(54) **Heater assembly, especially in form of a band or strip**
Heizvorrichtung, speziell in Form eines Bandes oder Streifens
Assemblage de chauffage, en particulier sous forme de bande ou de ruban

| Designated Contracting States: | • Gegg, Keith M.
Bel-Nor, Missouri 63121 (US)
• Klump, Steven M.
St.Louis, Missouri 63128 (US) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DE ES FR GB IT</td>
<td></td>
</tr>
</tbody>
</table>
| Priority: | (74) Representative: Finck, Dieter, Dr.Ing. et al
Patentanwälte v. Füner, Ebbinghaus, Finck
Mariahilfplatz 2 - 3
81541 München (DE) |
| 02.11.1990 US 608242 | (56) References cited: |
| Proprietor: | • PATENT ABSTRACTS OF JAPAN vol. 13, no. 241
(C-604)6 June 1989
• GB-A-K17538 (THE BRITISH PROMETHEUS CO.) |
| WATLOW ELECTRIC MANUFACTURING COMPANY
St. Louis, Missouri 63146-4039 (US) | |
| Inventors: | |
| • Desloge, George B.
Frontenac, Missouri 63131 (US)
• Fiehler, Raymond H.
St. Louis, Missouri 63110 (US) | |

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The invention relates to a heater assembly in the form of a band or strip according to the preamble of claim 1.

Band and strip heaters are typically custom fabricated in accordance with the particular specifications of the end user. Besides specifying the particular performance characteristics and operating factors desired in a particular heater unit, such as voltage, wattage, power supply, dimensional and other special requirements, the end user also specifies the particular lead or terminal configuration necessary for adaptation of the heater to the particular application in question. A wide variety of lead and/or terminal configurations are available and adaptable for use with band and strip type heaters and such configurations may vary considerably from one application to another. Typical of the known band and strip heater constructions including lead and/or terminal connections associated therewith are those shown and disclosed in U.S. A 4,203,197; 3,872,281; and 3,889,362.

Since current manufacturing techniques usually mandate that the lead and terminal arrangement for a particular band or strip heater be attached during the assembly process, manufacturers of such heaters have been somewhat reluctant to carry a large stock inventory of such heaters covering a wide variety of such lead/terminal variations. Instead, manufacturers typically wait until receiving a particular order from an end user before manufacturing and assembling such heaters. Consequently, quick delivery of the end product is often times hindered due to the manufacturing process since the manufacturer may not have a heater in stock meeting all of the specifications and requirements of the end user, particularly, the necessary lead and/or terminal configuration as discussed above. As a result, often times, the manufacturer may attempt to modify the lead and/or terminal arrangement associated with heaters already in stock which otherwise meet all of the specifications and requirements of the end user so as to achieve a quicker delivery time. Such modification efforts often times reduce the overall performance and dependability of the modified heater due to disassembly and re-assembly of the lead and/or terminal portion of such heater as well as other factors. The present heater construction alleviates this particular problem by enabling the basic heater to be fabricated and assembled without any lead and/or terminal connection associated therewith as will be hereinafter explained.

During the fabrication and assembly of conventional band and strip heaters, it is also common practice to crimp or stake the terminal end portions of the electrical winding or heater element to the insulation sheet material and/or other components associated therewith for ultimate connection to the particular lead/terminal arrangement utilized. This staking of the electrical resistance means to the particular insulation material utilized within the heater often times causes cracks or other damage to such insulation material. This is particularly true when the heater is curved into a band type heater. This cracking and damage around the staking point decreases performance and reliability of the heater since the winding lead attached thereto has a tendency to loosen, short out, oxidize during operation, and/or cause other performance problems. This problem is likewise alleviated by the present heater construction as will be hereinafter explained.

In the US 2 029 075 a heater assembly of the generic kind is described wherein the heating element end portions extend through holes in electrical insulating means and a supporting band. A plate having a hole is welded to the supporting band. The connection box is secured to the plate in spaced relationship. A block of insulating material carries the terminals, and is spaced from the bottom of the box by lugs. Between the bottom of the box and the plate an insulating block is provided. Screws pass through the blocks, the lugs, and the box, and are threaded into the plate to hold the parts together.

In the Patent Abstract of Japan, Vol. 13, No. 241, the use of mica particles in an electrical insulation means is disclosed.

It is the object of the invention to teach the construction and operation of an improved band and strip heater construction wherein a wide variety of lead and/or terminal configurations can be easily attached thereto.

This object is achieved by the characterizing features of claim 1. Advantageous embodiments of the heater assembly of the present invention are the subject matter of claims 2 to 10.

The present invention improves the performance and reliability of band and strip type heaters by eliminating the need to crimp or stake the terminal connection end portions of the heating element to the insulation material or any other component of such heater. Further, the invention teaches the construction and operation of several embodiments of a lead/terminal connection member which will facilitate the adaption and joining of a wide variety of lead and terminal configurations to the present heater construction, the construction and operation of a heater construction which will enable manufacturers of band and strip type heaters to reduce their stock inventory yet still offer their customers a broad selection of such heaters including a broad selection of lead/terminal configurations associated therewith, the construction and operation of a heater construction which will reduce and improve the time needed to deliver such heaters to the end user, the construction and operation of a heater construction wherein all of the electrical connections associated with such heater are welded connections and the construction and operation of a heater construction having clamping means associated therewith which not only provides for a more uniform load distribution over the heating element housed therein but also simplifies the installation of such heater by eliminating the need to align straps and terminals. Fur-
ther, the invention provides a heater construction that is structurally and operationally relatively simple to make, a band heater construction which can be more easily expanded to fit around the particular cylindrical surface to be heated without detrimentally affecting or otherwise interfering with or hindering the overall performance and reliability of such unit, and a more responsive and reliable heater and one which is not easily susceptible to premature heater failure, erratic, or less than fully dependably performance.

