EUROPEAN PATENT SPECIFICATION

Precoating of polypropylene moldings

Grundbeschichtung von Polypropylenformteilen

Revêtement primaire d'objets moulés en polypropylène

Designated Contracting States:
BE DE FR GB IT NL

Priority: 20.11.1990 JP 316722/90

Date of publication of application:
27.05.1992 Bulletin 1992/22

Proprietor: SUMITOMO CHEMICAL COMPANY LIMITED
Osaka-shi, Osaka 541 (JP)

Inventors:
- Abe, Hiroomi
 Chiba-shi, Chiba (JP)
- Shinohara, Hideo
 Chiba-shi, Chiba (JP)
- Suzuki, Kyoji
 Ichihara-shi, Chiba (JP)
- Sogabe, Satoru
 Sodegaura-shi Chiba (JP)

Representative: Dixon, Donald Cossar et al
Gee & Co.
Chancery House
Chancery Lane
London WC2A 1QU (GB)

References cited:

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to a method of coating of polypropylene resin moldings which can be molded for example by injection molding or extrusion molding, and can be utilized e.g. as sheets or films.

Since polypropylene has excellent properties such as moldability, toughness, water resistance, gasoline resistance and chemical resistance, has a low specific gravity and is inexpensive, it has hitherto been widely used as various moldings, films or sheets.

However, polypropylene has difficulties or inadequacies as regards its heat resistance, rigidity, impact resistance, scratch resistance, coating properties, adhesion and printability, and these have been an obstacle for developing new uses for the polymer.

Among them, the points to be improved in the coating properties, adhesion and printability, the method for graft modification of a part or the whole of polypropylene with an unsaturated carboxylic acid or an anhydride thereof such as maleic anhydride is described in, e.g., JP-B-58-47418 ("JP-B" means an examined Japanese patent publication) and JP-A-58-49736 ("JP-A" means an unexamined published Japanese patent application).

However, even in the case of using such modified polypropylene, the impact resistance, heat resistance, rigidity and other physical properties are not essentially improved.

Also, for improving the compatibility between polypropylene and an adhesive and/or a coating material, a primer material (of which a typical example is a composition of chlorinated polypropylene and toluene) is usually used as an intermediate layer therebetween.

However, in the case of coating the surface with a primer, a prior surface treatment such as washing with a vapor of a halogenated hydrocarbon solvent such as 1,1,1-trichloroethane is usually required, so as to obtain sufficient adhesion of the subsequently applied coating material. However, the use of 1,1,1-trichloroethane is now undesirable because it affects the earth's ozone layer.

Also, a method for improving the coating properties of a polypropylene resin molding by irradiating the surface of the molding with ultraviolet light for improving the surface thereof is proposed in JP-A-59-147027.

However, this method does not allow sufficient adhesion to be obtained when the molding is subsequently coated with a coating material.

An object of the present invention is to provide a method for coating polypropylene resin moldings which gives excellent coating properties and whereby a primer and an ultraviolet light irradiation are used, without the need for a surface pretreatment with a halogenated hydrocarbon.

We have now discovered that the coating properties of a polypropylene resin are greatly improved by irradiating the surface of a polypropylene resin molding with ultraviolet light having a main wavelength in the region of 300 nm or less, before coating the molding with a primer.

Thus, the present invention provides a method of coating polypropylene resin molding, which comprises (i) irradiating the surface of a molding with ultraviolet light having a wavelength in the region of 300 nm or less for from 10 to 600 seconds, said molding being of a polypropylene resin selected from propylene homopolymers, propylene-ethylene random copolymers, propylene-butene-1 random copolymers and propylene-ethylene block copolymers containing from 1 to 40% by weight of ethylene, and such propylene resins graft modified with from 0.05 to 20% by weight of an unsaturated carboxylic acid or an anhydride thereof; (ii) coating the irradiated surface with a primer containing an olefinic high-molecular weight compound having a polar group; and (iii) further coating the coated surface with a coating material, wherein said polypropylene resin optionally contains an inorganic filler, glass fiber, a rubbery material or a modified-rubbery material obtained by graft copolymerizing an unsaturated carboxylic acid or a derivative thereof onto the rubbery material.

Now the invention is described in detail.

(A) Polypropylene Resin

The polypropylene resin which is used in the present invention is a resin selected from a polypropylene and a propylene-ethylene block copolymer.

In the present invention, polypropylene means crystalline polypropylene and includes not only a homopolymer of propylene but random copolymers obtained by copolymerizing propylene with from 1 to 30% by weight of an α-olefin such as ethylene and butene-1.

Also, the propylene-ethylene block copolymers have an ethylene content of from 1 to 40% by weight.

The polypropylene for use in the present invention preferably has a melt index in the range of from 0.1 to 100 g/10 min., and particularly from 0.5 to 40 g/10 min.

