) HOEL (trade mark) 3740 (Hoechst AG)
(12) Cerrol (trade mark) M (Sandoz AG)

Preparation of the composition (7)

In the same manner as in the preparation of the composition (1) in Example 1 but using the above ethylene oxide derivative mixture (60 g) and pyrophosphoric acid (5.3 g), the composition (7) was prepared.
Table 1

<table>
<thead>
<tr>
<th>Sample No. 1</th>
<th>Sample No. 2</th>
<th>Sample No. 3</th>
<th>Sample No. 4</th>
<th>Sample No. 5</th>
<th>Sample No. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Com. (7) 5 % + H₂F 1 %</td>
<td>Comp'd (8) 5 % + H₂F 1 %</td>
<td>Comp'd (9) 5 % + H₂F 1 %</td>
<td>Sincolin L<sup>1</sup></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Drum rotation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>at 50°C for 60 min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formic acid 1 %</td>
<td>+</td>
<td>+</td>
<td>Formic acid 1 %</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pH = 3.5</td>
<td></td>
<td></td>
<td>Drum rotation for 5 min.</td>
<td>Drum rotation</td>
<td></td>
</tr>
<tr>
<td>Drum rotation</td>
<td>+</td>
<td></td>
<td></td>
<td>for 30 min.</td>
<td>+</td>
</tr>
<tr>
<td>for 30 min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washing with water</td>
<td>+</td>
<td>+</td>
<td>Comp'd (10) 10 %</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drum rotation for 30 min.</td>
<td>Drum rotation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>for 30 min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Washing with</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hanging over trestle overnight, drying with suspending, beating, and netting

Note: *1) Manufactured by Yoshiwara Oil Co., Ltd.
Then, the treated leather was subjected to the various tests as follows:

(1) **Feeling**

Each leather sample as treated, the leather sample which was wet cleaned according to JIS L 0844 C, or the leather sample which was laundered by dry cleaning according to JIS K 6552 was subjected to the feeling test in the same manner as in Example 2. The results are shown in following Table 2.

Table 2

<table>
<thead>
<tr>
<th>Leather sample No.</th>
<th>Feeling<sup>1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As treated</td>
</tr>
<tr>
<td>1</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>6</td>
<td>4.8</td>
</tr>
<tr>
<td>7</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Note: "1) Feeling values are average values of 10 panels.

(2) **Deep color effect**

By ten panels (five men and five women), color tone of the leather samples was evaluated with eyes according to
the following criteria:
1: Very light (whitely faded)
2: Normal
5: Very deep color (dark)

The results (average values of ten panels) are shown in Table 3.

<table>
<thead>
<tr>
<th>Leather sample No.</th>
<th>Average value of color tone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.8</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>4.7</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>4.7</td>
</tr>
<tr>
<td>8</td>
<td>2.9</td>
</tr>
</tbody>
</table>

(3) Color fastness

(a) According to the sweat test A of JIS L 0804, color fastness of each leather sample was evaluated. The results are shown in Table 4.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Alkaline</th>
<th>Acidic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staining degree on union cloth No. A</td>
<td>Leather sample No.</td>
<td>Leather sample No.</td>
</tr>
<tr>
<td>Cotton</td>
<td>4-5</td>
<td>3-4</td>
</tr>
<tr>
<td>Nylon</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Vinylon</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Acetate</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Wool</td>
<td>4-5</td>
<td>3-4</td>
</tr>
<tr>
<td>Rayon</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Acryl</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Silk</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Polyester</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Degree of changing in color</td>
<td>5</td>
<td>4-5</td>
</tr>
</tbody>
</table>

(b) According to the cleaning tests of JIS K 6552, color fastness of each leather sample was evaluated. The results are shown in Table 5.
Table 5

<table>
<thead>
<tr>
<th>Staining degree on union cloth No. A</th>
<th>Wet cleaning</th>
<th>Dry cleaning A</th>
<th>Dry cleaning B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather sample No.</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Cotton</td>
<td>5</td>
<td>4</td>
<td>3-4</td>
</tr>
<tr>
<td>Nylon</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Vinylon</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Acetate</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Wool</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Rayon</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Acryl</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Silk</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Polyester</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Degree of changing in color</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

(4) **Weather resistance**

Weather resistance of each leather sample was evaluated according to JIS L 0842. The results are shown in Table 6.

Table 6

<table>
<thead>
<tr>
<th>Leather sample No.</th>
<th>Exposure time (hrs)</th>
<th>Degree of changing in color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>4-5</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

(5) **Color fastness to rubbing**

Color fastness to rubbing was evaluated according to JIS K 6547. The results are shown in Table 7.