The present invention is further described in detail in conjunction with the accompanying drawings.

Fig. 1 is a perspective view of a basic band heater constructed according to the preamble of claim 1, said heater being shown without a lead/terminal connection and without clamping means;
Fig. 2 is an exploded perspective view of one embodiment of the present heater construction according to the preamble of claim 1 showing the various components associated therewith;
Fig. 3 is a cross-sectional view of an assembled heater unit taken, for example, along line 3-3 of Fig. 1;
Fig. 4 is a side elevational view of the band heater construction illustrated in Fig. 1 showing the clamping means and one embodiment of a terminal arrangement associated therewith;
Fig. 5 is an enlarged fragmentary view of one of the clamping bars shown in Fig. 4 illustrating its attachment to one of the tab members associated with the outer metal sheath of the present construction;
Fig. 6 is an exploded cross-sectional view showing one embodiment of a terminal connection adaptable for use with the heater assembly of the present invention;
Fig. 7 is a perspective view of the terminal cap member illustrated in Fig. 6;
Fig. 8 is an exploded cross-sectional view showing another embodiment of a lead/terminal connection adaptable for use with the heater assembly of the preamble of claim 1;
Fig. 9 is a perspective view of the lead cap member illustrated in Fig. 8;
Fig. 10 is an exploded perspective view similar to Fig. 2 showing another embodiment of a heater assembly constructed according to the preamble of claim 1; and
Fig. 11 is an exploded perspective view of still another heating element/insulator arrangement constructed according to the preamble of claim 1.

Figs. 1 and 2 show one embodiment of a basic band or strip heater assembly 10 being manufactured and assembled without termination and attachment means associated therewith. As best shown in Fig. 2, the heater assembly 10 includes a channel-shaped upper sheath or cover member 12 having a pair of downwardly ex-

tending opposed side wall portions 14 associated therewith. The channel-shaped member 12 is generally made of a metallic material and further includes a tab member 16 associated with each respective opposite end portion thereof as well as an elongated slot or opening 18 positioned at an intermediate location therebetweenthe. The heating element 20 is a conventional bifilar winder construction which includes a pair of electrical resistance wires 22 and 24 helically wrapped or wound in parallel relationship around a sheet of insulator material 26. The bifilar wound construction is achieved by first winding the resistance wires 22 and 24 in parallel around the insulator strip 26 from one end to the other in accordance with known techniques and thereafter welding together the respective opposite ends thereof so as to create a closed loop therebetween. This joined wire arrangement is then severed at a predetermined intermediate location as desired thereby forming an electrical circuit having terminal end portions 28 and 30 as shown in Figs. 1 and 2. The resistance wires 22 and 24 are generally formed of a ribbon of nichrome wire, although any suitable high temperature electrical resistance means can be utilized. The terminal wire end portions 28 and 30 are each preferably doubled over and welded respectively to themselves so as to form a double layer construction at end portions 28 and 30. This lowers the resistance of the wire end portions 28 and 30 and allows such end portions to operate at cooler temperatures at the point of connection to a particular lead/terminal arrangement.

The heating element 20 is sandwiched between two strips or sheets of insulation material 32 and 34 which effectively insulate the heating element 20 from the metallic heat conducting parts 12 and 36 as will be hereinafter explained. The upper insulator sheet 34 likewise includes an elongated slot 36 positioned thereon so as to receive the terminal end portions 28 and 30 of the heating element 20 when positioned in overlaying relationship thereto. Slot 36 is also located so as to lie in registration with slot 18 associated with the cover member 12. Insulator sheets 26, 32 and 34 are typically comprised of either mica or high density ceramic particles bound together by a suitable binder, or any other suitable insulating material. The ceramic particles typically include particles of aluminum oxide, magnesium oxide, boron nitride, or silicon dioxide. All of these materials have excellent dielectric strength, the ceramic materials being capable of operating at somewhat higher temperatures as compared to mica and some other known suitable materials. When fully assembled, the terminal end portions 28 and 30 of the heating element 20 extend through the respective slot means 38 and 18 as best shown in Figs. 1 and 3. A bottom cover plate 36 completes the components of the basic heater unit 10. The plate member 36 is likewise generally made of a metallic material and is dimensioned so as to be received within the channel-shaped cover member 12.

In assembling the basic heater 10, the sandwich
sub-assembly or heater core body comprising heating element 20 and insulator sheets 32 and 34 is placed within the channel-shaped cover member 12 such that the heating element terminal end portions 28 and 30 extend through slot means 38 and 18 and are readily exposed exterior of the member 12. Plate member 36 is now positioned within the channel-shaped member 12 in abutment with the insulator sheet 32. In this regard, the plate member 36 and the insulator sheets 32 and 34 are of about the same length and width as the channel-shaped cover member 12 so as to fit snugly therewithin. On the other hand, the insulator sheet 26 associated with the heating element 20, while about the same length as the cover member 12, is preferably somewhat narrower than insulator strips 32 and 34 so as to provide a small gap 39 (Fig. 3) for electrical clearance between the resistance means 22 and 24 and the channel side portions 14. When so positioned, the channel side portions 14 are folded tightly inwardly over plate member 36 to close the assembly as shown in Fig. 3. The members 12 and 36 thereby form a sheath totally enclosing and encasing the internal components of the heater. The closed assembly is then rolled flat or is formed into a curved finished shape in accordance with known procedures. The assembly may be shaped, for example, into the configuration of a curved band heater as shown in Fig. 1, or the assembly may be left in its extended form so as to be completed as a strip heater (not shown). After the forming step, the assembly is normally fired at an elevated temperature sufficient to vaporize and bake out the binder materials associated with the insulator sheets 26, 32 and 34.

