EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 18.01.95 Bulletin 95/03

Int. Cl.: G11B 5/008, G11B 20/18,
// G11B5/09, G11B27/36

Application number: 91121710.7

Date of filing: 13.11.87

Method and system for dynamically calibrating the gain of a variable gain read amplifier.

Priority: 05.12.86 US 938641

Date of publication of application: 15.04.92 Bulletin 92/16

Publication of the grant of the patent: 18.01.95 Bulletin 95/03

Designated Contracting States: CH DE FR GB LI NL SE

References cited:
DE-A- 2 938 937
IBM TECHNICAL DISCLOSURE BULLETIN.
vol. 15, no. 7, December 1972, ARMONK
N.Y.US pages 2244 - 2245; I.P. BIRDSALL ET
AL.: 'AUTOMATIC AMPLITUDE ADJUSTMENT'
PATENT ABSTRACTS OF JAPAN vol. 2, no.
153 (E-79) 22 December 1978
PATENT ABSTRACTS OF JAPAN vol. 4, no. 82
(P-15)(564) 13 June 1980
PATENT ABSTRACTS OF JAPAN vol. 2, no.
104 (E-53) 26 August 1978
PATENT ABSTRACTS OF JAPAN vol. 8, no.
282 (P-323) 22 December 1984

Publication number of the earlier application in accordance with Art. 76 EPC: 0 270 275

Proprietor: MINNESOTA MINING AND MANUFACTURING COMPANY
3M Center,
P.O. Box 33427
St. Paul, Minnesota 55133-3427 (US)

Inventor: Seeman, Steven R., c/o Minnesota Mining and Manufacturers Co.,
2501 Hudson Road,
P.O. Box 33427
St. Paul, Minnesota 55133-3427 (US)

Representative: Baillie, Iain Cameron et al
C/o Ladas & Parry
Altheimer Eck 2
D-80331 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

Field of the Invention

This invention relates to a method and apparatus for dynamically controlling the gain of a record/playback system independently of variations in tape type, head output and head to tape interface. This specification is a divisional of EP-A-0270275.

Background of the Invention

A variety of techniques for controlling the transverse position of a magnetic recording/playback head relative to a magnetic tape have been proposed and used in the past. For example, simple mechanical detents have been employed for positioning the heads at a series of transverse positions relative to a tape transport path defined by tape guide members. Such a technique may be suitable for systems such as those designed for use with eight track audio cartridges in which only eight tracks are recorded on one-quarter inch wide tapes. In most current systems, the recording tape is contained within some type of cartridge or cassette which also includes tape guide members. These members, either solely, or in combination with other members forming a part of the tape drive, control the transverse position of the tape such that any variation in the positioning of the cartridge within the drive or in the tolerances of the cartridges themselves will result in a variation in the final transverse position of the tape. Such a final position will vary even as the same cartridge is repeatedly removed and reinserted in the same drive. Such variations can be tolerated in systems in which each track is relatively wide and is separated by a similarly wide space from an adjacent track, such as in the eight track audio cartridge system.

Newer systems, in which significantly narrower tracks are desirably used and in which the tracks are placed much closer together, such as when over twenty tracks are to be recorded on 8.4 mm wide tape, have been found to require a much tighter control over the transverse position of the heads relative to the tape. Accordingly, methods have been developed for sensing the actual tape edge, apart from the specific positioning of a cartridge or cassette within which the tape is located. Thus, for example, optical and mechanical sensors have been so employed, with such additional components contributing to the complexity and expense of the drive and providing additional sources of malfunction.

It has also been previously proposed to detect the edge of the tape magnetically. Thus as disclosed in U.S. Patent No. 4,422,111 (Moeller and Wolff), a magnetic tape may be pre-recorded with patterns which extend from one edge of the tape to the other, and a playback head thereafter incrementally positioned at successive positions ever closer to an edge of the tape. The prerecorded patterns are thus sensed until the head moves off the edge, at which point no further playback signal is detected, thus establishing a head reference position corresponding to the edge of the tape, and from which a plurality of parallel tracks along the tape may be indexed. The system there disclosed was adapted only for use with such a preformatted tape.

U.S. Patent No. 4,476,503 (Soljhell) also depicts a method for magnetically sensing the edge of tape via recorded patterns bordered by one edge of the tape. As there shown, a combined read after write head is mounted on a single support. As the tape is moved longitudinally, the support is moved transversely toward the tape from a position off the edge of the tape. At the same time, a signal is applied to the write head and any thus recorded signal is immediately reproduced by the read head. The edge of tape is proposed to be determined by comparing the read signal to a constant prescribed reference value, or by determining the difference between two read signals obtained at different points in time and comparing that difference to a prescribed reference value. While the techniques depicted in these patents may be useful if certain circumstances, each has certain limitations: the method Moeller et al. can only be used with preformatted media, while that of Soljhell suggests only the use of a fixed reference value.