Table 7

<table>
<thead>
<tr>
<th>Item</th>
<th>Leather sample No.</th>
<th>Color fastness to rubbing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry</td>
</tr>
<tr>
<td>Stain (cotton)</td>
<td>1</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Degree of changing in color</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Claims

Claims for the following Contracting States: DE, FR, GB, IT

1. A leather modifier comprising a compound which is obtainable through a reaction of an ethylene oxide derivative having a fluorine-containing group with a phosphorus compound.

2. The leather modifier according to claim 1, wherein said ethylene oxide derivative having the fluorine-containing group is a compound of the formula:

$$R_2 - R^1 - CHCH_2$$

wherein R_2 is a C\textsubscript{3}-C\textsubscript{21} fluoroalkyl group, fluoroalkenyl group or fluoroether group or a mixture thereof; and R^1 is a group of the formula:

$$-\left(\text{SO}_3\text{~}^\text{N}^\text{\textsubscript{m}}\right)_m - R^2 - \text{R}^3$$

wherein R^2 is a C\textsubscript{1}-C\textsubscript{20} alkylene group or a group having a phenyl group which may have a double or triple bond or an ether linkage at an arbitrary position therein, or it may form a ring, and any hydrogen atom bonded to a carbon atom of R^2 may be substituted with a halogen atom, R^3 is a C\textsubscript{1}-C\textsubscript{5} alkyl or hydroxalkyl group; and m is 0 or 1.

3. The leather modifier according to claim 1, wherein said ethylene oxide derivative having a fluorine-containing group is at least one compound selected from the group consisting of

$$CF_3CF_2(CF_2CF_2)_3CH_2CHCH_2$$

$$\left(CF_3\right)_2CF(CF_2CF_2)_3CH_2CHCH_2$$

$$CF_3CF_2(CF_2CF_2)_4(CH_2)_4CHCH_2$$

and

$$C_8F_{17}\text{O}-CH_2CHCH_2$$

$$CP_3CF_2(CF_2CF_2)_3SO_2NCH_2CHCH_2$$

C_2H_5

4. The leather modifier according to claim 1, wherein said phosphorus compound is at least one compound selected from the group consisting of pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid and phosphorus pentoxide.

5. The leather modifier according to claim 1, which contains at least one compound selected from the group consisting of

$$R_2 - R^1 - CHCH_2OPO(OH)_2$$

OH
EP 0 492 608 B1

\[R_2R^1\text{-CHCH}_2\text{OH} \]

\[\text{OPC(OH)}_2 \]

and

Phosphate esters of

\[\text{HO-}(\text{CHCH}_2\text{O})_n\text{-H} \]

\[R^1\text{-R}_f \]

\(n \) is an integer of 2 or larger

wherein \(R_f \) and \(R^1 \) are the same as defined above.

6. A process for modifying a leather, which comprises tanning a leather and treating the tanned leather with a leather modifier as claimed in claim 1 in place of or in combination with a fatting agent.

7. A modified tanned leather which has been treated with a leather modifier as claimed in claim 1 in place of or in combination with a fatting agent.

Claims for the following Contracting State: ES

1. A process for preparing a leather modifier comprising reacting an ethylene oxide derivative having a fluorine containing group with a phosphorous compound.

2. A process according to claim 1, wherein said ethylene oxide derivative having the fluorine-containing group is a compound of the formula:

\[R_2R^1\text{-CHCH}_2\text{O} \]

wherein \(R_f \) is a C\(_3\)\text{-C\(_{21}\)} fluoroalkyl group, fluoroalkenyl group or fluoroether group or a mixture thereof; and \(R^1 \) is a group of the formula:

\[-(\text{SO}_2\text{N})_m\text{-R}_2^3 \]

wherein \(R^2 \) is a C\(_1\)\text{-C\(_{20}\)} alkylene group or a group having a phenyl group which may have a double or triple bond or an ether linkage at an arbitrary position therein, or it may form a ring, and any hydrogen atom bonded to a carbon atom of \(R^2 \) may be substituted with a halogen atom; \(R^3 \) is a C\(_1\)\text{-C\(_3\)} alkyl or hydroxyalkyl group; and \(m \) is 0 or 1.

3. A process according to claim 1, wherein said ethylene oxide derivative having a fluorine-containing group is at least one compound selected from the group consisting of
4. A process according to claim 1, wherein said phosphorus compound is at least one compound selected from the group consisting of pyrophosphoric acid, polyphosphoric acid, metaphosphoric acid and phosphorus pentoxide.