The sheath members 12 and 36 are typically constructed of selected metals to provide high reflectivity, high emissivity and good conductive characteristics to efficiently transmit heat from the core element 20 towards the plate member 36 which lies adjacent to the particular object or surface to be heated. For example, the channel-shaped cover member 12 is typically made of aluminized steel which has a highly reflective surface thereby directing the heat from the heater element 20 back towards the part or surface to be heated. In contrast, the plate member 36 is typically made of a zinc coated metal which has good emissivity. This increases the heat transfer rate through this relatively thin layer of metal to the part or surface to be heated. Also, the thickness of the Insulation material positioned between the outer sheath member 12 and the heating element 20 can be made greater as compared to the thickness of insulation sheet 32 so as to further direct the heat generated by the heater element 20 towards the plate member 36. Also, the insulator strips 26, 32 and 34 can be comprised of different material compositions to further enhance the heat transfer capabilities of the unit. All of these various combinations contribute to the overall efficiency of the heater.

As can be seen from Figs. 1 and 3, the terminal end portions 28 and 30 of the heater element 20 are readily exposed exterior of the upper cover member 12 for easy access and later connection to any one of a plurality of lead/terminal configurations as will be hereinafter explained. The heater construction 10 can be fully manufactured and stocked in such manner. Once an end user specifies a particular lead/terminal arrangement, such heaters can then be easily and quickly equipped to fill such order. This is extremely advantageous for all of the reasons previously explained.

Figs. 4 and 5 illustrate the construction and design of an improved clamping means 40 particularly adaptable for use on a band type heater such as the basic band heater construction 10 illustrated in Fig. 1. More particularly, clamp or attachment means 40 includes a pair of clamp bar members 42 and 44 each having an elongated slot 46 extending the full length thereof. The members 42 and 44 are each respectively attached to the outer cover member 12 through use of the tab members 16, each slot 46 being dimensioned so as to insertably receive the tab 16 as best shown in Fig. 5. Once the tab members 16 are engaged with the bar members 42 and 44, such members are then attached to each other by a staking or crimping process as illustrated in Fig. 5.

Each bar member 42 and 44 likewise includes an opening 48 extending transversely therethrough at an intermediate location therealong, each such opening 48 being in registration with each other and at least one of such openings 48 being adaptable to threadably receive a threaded fastening member such as the member 50 (Fig. 4). Threading the fastener member 50 through at least one threaded bore 48 such as the threaded bore 48 extending through the bar member 42 (Fig. 5) will draw the respective terminal end portions 52 and 54 of the heater 10 towards each other thereby securing the heater and clamping the heater 10 around the cylindrical object over which it is positioned. Although only the opening 48 extending through bar member 42 (Figs. 4 and 5) need be threaded in order to accomplish this task, it is also recognized that the opening 48 extending through bar member 44 may likewise be threaded if so desired. When fully secured around the object to be heated, the tab members 16 carry and distribute the load over the entire unit by means of the outer sheath member 12, thus eliminating the use of straps and other clamping mechanisms. This provides a more uniform load distribution over the internally housed heating element 20 and draws the heater tightly and evenly to the cylindrical surface to which it is attached. This assures a critical mating of the heater surface to the cylindrical surface to which it is attached thereby eliminating air gaps that can cause early failures. Depending upon the overall width of the particular band heater involved, each bar member 42 and 44 may include any plurality of openings 48 spaced along the length thereof, each such opening on bar member 42 being in registration with a corresponding opening positioned on bar member 44 and each such respective pairs of openings 48 being adaptable to receive a threaded fastening member as
previously described. This will provide sufficient clamping means to securely and evenly fasten wider heater units around the surface over which they are positioned along their entire width. The clamp mechanism 40 also simplifies the installation of such heaters by eliminating the need to align straps and terminals commonly associated with other clamping means.

Figs. 6 and 7 illustrate one embodiment of a specially adapted add-on terminal connection member 56 specifically adaptable for use when the termination option calls for a post terminal arrangement. The terminal connection or cap member 56 is somewhat oval in shape and includes a pair of openings 58 extending therethrough as best shown in Fig. 7. The cap member 56 is formed of an aluminized steel material and likewise includes a downwardly extending peripheral flange or skirt portion 60 having a pair of triangularly-shaped weld projections or dimples 62 located respectively on at least two opposite sides thereof as best illustrated in Fig. 7. A pair of post terminals 64 each having a flanged bead portion 65 associated respectively therewith are insertably positioned through the openings 58 of the cap member 56 in such a way that both the terminals and the cap member are electrically isolated. This is accomplished by positioning a pair of insulator members 66 and 68 between the flanged head portions 65 of the post terminals 64 and the inside portion of the cap member 56 as shown in Fig. 6. Each of the insulator members 66 and 68 is preferably oval in shape so as to fit within the formed flange portion of the cap member 56 and each includes a pair of openings extending therethrough adapted to receive the post terminals 64 when inserted therethrough. The openings associated with insulator members 66 and 68 are positioned and located thereon so as to be in registration with the openings 58 associated with the cap member 56. Once the post terminals 64 are shielded by the insulator members 66 and 68 and are thereafter inserted through the openings 58 as shown in Fig. 6, such terminals are held in engagement with the cap member 56 through use of the locking nut members 70 or other suitable locking means. To further insulate the post terminals 64 from the upper surface portion of the cap member 56, any number of suitable insulating washers may be positioned therebetween such as the respective pairs of washers 72 illustrated in Fig. 6. Although a particular construction and arrangement of insulator members 66, 68 and 72 are disclosed and described with respect to the post terminal configuration illustrated in Fig. 6, it is recognized that a wide variety of other suitable means may likewise be utilized to electrically insulate the terminals 64 from the cap member 56.