The polypropylene polymer used can be obtained by reacting propylene alone, or with another monomer in the presence of a so-called Ziegler-Natta type catalyst, i.e., a combination of titanium trichloride and an alkylaluminum compound.
As copolymers, there can alternatively be used (a) a modified polypropylene obtained by graft modifying a homopolymer of propylene, (b) a random copolymer of propylene or (c) a propylene-ethylene block copolymer with an unsaturated carboxylic acid or an anhydride thereof in an amount ranging from 0.05 to 20% by weight, and preferably from 0.1 to 10% by weight.

As the graft monomer in a modified polypropylene graft-modified with an unsaturated carboxylic acid or an anhydride thereof, acrylic acid, methacrylic acid, maleic acid, itaconic acid, maleic anhydride or itaconic anhydride can be used. Of these monomers, maleic anhydride is particularly preferred.

For grafting the graft monomer to the polypropylene polymer, various known methods can be employed.

For example, a method of mixing the polypropylene resin with the graft monomer and a radical generating agent and melt kneading the mixture in an extruder to effect grafting, a method of dissolving the polypropylene resin in an organic solvent such as xylene, adding thereto a radical generating agent, followed by carrying out the reaction by heating with stirring in a nitrogen gas atmosphere, and after the reaction is over, cooling, washing, filtering, and then drying the reaction product to obtain a grafted polypropylene resin, a method of irradiating the polypropylene resin with an ultraviolet light or radiation in the presence of a graft monomer, and a method of contacting the propylene resin with oxygen or ozone can be employed.

The polypropylene resin can further contain a rubbery material or a modified rubbery material for improving its impact resistance, in particular, low-temperature impact resistance. Also, for improving its heat resistance, an inorganic filler or glass fibers can be added to the polypropylene resin.

Now, the rubbery material and the modified rubbery material are explained.

Examples of the rubbery material include ethylene copolymer rubbers, propylene-butene rubbers, isoprenenbutylene rubbers, polyisoprene, polybutadiene, styrenic block copolymers (e.g., styrene-butadiene rubbers, styrene-butadiene-styrene block copolymers, partially hydrogenated styrene-butadiene block copolymers), styrene-butadiene-styrene block copolymers, styrene-isoprene block copolymers, partially hydrogenated styrene-isoprene block copolymers), linear low-density polyethylene, and compounds thereof.

Examples of the ethylene copolymer rubbers which can be used include ethylene-α-olefin copolymer rubbers and ethylene-α-olefin-non-conjugated diene copolymer rubbers typified by ethylene-propylene copolymer rubbers (hereinafter referred to as EPM) and ethylene-propylene-non-conjugated diene copolymer rubbers (hereinafter referred to as EPDM) as well as ethylene-vinyl acetate copolymers, ethylene-methyl (meth)acrylate copolymers, ethylene-ethyl (meth)acrylate copolymers, ethylene-butyl (meth)acrylate copolymers, ethylene-(meth)acrylate copolymers, ethylene-(meth)acrylic acid copolymers, or partial metal salt copolymers thereof, ethylene-(meth)acrylic acid-(meth)acrylic acid ester copolymers, ethylenevinyl alcohol copolymers, ethylene-vinyl acetate-vinyl alcohol copolymers, and ethylene-styrene copolymers.

These ethylene copolymer rubbers may be used as a mixture of two or more thereof. Also, the ethylene copolymer rubbers can be used as a mixture with low-density polyethylene or high-density polyethylene having good compatibility therewith.

Also, the modified rubbery material is obtained by graft copolymerizing an unsaturated carboxylic acid or a derivative thereof, or an unsaturated carboxylic acid or a derivative thereof and an unsaturated monomer, to the foregoing rubbery material in the optional presence of a radical initiator, or directly copolymerizing an unsaturated carboxylic acid or a derivative thereof in a main chain of the α-olefin in the presence of a polymerization initiator and a catalyst.

As the rubbery material and the rubbery material as the raw material for the modified rubbery material, ethylene copolymers or styrene block copolymers are suitably used.

Of the ethylene copolymer rubbers are particularly preferred ethylene-α-olefin copolymer rubbers and ethylene-α-olefin-non-conjugated diene copolymer rubbers. The ethylene-α-olefin copolymer rubbers include copolymers of ethylene and other α-olefin such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, and 1-octene and terpolymer rubbers such as ethylene-propylene-1-butene copolymers. Among them are preferred ethylene-propylene copolymer rubbers and ethylene-1-butene copolymer rubbers. Also, ethylene-α-olefin-non-conjugated diene copolymer rubbers can be used, and in this case it is preferable that the content of the non-conjugated diene in the raw material rubber is not more than 3% by weight. If the content of the non-conjugated diene is over 3% by weight, undesirable gelation is likely to occur at kneading.

The content of ethylene in the ethylene-α-olefin copolymer rubber is from 15 to 85% by weight, and preferably from 40 to 80% by weight. That is, a highly crystalline copolymer having an ethylene content of more than 85% by weight is undesirable since working thereof is difficult under ordinary conditions for the molding of rubber, while a copolymer having an ethylene content of less than 15% by weight is also undesirable since the glass transition temperature (Tg) is increased, so that the copolymer is likely to lose its rubbery nature.