A prior art document relating to automatic adjustment of the amplitude of a read amplifier in a magnetic tape drive is disclosed in IBM Technical Disclosure Bulletin, Vol. 15, No. 7, December 1972, pages 2244-2245; I.P. Birdsal et al; "Automatic Amplitude Adjustment". According to this disclosure document, data on a tape is read by a read head, the output of which is fed to a gain control circuit to provide output data. The output data is detected and the gain adjusted according to the detected number of data transitions. This document is used to form the preamble of the appended claims.

Summary of the Invention

In contrast to the techniques discussed above, the parent invention EP-A-0270275 is directed to a method of magnetically detecting the edge of a magnetic recording tape in which no prerecorded pattern need be present and in which errors in determining the edge position due to variations in magnetic tape type, head output and head to tape interface are avoided. In such a method a record and playback unit is provided which includes record means and playback means, such as recording and playback heads, having gaps parallel to each other, wherein the gap width of the record means is less than one-tenth the tape width. The playback means has a gap width no greater than the gap width of the record means.
The unit is positioned at a first transverse location away from the tape edge, so as to be entirely within the bounds of the tape, and a first test signal is recorded along a track having a transverse width at least equal to the gap width of the playback means. A corresponding playback test signal is then played back, and the gain of a playback signal amplifier is fixed to provide an output at a predetermined level in the presence of a said playback signal. A reference value is then stored which is a given fraction of the predetermined level, and which corresponds to a minimum threshold detection level at which recorded signals are reliably detected. In this manner, the reference level may be dynamically determined each time a tape is positioned adjacent the record/playback unit, thereby avoiding errors in subsequently determining edge of tape reference positions based on the absence of detected playback signals as could be due to an improperly selected minimum threshold detection level.

Once such a level is dynamically determined, in one embodiment the method of the parent invention further comprises determining an edge of tape reference position by recording a second test signal along a track bounded by one edge, incrementally positioning the unit at a plurality of transverse locations, each of which is successively closer to the edge, and differs from a previous position by a small fraction of the record gap width and playing back a corresponding test signal at each successive transverse position. The level of each corresponding output from the signal amplifier is then compared with the previously obtained and stored reference value, and information indicative of the transverse position of the unit when a given output signal is substantially equal to said reference value is stored as an edge of tape reference position. Subsequent transverse locations of the unit are thus enabled to be indexed relative to the edge of tape reference position, so that signals may be recorded on and played back from any one of a plurality of parallel tracks along the tape.

According to a first aspect of the present invention there is provided a method of dynamically calibrating the gain of a variable gain read amplifier in a magnetic tape drive having the following steps:

- a) playing back tape having a test signal recorded thereon, said test signal having plural transitions, to produce a playback test signal;
- b) amplifying the playback test signal in said read amplifier to produce an amplifier output signal;
- c) adjusting the gain according to a detected number of transitions in said amplifier output signal;

characterised in that said adjusting step comprises:

- reducing the gain of the read amplifier by a predetermined factor whereby said read amplifier produces a calibrate signal as said amplifier output signal;
- setting said reduced gain to a threshold gain value where said detected number of transitions in said calibrate signal equals a predetermined fixed number, and
- increasing said threshold gain by said predetermined factor.

According to a second aspect of the present invention there is provided a system for dynamically correcting the gain of a variable gain read amplifier having:-

- a) playback means for playing back tape having a test signal recorded thereon, said test signal having plural transitions, to produce a playback test signal;
- b) a variable gain read amplifier for amplifying the playback test signal to produce an amplifier output signal;
- c) means for adjusting the gain according to a detected number of transitions in said amplifier output signal;

characterised in that said adjusting means comprises:

- means for reducing the gain of the read amplifier by a predetermined factor whereby said read amplifier produces a calibrate signal as said amplifier output signal;
- means for setting said reduced gain to a threshold gain value where said detected number of transitions in said calibrate signal equals a predetermined fixed number, and
- means for increasing said threshold gain by said predetermined factor.

Brief Description of the Drawing

Figure 1 is a block diagram of the system of the present invention;
Figure 2 is a flow sheet showing the sequence of operations desirably performed while fixing the gain according to the present invention;
Figure 3 is a representation of signal waveforms typically present while performing certain steps set forth in Figure 2;
Figure 4 is a flow diagram showing operations initially performed in determining an edge of tape reference position;
Figure 5 is a representation of signal waveforms typically present in performing certain steps set forth in Figure 4;
Figure 6 is a flow sheet showing operations preferably performed in verifying a repeatable edge of tape reference position.