Importantly, the post terminal option illustrated in Fig. 6 is fully assembled prior to connection to the basic heater unit 10. During such installation, the heating element end portions 28 and 30 are inserted through a slotted insulator member 74 so as to insulate the same from the outer cover member 12 as illustrated in Fig. 6. In this regard, the insulator member 74 should be shaped and dimensioned so as to preferably completely cover the slot means 18. Like the insulator members 26, 32 and 34 (Fig. 2), each of the insulator members 66, 68, 72 and 74 is preferably made of a ceramic material or mica, although other suitable insulating materials may likewise be utilized. The heater element end portions 28 and 30 can now each be welded respectively to the bottom of one of the flanged head portions 65 of the post terminals 64 using a special welding technique. After completing such welds, the terminal cap member 56 is then welded to the outer metal sheath member 12 through use of the weld projections or dimples 62. This weld is made with one operating cycle of a suitable welding machine. More particularly, the welder current is concentrated at the various projections 62 thus causing each projection to melt, thereby creating a fusion bond with the cover member 12. This welding process permanently attaches the terminal cap member 56 to the outer sheath member 12.

The terminal cap member 56 provides a base to rigidly hold the post terminals 64 and, once such member is installed on the basic heater unit 10, it gives electrical protection to the welded connection between the resistance wires 28 and 30 and the post terminals 64. Also, importantly, the cap member 56 enables increased torque to be applied to the post terminal connection. This allows all of the torque carrying capability to be maintained within the cap design independent of its electrical connection to the basic heater unit. Also, the post terminal hardware 64 and 70 can be torqued to a specific setting and tested prior to connection to the actual heater. This greatly improves the reliability and performance of the overall heater. Also, since the heater element end portions 28 and 30 are welded to the post terminals 64, all electrical connections within the heater assembly are welded connections. This obviates the need to utilize other electrical connection means such as crimping or staking the heater element end portions to other components associated with the heater. This greatly improves the performance and reliability of such heaters and helps to eliminate premature heater failure.

Figs. 8 and 9 illustrate another embodiment of a specially adapted add-on lead connection member 76 specifically adaptable for use when the termination option calls for any one of a plurality of various lead termination arrangements. The lead connection or cap member 76 is substantially identical in shape and construction as cap member 56 except that the member 76 includes only a single opening 78 extending therethrough as best shown in Fig. 9. The opening 78 is of sufficient size and shape to accept the various known lead wire arrangements including lead wires housed in various conduit and sleeving devices. In this regard, it is recognized that the lead cap member 76 can be made and stocked with various sized openings 78 depending upon the particular diameter or other shape associated with the lead configuration selected. Like the terminal cap
member 56, the lead cap member 76 is likewise formed of an aluminized steel material and includes a peripheral flange or skirt portion 80 having similarly located triangularly-shaped weld projections or dimples 82 associated therewith as best illustrated in Fig. 9.

The lead assembly arrangement illustrated in Fig. 8 includes a generally cylindrically-shaped eyelet member 84 having a flanged lower portion 86 associated therewith, the eyelet member 84 being insertably positioned through the opening 75 as illustrated. The lower flange portions 86 are welded to the inside portion of the lead cap member 76 and a suitably dimensioned insulator member such as the member 88 is positioned therewithin the formed flange portion of the cap member 76 as illustrated in Fig. 8. The insulator member 88 includes an opening 90 of approximately the same dimension as the opening through the eyelet member 84 and functions to insulate the end portions of the lead termination wires from the inside portion of the cap member 76. As can be seen from Fig. 8, the opening 90 associated with the insulator member 88 is positioned and located so as to be in registration with the opening associated with the eyelet member 84. The appropriate lead wire arrangement is now inserted through the insulator member 88 and the eyelet member 84. As shown in Fig. 8, the lead wires are encased in a protective sleeving member 92 and the respective stranded wire end portions 94 and 96 are suitably flattened for jointer to the heating element end portions 28 and 30 as will be hereinafter described. The wire end portions 28 and 30 are thereafter inserted through a slotted insulator member 98 similar to the insulator member 74 (Fig. 6), which insulator member 98 is positioned over the outer sheath member 12 (Fig. 8) so as to insulate the same from the electrical connection formed by jointer of the wire end portions 28, 3C, 94 and 96. The heating element end portions 28 and 30 are then suitably welded to the flattened lead wire end portions 94 and 96 to complete the electrical connection therebetween. The lead cap member 76 is thereafter projection welded to the outer cover member 12 as previously described and the eyelet member 84 is suitably crimped about the sleeving member 92 adjacent its upper end portion 100 so as to provide suitable strain relief to the welded electrical connection.

As with the post terminal configuration illustrated in Fig. 6, the insulator members 88 and 98 illustrated in Fig. 8 are likewise made of a suitable insulating material such as a ceramic material or mica as previously described. Likewise, although a particular lead termination construction and arrangement is illustrated in Fig. 6, such configuration is likewise generally adaptable for use with most of the lead wire termination options available. It is also recognized that a wide variety of other suitable insulator and eyelet constructions and arrangements may likewise be utilized in conjunction with the lead cap member 76 (Figs. 8 and 9). Nevertheless, regardless of the particular component structure and arrangement, lead cap member 76 fulfills all of the objectives and advantages previously described with respect to cap member 56.