Also, the number average molecular weight of the ethylene-α-olefin copolymer rubber is preferably such that the copolymer rubber can be kneaded in an extruder and is from 10,000 to 100,000. Too low a molecular weight makes
handling in feeding to an extruder difficult, whilst too high a molecular weight reduces fluidity of the copolymer, thus making processing difficult.

There is no particular restriction on the molecular weight distribution of an ethylene-α-olefin copolymer rubber for use in the present invention, and usually produced, commercially available copolymer rubbers having various molecular weight distributions such as a monomodal type and a bimodal type can be used.

A preferred range of the Q value (a ratio of the weight average molecular weight to the number average molecular weight) of the molecular weight distribution is from 1 to 30, and more preferably from 2 to 20.

That is, the copolymer rubber is a copolymer rubber produced by using a so-called Ziegler-Natta catalyst which is generally used for the production, and as the catalyst, a combination of, for example, organoaluminum compounds and from trivalent to pentavalent vanadium compounds, etc., can be used.

As the foregoing aluminum compound, alkylaluminum sesquichlorides, trialkyloxonium monochlorides, and mixtures thereof can be used. Also, as the vanadium compound, vanadium oxytrichloride, vanadium tetrachloride, and vanadate compounds represented by VO(OR')₆X₃₋₄ (wherein 0 < q ≤ 3, and R' represents a straight chain, branched or cyclic hydrocarbon group having from 1 to 10 carbon atoms) can be used.

Of the foregoing styrenic block copolymers are particularly preferred partially hydrogenated styrene-butadiene-styrene block copolymers. The partially hydrogenated styrene-butadiene-styrene block copolymers are produced by a partial hydrogenation treatment of a styrene-butadiene-styrene block copolymer, and the structure and production method thereof are described below.

In the partially hydrogenated styrene-butadiene-styrene block copolymers, the number average molecular weight of the block copolymer rubber is from 10,000 to 1,000,000, and preferably from 20,000 to 300,000; the number average molecular weight of the unsaturated aromatic polymer block A in the block copolymer rubber is from 1,000 to 200,000, and preferably from 2,000 to 100,000; the number average molecular weight of the conjugated diene polymer block B is from 1,000 to 200,000, and preferably from 2,000 to 100,000; and the weight ratio of the unsaturated aromatic polymer block A to the conjugated diene polymer block B is from 2/98 to 60/40, and preferably from 10/90 to 40/60.

As the method for production of block copolymer rubbers, various methods have been proposed, but as a typical method, a block copolymer rubber of an unsaturated aromatic hydrocarbon and a diene hydrocarbon can be obtained by block polymerizing them in an inert solvent using a lithium catalyst or a Ziegler type catalyst according to the method described in JP-B-40-23798.

The hydrogenation treatment of the block copolymer rubber thus obtained is carried out by the methods described, e.g., in JP-B-42-8704, JP-B-43-6636, and JP-B-46-20814 in an inert solvent in the presence of a hydrogenation catalyst. The hydrogenation ratio is at least 50%, and preferably at least 80% of the polymer block B, and not more than 25% of the aromatic unsaturated hydrocarbon in the polymer block A is subjected to nuclear hydrogenation. The thus partially or completely hydrogenated block copolymer is typically commercially available as a trade name of KRATON®-G from Shell Chemical Co., U.S.A.

For graft copolymerizing a graft monomer to a rubbery material as a raw material in the production method of the modified rubbery material, various known methods can be employed.

For example, there are a method of mixing the rubbery material as the raw material with a graft monomer and a radical initiator and melt kneading the mixture in a melt kneader to effect grafting; a method of dissolving an ethylenic copolymer rubber in an organic solvent such as xylene, adding thereto a radical initiator, reacting the mixture by heating with stirring in a nitrogen gas atmosphere, and after the reaction is over, cooling, washing, filtering, and drying the reaction product to provide a grafted ethylenic copolymer rubber; a method of irradiating an ethylenic copolymer rubber with ultraviolet light in the presence of a graft monomer; and a method of contacting an ethylenic copolymer rubber with oxygen or ozone.

Of these methods, the method of graft copolymerizing by melt kneading the foregoing mixture in a melt kneader is most preferably used from the viewpoint of economy.

In the present invention, the modified rubbery material can be obtained by melt kneading a rubbery material as a raw material with an unsaturated carboxylic acid or a derivative thereof in the optional presence of a radical initiator, or with an unsaturated carboxylic acid or a derivative thereof and an unsaturated aromatic monomer in the optional presence of a radical initiator at a temperature of from 200 to 280°C, and from 230 to 260°C, for a residence time of from 0.2 to 10 min., which differs according to the kind of the radical initiator, using an extruder, a Banbury mixer, and a kneader.