5. A process according to claim 1, which contains at least one compound selected from the group consisting of

\[
R^2 - R^1 - \text{CHCH}_2 \text{OPO(OH)}_2, \quad \text{OH}
\]

\[
R^2 - R^1 - \text{CHCH}_2 \text{OH} \quad \text{OPO(OH)}_2
\]

and Phosphate esters of

\[
\text{HO-} (\text{CHCH}_2 \text{O})_n - \text{H} \quad R^1 - R^2
\]

(wherein \(R^2\) and \(R^1\) are the same as defined above.

6. A process for modifying a leather, which comprises tanning a leather and treating the tanned leather with a leather modifier as claimed in claim 1 in place of or in combination with a fatting agent.

7. A leather modifier obtainable according to any one of the process claims 1 to 6.

8. Use of the leather modifier obtainable according to any one of the claims 1 to 6, for treating a tanned leather in place of or in combination with a fatting agent.

Patentansprüche

Patentansprüche für folgende Vertragsstaaten : DE, FR, GB, IT

2. Leder-Modifizierer nach Anspruch 1, worin das Ethylenoxid-Derivat mit der Fluor-haltigen Gruppe eine Verbindung der Formel ist.
EP 0 492 608 B1

worin R₁ eine C₃⁻C₂₁-Fluoralkyl-Gruppe, Fluoralkenyl-Gruppe oder Fluorether-Gruppe oder eine Mischung davon ist; und worin R² eine Gruppe der Formel ist:

\[-(\text{SO}_2\text{N})_m\text{R}^2-\]

worin R² eine C₁⁻C₂₀-Alkyl-Gruppe oder eine Gruppe mit einer Phenyl-Gruppe ist, die eine Doppel- oder Dreifachbindung oder eine Ether-Bindung an einer willkürlichen Position darin haben kann, oder einen Ring bilden kann, und worin irgendein Wasserstoffatom, das an ein Kohlenstoffatom von R² gebunden ist, mit einem Halogenatom substituiert sein kann; worin R³ eine C₁⁻C₅-Alkyl- oder Hydroxyalkyl-Gruppe ist, und worin m 0 oder 1 ist.

3. Leder-Modifizierer nach Anspruch 1, worin das Ethylenoxid-Derivat mit einer Fluor-haltigen Gruppe zumindest eine Gruppe ist, ausgewählt aus der Gruppe, bestehend aus

\[\text{CF}_3\text{CF}_2(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CHCH}_2\]

\[\{\text{CF}_3\}_2\text{CF}(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CHCH}_2\]

\[\text{CF}_3\text{CF}_2(\text{CF}_2\text{CF}_2)_4(\text{CH}_2)_4\text{CHCH}_2\]

\[\text{C}_8\text{F}_{17}-\text{O}-\text{CH}_2\text{CHCH}_2, \text{ und}\]

\[\text{CF}_3\text{CF}_2(\text{CF}_2\text{CF}_2)_3\text{SO}_2\text{NCH}_2\text{CHCH}_2\]

\[\text{C}_2\text{H}_5\]

4. Leder-Modifizierer nach Anspruch 1, worin die Phosphor-Verbindung zumindest eine Verbindung ist, ausgewählt aus der Gruppe bestehend aus Pyrophosphorsäure, Polyphosphorsäure, Methaphosphorsäure und Phosphorpentoxyd.

5. Leder-Modifizierer nach Anspruch 1, die zumindest eine Verbindung umfaßt, ausgewählt aus der Gruppe, bestehend aus

\[\text{R}_f\text{-R}^1\text{-CHCH}_2\text{OPO(OH)}_2,\]

\[\text{OH}\]

\[\text{R}_f\text{-R}^1\text{-CHCH}_2\text{OH}\]

\[\text{OPO(OH)}_2\]

und Phosphatester von

\[\text{HO-}(\text{CHCH}_2\text{O})_n\text{-H}\]

\[\text{R}^1\text{-R}_f\]

(n ist eine ganze Zahl von 2 oder mehr)
worin R₁ und R² wie oben definiert sind.