Figs. 10 and 11 illustrate the other embodiment of the heater assembly constructed according to the preambles of Claim 1. More particularly, Fig. 10 identifies embodiment 102 which illustrates the use of a suituated wire element construction in conjunction with the present heater assembly. As shown, a pair of suituated wires 104 having terminal end portions 106 and 108 are sandwiched between a pair of insulator members 110 and 112. The upper insulator member 112, like the insulator member 34 (Fig. 2), also includes an elongated slot 114 positioned thereon so as to receive therethrough the heating element end portions 106 and 108 when the member 112 is positioned in overlaying relationship thereto as illustrated in Fig. 10. The heating element 104 is not wrapped or wound about a sheath or strip of insulator material. Instead, embodiment 102 utilizes only two layers of insulating material in such heater construction as compared to the three insulating layers utilized in the embodiment illustrated in Fig. 2. In all other respects, the heater assembly 102 is substantially identical to the basic heater construction previously described and illustrated in Figs. 1-5.

Fig. 11 identifies embodiment 116 which illustrates use of a single resistance wire 118 sandwiched between two upper insulators member 120 and 122 and a single lower insulator member 124. As shown in Fig. 11, the opposite end portions of the wire element 118 are routed either around or through the respective opposite end portions of insulator member 120 and across the upper surface thereof such that the terminal end portions 126 and 128 are centrally located thereabove. It is recognized that if the opposite end portions of the wire element 118 are routed through insulator member 120, suitable openings (not shown) for receiving the same therethrough would be formed adjacent the respective opposite end portions of member 120. Insulator member 122 includes an elongated slot 130 positioned thereon so as to receive therethrough the heating element end portions 126 and 128 when positioned in overlaying relationship with insulator member 120. In this particular construction, the use of an additional insulator member 120 is necessary in order to insulate the return portions of the heating element 118 from itself as illustrated. It is also anticipated that heating element 118 may be so arranged that its end portions 126 and 128 may both be routed either around or through only one end portion of insulator member 120 and thereafter extend across the upper surface thereof to an intermediate location previously explained. In all other respects, the heater assembly 116 is substantially identical to the basic heater construction illustrated in Figs. 1-5.

Besides the heating element and winder constructions illustrated in Figs. 2, 10 and 11, it is recognized that the present heater construction is likewise adaptable for use with still other heating element and winder
constructions including use with constructions utilizing any plurality of insulating members therewithin. In all cases, however, the termination/lead cap members 56 and 76 must be utilized with such heater constructions to achieve the attachment of any particular type of lead/terminal configuration to the finished unit as previously described.

Claims

1. A heater assembly, in the form of a band or strip, including

 - an outer closed housing member (12, 36),
 - a heater core body member securely held within said housing member (12, 36), said heater core body member including a heating element (22, 104, 118) having a plurality of end portions (28, 30; 106, 108; 126, 128), electrical insulation means (26, 32, 34; 110, 112) positioned in surrounding relationship on at least two sides of said heater element (20, 104, 118),

 characterized by

 - first slot means (38, 114, 130) extending through at least a portion of said insulating means (34, 112, 122) and second slot means (158) extending through at least a portion of said housing member (12, 36), the heating element end portions (28, 30; 106, 108; 126, 128) extending through said first and second slot means (18, 38, 114, 130) so as to be readily exposed exterior of said housing member (12, 36) after said heater assembly has been fully assembled and sealed,
 - terminal connection means (56, 76) including a downwardly extending peripheral flange (50, 80) having a terminal edge portion associated therewith positioned and located for making contact with said housing member (12, 36) when said terminal connection means (56, 76) is positioned for attachment thereto, said downwardly extending peripheral flange (50, 80) including a plurality of downwardly extending weld projections (62, 82) positioned and spaced along the terminal edge portion thereof for facilitating the welding of said terminal connection means (56, 76) to said housing member (12, 36), said weld projections (62, 82) extending below the terminal edge portion of said peripheral flange so as to make the first contact with said housing member (12, 36) when said terminal connection means (56, 76) is positioned for attachment thereto, each downwardly extending weld projection (62, 82) being melttable during a welding process so as to form a fusion bond thereat with said housing member (12, 36), and
 - post terminals (64) or lead termination wires (94, 96) passing through and insulated from said terminal connection means (56, 76), the post terminals (64) or lead termination wires (94, 96) being electrically joined to corresponding exposed heating element end portions (28, 30; 106, 108; 126, 128) after said heater assembly has been fully assembled and sealed.

2. The heater assembly according to claim 1, wherein said heating element includes at least one resistance wire (22, 24) wrapped around a sheet (26) of insulation material.

3. The heater assembly according to claim 1 or 2, wherein said electrical insulation means (26, 32, 34; 110, 112, 124, 120, 122) includes at least one sheet of a dielectric material positioned adjacent one side of said heating element (22, 104, 118) and at least one sheet of a dielectric material positioned adjacent the opposite side of said heating element.

4. The heater assembly according to one of the claims 1 to 3 wherein said electrical insulation means (26, 32, 34; 110, 112, 124, 120, 122) includes sheets of organically bound ceramic particles held together in a suitable heat dissipatable binder material and/or of mica.

5. The heater assembly according to one of the claims 1 to 4, including means (42, 44, 50) for fastening said heater assembly to a selected surface to be heated.