If there is too much oxygen present at kneading, it sometimes happens that a gel-like material forms or the product is greatly colored and hence, it is preferably to knead them in the substantial absence of oxygen.

Also, if the kneading temperature is lower than 200°C, a desired addition amount of the unsaturated carboxylic acid anhydride is not obtained, and only a small effect in improving the graft reaction amount is obtained. Also, even if the kneading temperature is over 280°C, the effect for the improvement of the graft reaction amount is small, and as the case may be, the formation of a gel-like material, coloring, etc., occur, which are also undesirable.

There is no particular restriction on the kneader for the modification, but from the standpoint that continuous pro-
duction can be made, the use of an extruder is generally preferred, and it is desirable that the extruder is of a uniaxial or biaxial type and has a screw(s) suitable for uniformly mixing various raw materials.

For removing unreacted components (the unsaturated carboxylic acid or derivative thereof, the unsaturated aromatic monomer, the radical initiator, etc.) and the side-reaction products such as oligomers of the foregoing components and decomposition products thereof from the reaction product, a method for removing by sucking them by means of a vacuum pump at the intermediate portion thereof or near the outlet thereof, or a method for dissolving the reaction mixture in a suitable solvent and purifying by precipitating the reaction product can be used. Also, the reaction mixture obtained can be heat treated at a temperature of at least 60°C or sucking by a vacuum pump under melting can be applied.

When supplying the foregoing three components or four components, each component may be separately supplied, but a part of the components or all the components can be previously uniformly mixed before supply.

For example, a method of impregnating a rubber with the unsaturated aromatic monomer together with a radical initiator and simultaneously feeding the rubber and the unsaturated carboxylic acid or derivative thereof, etc., followed by kneading can be employed. Also, a method of modifying the rubbery material by supplying the radical initiator and/or the unsaturated carboxylic acid or derivative thereof into the extruder from the intermediate portion thereof can be used.

Also, to the modified rubbery material can be added, if desired, various additives such as antioxidants, heat stabilizers, light stabilizers, nucleating agents, lubricants, antistatic agents, inorganic or organic coloring agents, rust preventives, crosslinking agents, foaming agents, plasticizer, fluorescent agents, surface smoothing agents, and surface gloss improving agents, during the production step thereof or in a processing step after the production thereof.

The unsaturated carboxylic acid or derivative thereof and the radical initiator which are used for producing the modified rubbery material can be selected from compounds which are usually used for producing graft polypropylene resins.

Also, as the unsaturated aromatic monomer, styrene is most preferably used, but α-methylstyrene, p-methylstyrene, α-methylstyrene, vinyltoluene or divinylbenzene can be used. They may be used alone or in admixture.

In the production of the modified rubbery material, the unsaturated aromatic monomer is used for the purposes of preventing the formation of gels and improving the graft reaction amount.

The amount of the unsaturated aromatic monomer used is preferably from 0.2 to 20 parts by weight per 100 parts by weight of the raw material rubbery material, and the amount of the unsaturated carboxylic acid or derivative thereof used is preferably from 0.5 to 15 parts by weight per 100 parts by weight of the raw material rubbery material. In the case of using the unsaturated aromatic monomer, the amount of the unsaturated carboxylic acid or derivative thereof used is from 0.5 to 15 parts by weight per 100 parts by weight of the raw material rubbery material, and the weight ratio of the unsaturated aromatic monomer to the unsaturated carboxylic acid or derivative thereof is from 0.1 to 3.0, and more preferably from 0.5 to 2.0.

If the amount of the unsaturated aromatic monomer used is less than 0.1 part by weight per part by weight of the unsaturated carboxylic acid or derivative thereof, the effects of preventing the formation of gels and of improving the graft reaction amount are not obtained, while if the amount the unsaturated aromatic monomer used is over 3.0 parts by weight, further preferred effects cannot be expected.

The amount of the radical initiator used depends upon the kind of the radical initiator and kneading condition but is usually in the range of from 0.005 to 1.0 part by weight, and preferably from 0.01 to 0.5 part by weight, per 100 parts by weight of the raw material rubbery material.

If the amount of the radical initiator used is less than 0.005 part by weight, the desired addition amount of the unsaturated carboxylic acid or derivative thereof is not obtained, and also, the effect of increasing the addition amount of the unsaturated carboxylic acid or derivative thereof by the use of the unsaturated aromatic monomer becomes little.

Also, if the amount of the radical initiator is over 1.0 part by weight, the formation of gel-like products undesirably occurs.

In the modified rubbery material thus obtained, it is preferable that the addition amount of the unsaturated carboxylic acid or derivative thereof is from 0.1 to 5% by weight, the addition amount of the unsaturated aromatic monomer is from 0.1 to 5% by weight, and the Mooney viscosity (ML1+4 at 121°C) is from 5 to 120.