Patentansprüche für folgenden Vertragsstaat: ES

2. Verfahren nach Anspruch 1, worin das Ethylenoxid-Derivat mit der Fluor-haltigen Gruppe eine Verbindung der Formel ist:

\[R_2 - R_1 \text{CHCH}_2 \]

worin R₂ eine C₇-C₂₁-Fluoralkyl-Gruppe, Fluoralkenyl-Gruppe oder Fluorether-Gruppe oder eine Mischung davon ist; und worin R¹ eine Gruppe der Formel ist:

\[-(SO_2N)_mR^2\]

worin R² eine C₁-C₂₀-Alkylen-Gruppe oder eine Gruppe mit einer Phenyloxid-Gruppe ist, die eine Doppel- oder Dreifachbindung oder eine Ester-Gruppe darin haben kann, oder einen Ring bilden kann, und worin irgendein Wasserstoffatom, das an ein Kohlenstoffatom von R² gebunden ist, mit einem Halogenatom substituiert sein kann; worin R³ eine C₇-C₇-Alkyl- oder Hydroxyalkyl-Gruppe ist, und worin m 0 oder 1 ist.

3. Verfahren nach Anspruch 1, worin das Ethylenoxid-Derivat mit einer Fluor-haltigen Gruppe zumindest eine Gruppe ist, ausgewählt aus der Gruppe, bestehend aus

\[CF_3CF_2(CF_2CF_2)_3CH_2CHCH_2 \]

\[(CF_3)_2CF(CF_2CF_2)_3CH_2CHCH_2 \]

\[CF_3CF_2(CF_2CF_2)_4(CH_2)_4CHCH_2 \]

\[C_8F_{17} \text{CH}_2\text{CHCH}_2 \]

\[CF_3CF_2(CF_2CF_2)_3SO_2NCH_2\text{CHCH}_2 \]

\[C_2H_5 \]

und

4. Verfahren nach Anspruch 1, worin die Phosphor-Verbindung zumindest eine Verbindung ist, ausgewählt aus der Gruppe, bestehend aus Phosphorverbindungen der Pyrophosphorsäure, Polyphosphorsäure, Methaphosphorsäure und Phosphorpentoxyd.

5. Verfahren nach Anspruch 1, die zumindest eine Verbindung umfaßt, ausgewählt aus der Gruppe, bestehend aus
Reclamations

Reclamations pour les Etats contractants suivants : DE, FR, GB, IT

1. Agent de modification de cuir comprenant un composé qui peut être obtenu par une réaction d'un dérivé d'oxyde d'éthylène présentant un groupement fluoré avec un composé de phosphore.

2. Agent de modification de cuir selon la revendication 1, dans lequel ledit dérivé d'oxyde d'éthylène présentant le groupement fluoré est un composé de formule :

\[R_f-R^1-\text{CHCH}_2 \]

\[O \]

dans laquelle \(R_f \) représente un groupement fluorooalkyle en \(C_{21}-C_{27} \), un groupement fluoroalcényle ou un groupement fluoroéther ou un de leurs mélanges ; et \(R^1 \) représente un groupement de formule :

\[-(\text{SO}_2\text{N})_m-R^2- \]

\[R^3 \]

dans laquelle \(R^2 \) représente un groupement alkylène en \(C_{1}-C_{20} \) ou un groupement présentant un groupement phényle qui peut avoir une double liaison ou une triple liaison ou bien une liaison éther sur une position arbitraire, ou bien il peut former un noyau, et tout atome d'hydrogène lié à un atome de carbone de \(R^2 \) peut être substitué par un atome d'halogène ; \(R^3 \) représente un groupement alkyle ou hydroxyalyle en \(C_{1}-C_{5} \) et \(m \) vaut 0 ou 1.

3. Agent de modification de cuir selon la revendication 1, dans lequel ledit dérivé d'oxyde d'éthylène présentant un groupement fluoré est au moins un composé choisi dans le groupe constitué des suivants :
4. Agent de modification de cuir selon la revendication 1, dans lequel ledit composé de phosphore est au moins un composé choisi dans le groupe constitué de l'acide pyrophosphorique, de l'acide polyphosphorique, de l'acide métaphosphorique et du pentoxyde de phosphore.

5. Agent de modification de cuir selon la revendication 1, lequel contient au moins un composé choisi dans le groupe constitué des suivants :

\[
R_{\ell} - R^1 - CHCH_2 OPO(OH)_2
\]

\[
OH
\]

\[
R_{\ell} - R^1 - CHCH_2 OH
\]

\[
OPO(OH)_2
\]

et esters phosphoriques te de

\[
HO-(CHCH_2O)_n-H
\]

\[
R^1 - R_{\ell}
\]

(n est un nombre entier supérieur ou égal à 2) pour lesquels \(R_{\ell}\) et \(R^1\) sont tels que définis ci-dessus.

6. Procédé de modification d'un cuir qui comprend le tannage d'un cuir et le traitement du cuir tanné par un agent de modification de cuir selon la revendication 1 à la place d'un agent graissant ou en association à celui-ci.