6. The heater assembly according to one of the claims 1 to 5, wherein said housing member (12, 36) comprises an upper cover member (12) having a pair of downwardly extending opposed side wall portions (14) and a lower cover member (36), said lower cover member (36) being dimensioned so as to be received between the downwardly extending opposed side wall portions of said upper cover member (12), said side wall portions (14) being folded inwardly over the outer surface of said lower cover member (36) thereby enclosing said heater core body member, said upper cover member (12) including the second slot means (20) associated with said housing member (12, 36).

7. The heater assembly according to claim 6, wherein said upper cover member (12) includes a tab member (16) associated with each respective longitudinal opposite end portion thereof, each of said tab members (16) being engageable with the means (42, 44) for securely fastening said heater assembly to a selected surface to be heated.
8. The heater assembly according to one of the claims 1 to 7, wherein the electrical insulation means comprise a first dielectric member (120) positioned adjacent one side portion of said heating element (118), a second dielectric member (120) positioned adjacent the opposite side of said heating element so as to sandwich said heating element between said first and second dielectric members, the end portions (126, 128) of said heating element (118) extending from at least one of the longitudinal opposite end portions of said second dielectric member adjacent the lower surface thereof and further extending across the upper surface portion of said second dielectric member such that said heating element end portions (126, 128) are located intermediate the respective longitudinal opposite end portions of said second dielectric member (120) adjacent the upper surface portion thereof, and a third dielectric member (122) positioned adjacent the upper surface portion of said second dielectric member (120) so as to sandwich said heating element end portions (126, 128) therewith, said third dielectric member (124) including the first slot means associated with said electrical insulation means for enabling the heating element end portions to extend therethrough.

9. The heater assembly according to claim 8, wherein said heating element end portions (126, 128) extend around at least one of the respective longitudinal opposite end portions of said second dielectric member (120).

10. The heater assembly according to claim 8, wherein said second dielectric member includes means enabling said heating element end portions to extend therethrough adjacent at least one of the respective longitudinal opposite end portions thereof.

Patentansprüche

1. Heizanordnung in Form eines Bandes oder eines Streifens mit
 - einem äußeren geschlossenen Gehäuseelement (12, 36),
 - einem Heizkernkörperelement, das in dem Gehäuseelement (12, 36) fest gehalten ist, ein Heizelement (22, 104, 118) mit einer Vielzahl von Endabschnitten (28, 30, 106, 108; 126, 128) und eine elektrische Isoliereinrichtung (26, 32, 34; 110, 112) aufweist, die in umschließender Beziehung auf wenigstens zwei Seiten des Heizelements (20, 104, 118) angeordnet ist, gekennzeichnet
 - durch eine erste Schützeinrichtung (38, 114, 130), die sich durch wenigstens einen Abschnitt der Isoliereinrichtung (34, 112, 122) erstreckt und durch eine zweite Schützeinrichtung (18), die sich durch wenigstens einen Abschnitt der Gehäuseelemente (12, 36) erstreckt, wobei sich die Endabschnitte (28, 30; 106, 108; 126, 128) des Heizelements durch die erste und die zweite Schützeinrichtung (18, 38; 114, 130) so erstrecken, daß sie an der Außeneite des Gehäuseelementes (12, 36) ohne weiteres freiliegen, wenn die Heizanordnung vollständig zusammengebaut und abgedichtet ist,
 - durch Klemmenverbindungseinrichtungen (56, 75), die einen sich nach unten erstreckenden Umfangsflansch (60, 68) aufweisen, den ein Klemmenanschlußschnitt zugeordnet ist, der zur Herstellung eines Kontakts mit dem Gehäuseelement (12, 36) positioniert und angeordnet ist, wenn die Klemmenverbindungseinrichtung (56, 76) für eine Befestigung daran angeordnet ist, wobei der sich nach unten erstreckende Umfangsflansch (60, 80) eine Vielzahl von sich nach unten erstreckenden Schweißvorsprüngen (62, 82) aufweist, die entlang seines Klemmenanschlußschnitts positioniert und im Abstand angeordnet sind, um das Anschließen der Klemmenverbindungseinrichtung (56, 76) an das Gehäuseelement (12, 36) zu vereinfachen, sich die Schweißvorsprünge (62, 82) unterhalb des Klemmenanschlußschnitts des Umfangsnäschters erstrecken, um den ersten Kontakt mit dem Gehäuseelement (12, 36) herzustellen, wenn die Klemmenverbindungseinrichtung (56, 76) für eine Befestigung daran positioniert ist, und jeder sich nach unten erstreckende Schweißvorsprung (62, 82) während eines Schweißvorgangs schmelzbar ist, um an dieser Stelle eine Schmelzverbindung mit dem Gehäuseelement (12, 36) zu bilden, und
 - durch Klemmenbolzen (64) oder Leitungsenddrähte (94, 96), die durch die Klemmenverbindungseinrichtung (56, 76) hindurchgehen und von dieser isoliert sind, wobei die Klemmenbolzen (64) oder die Leitungsenddrähte (94, 96) mit entsprechenden freiliegenden Heizelementendabschnitten (28, 30; 106, 108; 126, 128) verbunden sind, nachdem die Heizanordnung vollkommen zusammengebaut und abgedichtet ist.

2. Heizanordnung nach Anspruch 1, bei der das Heizelement wenigstens einen Widerstandsdraht (22, 24) aufweist, der eine Platte aus Isoliermaterial gewickelt ist.

3. Heizanordnung nach Anspruch 1 oder 2, bei der die
elektrische Isoliereinrichtung (26, 32, 34, 110, 112; 124, 120, 122) wenigstens eine Platte aus dielektrischem Material, das angrenzend an einer Seite des Heizelements (22, 104, 118) angeordnet ist, und wenigstens eine Platte aus dielektrischem Material aufweist, die angrenzend an die gegenüberliegende Seite des Heizelements angeordnet ist.