As another method which is used in the production of the modified rubbery material, there is a method for copolymerizing the unsaturated carboxylic acid or derivative thereof into the main chain in the presence of a polymerization initiator and a catalyst. In general, the high-pressure radical polymerization method described below can be used for the production. That is, the modified rubbery material is obtained by copolymerizing ethylene and a comonomer capable of radical copolymerizing with ethylene using a free radical generating agent such as an organic peroxide and oxygen. The copolymerization reaction is usually carried out at a polymerization temperature of from 130 to 300°C and under a polymerization pressure of from 500 to 3,000 kg/cm².

Examples of the comonomer capable of radical-copolymerizing with ethylene are unsaturated carboxylic acids such as acrylic acid and methacrylic acid, esterification products of unsaturated carboxylic acids, and vinyl esters such as vinyl acetate. Specific examples of the esterification products of unsaturated carboxylic acids are methyl acrylate,
ethyl acrylate, methyl methacrylate, and glycidyl methacrylate. These comonomers may be used singly or in admixture.

In addition, of these copolymers, rubbery materials and those illustrated above as the ethylene copolymer rubbers of the rubbery materials as the raw materials for the modified rubbery materials are omitted from the modified rubbery materials.

The content of the comonomer in the modified rubbery material obtained by direct copolymerization in the range of from 0.1 to 40% by weight, and preferably from 1 to 35% by weight. If the content of the comonomer is less than 0.1% by weight, the improving effect is not obtained.

Of these copolymers, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, an ethylene-glycidyl methacrylate copolymer, and an ethylene-glycidyl methacrylate-vinyl acetate copolymer are preferred.

Now, inorganic fillers and glass fibers are explained.

(C) Inorganic Fillers and Glass Fibers:

First, as an inorganic filler for use in the propylene polymer, talc (magnesium silicate), clay (aluminum silicate), zinc oxide, titanium oxide or calcium carbonate can be used. A preferred mean particle size of the inorganic filler is not larger than 5.0 μm, and it is more preferred that the inorganic filler has a mean particle size of not more than 5.0 μm and an aspect ratio is at least 5. A preferred inorganic filler is talc.

The inorganic filler may be used without being treated, but for improving the interfacial adhesion with a polypropylene resin or improving the dispersibility of the inorganic filler, the surface of the inorganic filler can be treated with various kinds of silane coupling agents, titanium coupling agents, higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts, or other surface active agents.

Glass fibers which are used in the present invention are used together with the inorganic filler or are used singly.

The glass fibers can be used with various coupling agents for improving the interfacial adhesion with a polypropylene resin and the dispersibility of the glass fibers. The coupling agents usually include silane coupling agents and titanium coupling agents.

(D) Compounding Ratio:

In the present invention, as to the compounding ratio with the polypropylene resin selected from a polypropylene and an ethylene-propylene block copolymer, in the case of adding the rubbery material or modified rubbery material, the compounding ratio of the rubbery material or modified rubbery material is not more than 100 parts by weight, and preferably not more than 70 parts by weight, per 100 parts by weight of the polypropylene resin. If the compounding ratio is over 100 parts by weight, the toughness, heat resistance, etc., are undesirably reduced.

Also, when an inorganic filler and/or glass fibers are added, the addition amount thereof is not more than 50 parts by weight per 100 parts by weight of the polypropylene resin.

When the polymer does not contain an inorganic filler and/or glass fibers, the heat resistance, rigidity, ad dimensional stability of the polypropylene resin molding are inferior, but the impact resistance thereof is improved. If the polymer contains over 50 parts by weight of the inorganic filler and/or glass fibers, the impact resistance of the polypropylene resin molding is undesirably greatly reduced. Thus, the content of the inorganic filler and/or glass fibers is more preferably not more than 30 parts by weight. In the case of using both the inorganic filler and the glass fibers, the weight ratio of the inorganic filler to the glass fibers is from 20/80 to 80/20.

Furthermore, the thermoplastic resin composition used in the present invention may further contain, if desired, pigments, ultraviolet light absorbents, heat stabilizers, flame retarders, antioxidants, plasticizers, etc.

Also, as the matter of course, the rubbery material or modified rubbery material and the inorganic filler and/or glass fibers can be simultaneously added to the polypropylene resin.

(E) Mixing Method and Molding Method:

There is no particular restriction on the method for producing the thermoplastic resin composition for use in the present invention, and ordinary known methods can be used.

A method for mixing the components in a solution state and evaporating off the solvent or precipitating the resin composition in a non-solvent is also effective but actually, a method for kneading the components in a molten state is generally used from the industrial viewpoint. For the melt kneading, kneaders generally used, such as a Banbury mixer, an extruder, rolls, and various kinds of kneaders, can be used.

It is preferably that the resin components are preliminarily mixed uniformly in the form of a powder or pellet in a mixing apparatus, e.g., a tumbling mixer or a Henschel mixer. If desired, preliminary mixing may be omitted, and each resin component may be separately fed to a kneading machine.

The resulting resin composition is molded by various molding methods such as injection molding and extrusion...
molding. The present invention also embraces an embodiment in which the constituting components are dry blended at the time of injection molding or extrusion molding without having been previously kneaded and directly kneaded during a melt molding operation to obtain a molding.