7. Cuir tanné modifié qui a été traité par un agent de modification de cuir selon la revendication 1 à la place d'un agent graissant ou en association à celui-ci.
Reformulations pour l'Etat contractant suivant : ES

1. Procédé de préparation d'un agent de modification de cuir comprenant la réaction d'un dérivé d'oxyde d'éthylène présentant un groupement fluoré avec un composé de phosphore.

2. Procédé selon la revendication 1, dans lequel ledit dérivé d'oxyde d'éthylène présentant le groupement fluoré est un composé de formule :

\[
\begin{array}{c}
\text{R}_1 \text{R}_2^+ \text{CHCH}_2 \\
\downarrow \\
\text{O}
\end{array}
\]

dans laquelle \(\text{R}_1\) représente un groupement fluoroalkyle en \(\text{C}_3\text{C}_{21}\), un groupement fluoroalcényle ou un groupement fluoroéther ou un de leurs mélanges ; et \(\text{R}_2^+\) représente un groupement de formule :

\[
\begin{array}{c}
-(\text{SO}_2\text{N})_m \text{R}^2^- \\
\downarrow \\
\text{R}^3
\end{array}
\]

dans laquelle \(\text{R}^2\) représente un groupement alkylène en \(\text{C}_1\text{C}_{20}\) ou un groupement présentant un groupement phényle qui peut avoir une double liaison ou une triple liaison ou bien une liaison éther sur une position arbitraire, ou bien il peut former un noyau, et tout atome d'hydrogène lié à un atome de carbone de \(\text{R}^2\) peut être substitué par un atome d'halogène ; \(\text{R}^3\) représente un groupement alkyle ou hydroxyalkyle en \(\text{C}_1\text{C}_5\) ; et \(m\) vaut 0 ou 1.

3. Procédé selon la revendication 1, dans lequel ledit dérivé d'oxyde d'éthylène présentant un groupement fluoré est au moins un composé choisi dans le groupe constitué des suivants :

\[
\begin{array}{c}
\text{CF}_3\text{CF}_2(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CHCH}_2 \\
\downarrow \\
\text{O}
\end{array}
\]

\[
\begin{array}{c}
(\text{CF}_3)_2\text{CF}(\text{CF}_2\text{CF}_2)_3\text{CH}_2\text{CHCH}_2 \\
\downarrow \\
\text{O}
\end{array}
\]

\[
\begin{array}{c}
\text{CF}_3\text{CF}_2(\text{CF}_2\text{CF}_2)_4(\text{CH}_2)_4\text{CHCH}_2 \\
\downarrow \\
\text{O}
\end{array}
\]

\[
\text{C}_8\text{F}_{17} \quad \text{CH}_2\text{CHCH}_2 \\
\downarrow \\
\text{O}
\]

et

\[
\begin{array}{c}
\text{CF}_3\text{CF}_2(\text{CF}_2\text{CF}_2)_3\text{SO}_2\text{NCH}_2\text{CHCH}_2 \\
\downarrow \\
\text{C}_2\text{H}_5 \\
\downarrow \\
\text{O}
\end{array}
\]

4. Procédé selon la revendication 1, dans lequel ledit composé de phosphore est au moins un composé choisi dans le groupe constitué de l'acide pyrophosphorique, de l'acide polyphosphorique, de l'acide métaphosphorique et du pentoxide de phosphore.

5. Procédé selon la revendication 1, lequel contient au moins un composé choisi dans le groupe constitué des
EP 0 492 608 B1

suitants :

\[
R_1 - R^1 - \text{CHCH}_2 \text{OPO(OH)}_2 \\
\text{OH}
\]

\[
R_1 - R^1 - \text{CHCH}_2 \text{OH} \\
\text{OPO(OH)}_2
\]

et esters phosphoriques de

\[
\text{HO-} \left(\text{CHCH}_2 \text{O} \right)_n \text{H} \\
\text{R}^1 - \text{R}_1
\]

(n est un nombre entier supérieur ou égal à 2)

pour lesquels \(R_1 \) et \(R^1 \) sont tels que définis ci-dessus.

6. Procédé de modification d'un cuir qui comprend le tannage d'un cuir et le traitement du cuir tanné par un agent de modification de cuir selon la revendication 1 à la place d'un agent graissant ou en association à celui-ci.

7. Agent de modification de cuir pouvant être obtenu selon l'une quelconque des revendications de procédé 1 à 6.

8. Utilisation de l'agent de modification de cuir pouvant être obtenu selon l'une quelconque des revendications 1 à 6 pour traiter un cuir tanné à la place d'un agent graissant ou en association à celui-ci.