4. Heizanordnung nach einem der Ansprüche 1 bis 3, bei der die elektrische Isoliereinrichtung (26, 32, 34, 110, 112, 124, 120, 122) Platten aus organisch gebundenen Keramikteilen, die in einem geeigneten, wärmeableitenden Bindematerial zusammengehalten sind, und/oder Glimmer aufweist.

5. Heizanordnung nach einem der Ansprüche 1 bis 4 mit einer Einrichtung (42, 44, 50) zum Befestigen der Heizanordnung an einer ausgewählten zu erwärmenden Fläche.

6. Heizanordnung nach einem der Ansprüche 1 bis 5, bei der das Gehäuseelement (12, 36) ein oberes Abdeckelement (12) mit einem Paar von sich nach unten erstreckenden gegenüberliegenden Seitenwandabschnitten (14) und einem unteren Abdeckelement (36) umfaßt, das so bemessen ist, daß es zwischen den sich nach unten erstreckenden gegenüberliegenden Seitenwandabschnitten des oberen Abdeckelementes (12) aufgenommen wird, wobei die Seitenwandabschnitte (14) einwärts über die Außenfläche des unteren Abdeckelementes (36) umgeschlossen sind, wodurch die Heizkerzenelemente (12, 36) zugeordnete Schlitzeinrichtung (20) aufweist.

7. Heizanordnung nach Anspruch 6, bei der das obere Abdeckelement (12) ein Laschenkeilelement (16) aufweist, das jedem seiner jeweiligen gegenüberliegenden Längsabschnitte zugeordnet ist, wobei jedes der Laschenkeilelemente (16) mit der Einrichtung (42, 44) für ein sicheres Befestigen der Heizanordnung an einer ausgewählten zu erwärmenden Fläche in Eingriff bringbar ist.

8. Heizanordnung nach einem der Ansprüche 1 bis 7, bei der die elektrische Isoliereinrichtung ein erstes dielektrisches Element (120), das angrenzend an einer Seitenabschnitt des Heizelements (118) angeordnet ist, ein zweites dielektrisches Element (120), das angrenzend an die gegenüberliegende Seite des Heizelements so angeordnet ist, daß das Heizelement zwischen dem ersten und zweiten dielektrischen Element sandwichartig eingeschossen ist, wobei die Endabschnitte (126, 128) des Heizelements sich von wenigstens einem der gegenüberliegenden Längsabschnitte des zweiten dielektrischen Elements angrenzend an seine untere Fläche erstrecken und sich weiterhin über den oberen Flächenabschnitt des zweiten dielektrischen Elements erstrecken, so daß sich die Endabschnitte (126, 128) des Heizelements zwischen den jeweiligen gegenüberliegenden Längsabschnitten des zweiten dielektrischen Elements (120) angrenzend an seinen oberen Flächenabschnitt befinden, und ein drittes dielektrisches Element (122) aufweist, das angrenzend an den oberen Flächenabschnitt des zweiten dielektrischen Elements (120) so angeordnet ist, daß die Endabschnitte (126, 128) des Heizelements dazwischen sandwichtartig eingeschlossen sind, wobei das dritte dielektrische Element (124) die der elektrischen Isoliereinrichtung zugeordnete erste Schlitzeinrichtung aufweist, damit sich die Endabschnitte des Heizelements durch sie hindurch erstrecken können.

9. Heizanordnung nach Anspruch 8, bei der die Endabschnitte (126, 128) des Heizelements um wenigstens einen der jeweiligen gegenüberliegenden Längsabschnitte des zweiten dielektrischen Elements (120) herum erstrecken.

10. Heizanordnung nach Anspruch 8, bei der das zweite dielektrische Element Einrichtungen hat, die es ermöglichen, daß sich die Endabschnitte des Heizelements durch sie hindurch angrenzend an wenigstens einen seiner jeweiligen gegenüberliegenden Längsabschnitte erstrecken.

Revendications

1. Assemblage de chauffage, sous forme de bande ou de ruban, comprenant
 - un élément de logement fermé extérieur (12, 36),
 - un élément formant le corps du noyau de chauffage maintenu de manière sûre à l'intérieur du dit élément de logement (12, 36), ledit élément formant le corps du noyau de chauffage comprenant un élément chauffant (22, 104, 118) ayant plusieurs portions d’extrémité (28, 30, 106, 108, 126, 128), des moyens d’isolation électrique (26, 32, 34, 110, 112) positionnés de manière à entourer ledit élément chauffant (20, 104, 118) sur au moins deux côtés de celui-ci, caractérisé par
 - un moyen formant une première fente (38, 114, 130) s'étendant à travers au moins une partie desdits moyens isolants (34, 112, 122) et un moyen formant une seconde fente (18) s'étendant à travers au moins une partie dudit élé-
ment de logement (12, 36), les portions d'extrémité (26, 30, 106, 108; 126, 128) de l'élément chauffant s'étendant à travers lesdits moyens formant les première et seconde fentes (15; 38; 114, 130) de manière à être facilement exposées à l'extérieur dudit élément de logement (12, 36) après que ledit assemblage de chauffage ait été complètement assemblé et fermé,