Now, the coating method for the present invention is explained.

(F) Coating Method:

In the present invention, the surface of the polypropylene resin molding is, before the coating of the surface of the molding with a primer, irradiated with an ultraviolet light. The polypropylene molding may be in various forms such as films, plates, and fibers.

The light irradiating the surface of the molding is a light having a wavelength of 300 nm or less, and in particular an ultraviolet light having wavelengths of 254 nm and 185 nm as the main active wavelengths, and the intensity thereof is preferably strong.

Before the ultraviolet irradiation, the surface of the polypropylene resin molding may be degreased in known manner as the solvent for such degreasing, water, an aqueous solution of an alkali, etc., or an alcohol such as ethanol or isopropanol can be used.

As a method for contacting the surface of the polypropylene resin molding with the solvent, coating, wiping or spraying can be employed. Also, power washing with an aqueous solution of an acid or an alkali may be employed.

The primer used in the present invention is a solution containing at least one kind of an olefinic high-molecular weight compound having at least one polar group shown by -X-, -COR, -COOR, -OR,

\[
\begin{align*}
\text{CHR} & \quad \text{CHR}' \\
\text{O} & \\
\end{align*}
\]

\[
\begin{align*}
\text{C-} & \quad \text{O-C-} \\
\text{O} & \quad \text{O} \\
\end{align*}
\]

(wherein X represents a halogen atom; and R and R’ each represents a hydrogen atom or a hydrocarbon group having from 1 to 8 carbon atoms) as a vehicle.

As the solvent which is used, aromatic hydrocarbons such as toluene and xylene, acetic acid esters such as ethyl acetate and isobutyl acetate, ketones such as methyl ethyl ketone and methyl isobutyl ketone, and alcohols such as ethanol, isopropanol, and butanol can be used. These solvents can be used singly or in admixture.

The ratio of the polar group portion of the olefinic high-molecular weight compound which is used as a vehicle in the primer is preferably from 1 to 60% by weight based on the solids content. If the ratio is less than 1% by weight, the effect of the polar group is poor, whereas the primer is reluctant to adhere to urethane finishing coating materials, while if the ratio is over 60% by weight, the proportion of the polar group is too high, so that the primer is reluctant to adhere to moldings composed of the polyolefin composition. Also, for improving the adhesion, a combination of two or more kinds of these polar groups may be used.

Examples of such an olefinic high-molecular weight compound include chlorinated polyethylene, brominated polyethylene, chlorinated polypropylene, chlorination products or maleic anhydride-modification products of an ethylene-propylene copolymer, ethylene-vinyl acetate copolymers or partial saponification products thereof, maleic anhydride-modification products of an ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid copolymers, ethylene-(meth) acryl acid ester copolymers or partial hydrolyzates thereof, ethylene-maleic anhydride copolymers or partial hydrolyzates or partial esterification products thereof, ethylene-glycidyl methacrylate copolymers or partial ring-opening products thereof with an organic acid, primary amine, or secondary amine, acrylic acid-modification products of polypropylene, and ethylene-dialkylaminoethyl methacrylates.

Of these compounds, chlorinated polypropylene and maleic anhydride-modification products of an ethylene-propylene copolymer are preferred.

As a coating method, dipping the polypropylene molding in a coating liquid or coating on the molding a coating liquid with a doctor knife can be used, but spray coating is generally employed.

For the irradiation step, a time for the ultraviolet light is from 10 seconds to 10 min., and preferably from 30 seconds to 5 min. If the irradiation time is shorter than 10 seconds, the effect of improving the coating properties of the molding is insufficient, while if the irradiation time is longer than 10 min., not only is the process economically disadvantageous, but also the deterioration of the molding surface and the primer-coated surface occur to give a reverse effect.
After carrying out the invention (namely irradiating the surface of the polypropylene molding with ultraviolet light and coating the irradiated surface with a primer), the surface of the molding can be coated with an acrylic or urethane coating material.

Preferred examples of the coating material used in the present invention include epoxy coating materials, polyester coating materials, acrylic coating materials, and urethane coating materials.

In particular, urethane coating materials have flexibility and, hence, are being generally used for parts of automobiles and motorcycles.

As the urethane coating material, coating materials having a urethane structure, such as an acrylic urethane, polyester urethane or a modified urethane, can be used.

The invention is further illustrated by the following examples.

(1) Polypropylene resins used as the raw materials in Examples and Comparative Examples:

- 1) Homopolypropylene:
 - Sumitomo Noblen® H501 (a trade name of Sumitomo Chemical Company, Limited)
 - Melt flow rate (MFR) = 3.5 (g/10 min.) (measured according to JIS K6758)
 - (hereinafter referred to as "homo PP")

- 2) Propylene-ethylene block copolymer: Melt flow rate (MFR) = 20 (g/10 min.)
 - Ethylene content = 7% by weight
 - Ethylene content of the propylene-ethylene copolymer portion = 47% by weight
 - [n] in 135°C tetralin = 5 (intrinsic viscosity at 135°C in a solution of tetralin)
 - (hereinafter referred to as "block PP")

(2) Coating properties evaluation method (Initial adhesion of coating):

The surface of a molding to be measured was coated with a coating material, the coated layer of the sample was notched by a blade to form 100 squares of 2 mm x 2 mm each, and when an adhesive tape (Cello Tape®, a trade name of Nichiban Company, Limited) having a width of 24 mm was stuck onto the squares while pressing by fingers and the adhesive tape was then peeled off at a stretch from the end, the number of squares remained was evaluated as a residual ratio (%).

EXAMPLE 1

The pellets of the afore-mentioned homo PP were molded using a 10-ounce injection molding machine (150E-V Type, a trade name of Toshiba Machine Co., Ltd.) at a molding temperature of 250°C and a mold temperature of 50°C to form a tabular molding.

The molding thus obtained was placed in front of an ultraviolet light irradiation apparatus equipped with a low-mercury vapor pressure lamp (made by synthetic quartz, 200 watts), and the surface treatment was carried out by irradiating the surface of the molding with an ultraviolet light (UV) having wavelengths of 254 nm and 185 nm as the main acting wavelengths in an air atmosphere while keeping the distance between the light source and the surface of the molding at about 15 cm for 60 seconds.

(Irradiation intensity = 560 mJ/cm², wavelength: 254 nm)

Then, after spray coating the surface of the molding with a chlorinated polypropylene primer RB123M (a trade name of Nippon Bee Chemical Co., Ltd.), the coated molding was further spray coated with an acrylic urethane coating material, R271 (a trade name of Nippon Bee Chemical Co., Ltd.), the coated molding was dried by baking at 90°C for 30 min., and the initial adhesion of the coated molding was then measured. The results obtained are shown in Table 1 below.

COMPARATIVE EXAMPLE 1

By following the same procedures as in Example 1 except that the irradiation of the an ultraviolet light was not applied, the initial adhesion of the coated molding was measured. The results are shown in Table 1 below.

COMPARATIVE EXAMPLE 2

By following the same procedures as in Example 1 except that the primer coating was not applied, the initial
adhesion of the coated molding was measured. The results are shown in Table 1 below.

EXAMPLE 2

By following the same procedures as in Example 1 except that block PP was used as the polypropylene resin, the initial adhesion of the coated molding was measured. The results are shown in Table 2 below.

COMPARATIVE EXAMPLE 3

By following the same procedures as in Example 2 except that the irradiation of the ultraviolet light was not applied, the initial adhesion of the coated molding was measured. The results are shown in Table 2 below.

COMPARATIVE EXAMPLE 4

By following the same procedures as in Example 2 except that the primer coating was not applied, the initial adhesion of the coated molding was measured. The results are shown in Table 2 below.

TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>Coating Step</th>
<th>Initial Adhesion of Coated Molding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resin</td>
<td>Surface Treatment</td>
</tr>
<tr>
<td>Example 1</td>
<td>Homo PP</td>
<td>UV Irradiation</td>
</tr>
<tr>
<td>Comparative Example 1</td>
<td>Homo PP</td>
<td>-</td>
</tr>
<tr>
<td>Comparative Example 2</td>
<td>Homo PP</td>
<td>UV Irradiation</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th></th>
<th>Coating Step</th>
<th>Initial Adhesion of Coated Molding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resin</td>
<td>Surface Treatment</td>
</tr>
<tr>
<td>Example 2</td>
<td>Block PP</td>
<td>UV Irradiation</td>
</tr>
<tr>
<td>Comparative Example 3</td>
<td>Block PP</td>
<td>-</td>
</tr>
<tr>
<td>Comparative Example 4</td>
<td>Block PP</td>
<td>UV Irradiation</td>
</tr>
</tbody>
</table>

As described above, according to the present invention, by applying the ultraviolet light irradiation onto the surface of a polypropylene resin molding, a primer can be used without need of applying a surface treatment with a halogenated hydrocarbon and, thus, a coating method of polypropylene resin moldings giving very excellent coating properties can be provided.

Claims

1. A method of coating polypropylene resin moldings, comprising:

 (i) irradiating the surface of a molding with ultraviolet light having a wavelength in the region of 300 nm or less
for from 10 to 600 seconds, said molding being of a polypropylene resin selected from propylene homopolymers, propylene-ethylene random copolymers, propylene-butene-1 random copolymers, propylene-ethylene block copolymers containing from 1 to 40% by weight of ethylene, and such propylene resins grafted modified with from 0.05 to 20% by weight of an unsaturated carboxylic acid or an anhydride thereof;

(ii) coating the irradiated surface with a primer containing an olefinic high-molecular weight compound having a polar group; and (iii) further coating the coated surface with a coating material,

wherein said polypropylene resin optionally contains an inorganic filler, glass fiber, a rubber material or a modified rubber material obtained by graft copolymerizing an unsaturated carboxylic acid or a derivative thereof onto the rubbery material.