- un moyen de connexion terminale (56, 76) comprenant une bride périphérique (60, 80) s'étendant vers le bas ayant une partie de bordure terminale qui lui est associée, positionnée et située pour faire contact avec ledit élément de logement (12, 36) lorsque ledit moyen de connexion terminale (56, 76) est positionné pour être fixé sur celui-ci, ladite bride périphérique (60, 80) s'étendant vers le bas incluant plusieurs saillies à soudier (62, 82) s'étendant vers le bas positionnées à distance les unes des autres le long de sa partie de bordure terminale dans le but de faciliter la soudure dudit moyen de connexion terminale (56, 76) sur ledit élément de logement (12, 36), lesdites saillies à soudier (62, 82) s'étendant sous la partie de bordure terminale de ladite bride périphérique de manière à faire le premier contact avec ledit élément de logement (12, 36) lorsque ledit moyen de connexion terminale (56, 76) est positionné pour être fixé sur celui-ci, chaque saillie à souder (62, 82) s'étendant vers le bas pouvant être aménée à fondu au cours d'un processus de soudage de manière à former à ce niveau un lien par fusion avec ledit élément de logement (12, 36), et

- des bornes tiges (64) ou des fils de sortie de terminaison (94, 96) traversant et étant isolés dudit moyen de connexion terminale (56, 76), les bornes tiges (64) ou les fils de sortie de terminaison (94, 96) étant reliés électriquement aux portions d'extrémité exposées correspondantes (26, 30; 106, 108; 126, 128) de l'élément chauffant après que ledit assemblage de chauffage ait été complètement assemblé et fermé.

2. Assemblage de chauffage selon la revendication 1, dans lequel ledit élément chauffant comprend au moins un fil à résistances (22, 24) enroulé autour d'une feuille (26) de matériau isolant.

3. Assemblage de chauffage selon la revendication 1 ou 2, dans lequel lesdits moyens d'isolation électrique (26, 32, 34; 110, 112; 124, 120, 122) comprennent au moins une feuille d'un matériau diélectrique positionnée de manière adjacente à un côté dudit élément chauffant (22, 104, 118) et au moins une feuille d'un matériau diélectrique positionnée de manière adjacente au côté opposé dudit élément chauffant.

4. Assemblage de chauffage selon l'une des revendications 1 à 3, dans lequel lesdits moyens d'isolation électrique (26, 32, 34; 110, 112; 124, 120, 122) comprennent des feuilles de particules de céramique organiquement liées maintenues les unes avec les autres dans une matière liante appropriée pouvant être dissipée par la chaleur et/ou de mica.

5. Assemblage de chauffage selon l'une des revendications 1 à 4, comprenant un moyen (42, 44, 50) pour attacher ledit assemblage de chauffage sur une surface sélectionnée à chauffer.

6. Assemblage de chauffage selon l'une des revendications 1 à 5, dans lequel le ledit élément de logement (12, 36) comprend un élément de couverture supérieur (12) pourvu de deux parties (14) de parois latérales opposées s'étendant vers le bas et un élément de couverture inférieur (36), ledit élément de couverture inférieur (36) étant dimensionné de manière à être reçu entre les parties de parois latérales opposées s'étendant vers le bas dudit élément de couverture supérieur (12), lesdites parties de parois latérales (14) étant piétées vers l'intérieur sur la surface externe dudit élément de couverture inférieur (36), enfermant ainsi ledit élément formant le corps du noyau de chauffage, ledit élément de couverture supérieur (12) comprenant le moyen formant une seconde fente (20) associé audit élément de logement (12, 36).

7. Assemblage de chauffage selon la revendication 6, dans lequel ledit élément de couverture supérieur (12) comprend un élément formant patte (16) associé à chacune de ses parties d'extrémité opposées longitudinales respectives, chacun desdits éléments formant patte (16) pouvant être emboîté dans le moyen (42, 44) pour attacher de manière sûre ledit assemblage de chauffage sur une surface sélectionnée à chauffer.

8. Assemblage de chauffage selon l'une des revendications 1 à 7, dans lequel les moyens d'isolation électrique comprennent un premier élément diélectrique (120) positionné de manière adjacente à une partie latérale dudit élément chauffant (118), un second élément diélectrique (120) positionné de manière adjacente au côté opposé dudit élément chauffant, de manière à serrer des deux côtés ledit élément chauffant entre lesdits premier et second éléments diélectriques, les portions d'extrémité (126, 128) dudit élément chauffant (118) s'étendant depuis au moins une des parties d'extrémité opposées longitudinales dudit second élément diélectrique adjacent à sa surface inférieure puis s'étendant à travers la partie de surface supérieure dudit second élément diélectrique, de telle sorte que lesdites portions d'extrémité (126, 128) de l'élément
chauffant se trouvent dans une position intermédiaire entre les parties d'extrémité opposées longitudinales respectives dudit second élément diélectrique (120) adjacent à sa partie de surface supérieure, et un troisième élément diélectrique (122) positionné de manière adjacente à la partie de surface supérieure dudit second élément diélectrique (120), de manière à serrer des deux côtés lesdites portions d'extrémité (126, 128) de l'élément chauffant entre eux, ledit troisième élément diélectrique (124) incluant le moyen formant une première fente associé auxdits moyens d'isolation électrique pour permettre aux portions d'extrémité de l'élément chauffant de passer à travers.

9. Assemblage de chauffage selon la revendication 8, dans lequel lesdites portions d'extrémité (126, 128) de l'élément chauffant passent autour d'au moins une des parties d'extrémité opposées longitudinales respectives dudit second élément diélectrique (120).

10. Assemblage de chauffage selon la revendication 8, dans lequel ledit second élément diélectrique inclut un moyen permettant auxdites portions d'extrémité de l'élément chauffant de le traverser à un endroit contigu à au moins une de ses parties d'extrémité opposées longitudinales respectives.