2. A method as claimed in Claim 1, wherein said primer contains chlorinated polypropylene.

3. A method as claimed in Claim 1 or 2, wherein said coating material is an urethane coating material.

4. A method as claimed in any preceding claim, wherein the irradiating ultraviolet light has main wavelengths of 254 and 185 nm.

5. A method as claimed in any preceding claim, wherein the primer is a solution of at least one olefinic polymer compound having at least one polar group shown by -X-, -OCOR, -COOR, -OR,

\[
\text{CHR-CHR', or N-R,}
\]

wherein X represents a halogen atom; and R and R' each represent a hydrogen atom or a hydrocarbon group having from 1 to 8 carbon atoms.

6. A method as claimed in Claim 5, wherein the high molecular weight compound is a chlorinated polypropylene or a maleic anhydride modification product of an ethylene-propylene copolymer.

7. A method as claimed in any preceding claim, wherein the final coating material used in step (c) is an epoxy polyester, acrylic or urethane material.

Patentansprüche

1. Verfahren zum Beschichten von Formteilen aus Polypropylenharz, umfassend

(i) Bestrahlen der Oberfläche eines Formteils mit ultraviolettem Licht mit einer Wellenlänge im Bereich von 300 nm oder weniger über 10 bis 600 Sekunden, wobei das Formteil ein Polypropylenharz ist, das aus Propylenhomopolymeren, statistischen Propylen-Ethyleng-Copolymeren, statistischen Propylen-Buten-1-Copolymeren, Propylen-Ethyleng-Blockcopolymeren, die 1 bis 40 Gew.-% Ethylen enthalten, und solchen Propylenharzen, die mit 0.05 bis 20 Gew.-% einer ungesättigten Carbonsäure oder einem Anhydrid davon propformdiziert wurden, gewählt wird.

(ii) Beschichten der bestrahlten Oberfläche mit einem Primer, der eine Olefinverbindung mit hohem Molekulargewicht und einer polaren Gruppe enthält, und

(iii) weiteres Beschichten der beschichteten Oberfläche mit einem Beschichtungsmaterial,

wobei das Polypropylenharz gegebenenfalls einen anorganischen Füllstoff, Glasfasern, ein Kautschukmaterial oder ein modifiziertes Kautschukmaterial, das durch Propylenpolymerisieren einer ungesättigten Carbonsäure oder eines Derivats davon auf dem gummiartigen Material erhalten wird, enthält.

2. Verfahren nach Anspruch 1, wobei der Primer chloriertes Polypropylen enthält.

3. Verfahren nach einem der Ansprüche 1 oder 2, wobei das Beschichtungsmaterial ein Urethanbeschichtungsma-
Revendications

1. Procédé de revêtement d'objets moulés en résine de polypropylène comprenant :

(i) l'irradiation de la surface d'un objet moulé avec de la lumière ultraviolette présentant une longueur d'onde dans la région de 300 nm ou inférieure pendant 10 à 600 secondes, ledit objet moulé étant constitué d'une résine de polypropylène choisie parmi des homopolymères de propylène, des copolymères statistiques de propylène-éthylène, des copolymères statistiques de propylène-butène-1, des copolymères séquenceurs de propylène-éthylène contenant de 1 à 40 % en poids d'éthylène et de telles résines de polypropylène modifiées par graftage avec de 0,05 à 20 % en poids d'un acide carboxylique insaturé ou d'un anhydride de celui-ci ;
(ii) le revêtement de la surface irradiée avec une couche de fond contenant un composé oléfinique de poids moléculaire élevé présentant un groupe polaire ; et
(iii) un autre revêtement de la surface revêtue avec un matériau de revêtement ;

dans lequel ladite résine de polypropylène contient facultativement une matière de remplissage inorganique, de la fibre de verre, un matériau de caoutchouc ou un matériau de caoutchouc modifié obtenu par copolymérisation par graftage d'un acide carboxylique insaturé ou d'un dérivé de celui-ci sur le matériau caoutchouteux.

2. Procédé selon la revendication 1, dans lequel ladite couche de fond contient du polypropylène chloré.

3. Procédé selon la revendication 1 ou 2, dans lequel ledit matériau de revêtement est un matériau de revêtement d'uréthane.

4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la lumière ultraviolette irradiante présente des longueurs d'onde principales de 254 et de 185 nm.

5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la couche de fond est une solution d'au moins un composé polymère oléfinique présentant au moins un groupe polaire représenté par -X-, -OCOR, -COOR, -OR,
6. Procédé selon la revendication 5, dans lequel le composé de poids moléculaire élevé est un polypropylène chloré ou un produit de modification à l'anhydride maleique d'un copolymère d'éthylène-propylène.

7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le matériau de revêtement final utilisé dans l'étape (iii) est un matériau époxy, de polyester, acrylique ou d'uréthane.