Detailed Description

The dynamic gain set of this invention and edge seek features of the parent invention are particularly
desirably implemented in a drive adapted for use with a belt-driven tape cartridge of the sort disclosed in U.S. Patent No. 3,692,255 (VonBehren) and 3,881,619 (Wolff). As particularly set forth in the latter patent, such a cartridge is desirably provided with a tape containing a series of hole patterns to enable detection of particular regions of the tape. Thus, for example, as shown in Figure 1, a tape 10 contained within such a cartridge will have a pattern of double holes 12 indicative of the beginning of tape (BOT) and spaced a predetermined distance therefrom a single hole 14 indicative of the load point (LP), i.e., the point at which normal recording operations may begin. Thus, for example, if the cartridge is of a type generally identified as a type DC-1000 cartridge, there will be approximately 48 cm of tape between the BOT and LP identification holes 12 and 14 respectively, whereas if it is a type DC-2000 cartridge approximately 76 cm of tape will be present between those respective points.

Such a cartridge is adapted for recording and playing back data on a plurality of parallel tracks extending longitudinally along the length of the tape while the tape is driven via a brushless DC motor 16 which is coupled to a drive puck 18 in contact with a capstan (not shown) within the cartridge. Recording and playback of the respective tracks is enabled by a record and playback unit 20 within which are mounted a record head 22 and a playback head 24. In a preferred embodiment, an inexpensive unipolar dual gap wide write (203μm) and narrow read head (127μm) is employed. The record/playback head unit 20 is mounted so as to be transversely movable across the width of the tape by means of a lead screw 26 and stepper motor mechanism 28.

The longitudinal motion of the tape 10 is, as noted above, under control of a motor 16, which motor is energized by signals from a drive motor commutation logic circuit 30. The motor further includes sensors which provide a tachometer signal on lead 32 which is coupled to a motor speed control processor 34. The processor 34 is in turn controlled by general command instructions from a command capture processor 36 and by time control signals from a timer circuit 38. Thus, depending upon the desired tape speed, such as 152 cm/sec for normal recording and playback operations or 229 cm/sec for high speed fast forward or reverse operation, the processor 34 responds to input signals from the timer 38 and the tachometer pulses on lead 32 to provide a speed control signal to the drive motor commutation logic circuit 30, which in turn provides motor drive signals to the motor 16.

The longitudinal position of the tape 10 is determined by detecting the punched holes extending along the tape, such as the BOT and LP holes 12 and 14, with a tape hole detector 60. The output of that detector is in turn coupled to a tape position control processor 62 which is in turn controlled by and provides control to the command capture processor 36.

The command capture processor 36 is in turn coupled through appropriate interface circuits 64 to a master controller 66 which handles communications with higher level logic circuits to implement the actual recording and reproduction of typical data.

The transverse position of the head 20 is, as noted above, controlled by a stepper motor 28 which in turn responds to signals from a stepper motor control network 40. That network is in turn controlled by a head position control signal processor 42 and provides signals in response to overall commands from the command capture processor 36 and a second timer circuit 44.

The parent invention is particularly useful in maintaining precise transverse control of the record/playback unit 20. Thus, for example, in a preferred embodiment as many as 24 tracks are desirably recorded and reproduced on a 6.4 mm wide tape. To enable such a record/playback unit 20 to be accurately positionable at any one of such a plurality of tracks requires that both the accuracy of the edge seek method as well as the reproducible accuracy provided by the stepper motor and lead screw combination 26 and 28 be tightly controlled. Thus in this embodiment, the accuracy of the edge seek is within plus or minus one step of the stepper motor, each step being 4 μm of transverse head movement. As discussed in more detail below, with such a mechanism, the edge seek feature has been found to be repeatable to within plus or minus two steps of the stepper motor. This repeatability is also been found to be the key in the ability to achieve interchange of cartridges so that a given cartridge may be recorded on one drive and played back on a second drive. Also as further discussed below, the precision in both head position and edge seeking is further facilitated by determining an edge of tape reference position from two directions, i.e., by moving the head both onto and off of the tape as the edge of tape is sensed. This allows the amount of hysteresis to be measured and controlled.

In performing both the dynamic gain set and edge seek functions, test signals are first recorded onto tape 10 and those signals subsequently reproduced and processed to perform the respective functions. Thus, as shown in Figure 1 test signals are provided by a test signal generator 46, which signal is coupled through a write (record) amplifier 48 and thence to the record head 22. As the apparatus of the present invention is particularly adapted for processing digital data in which the data is encoded at a particular clock frequency, it is convenient that the test signal generator 46 provides a square wave at that clock frequency, such as a 250 kilohertz square wave.

A thus recorded signal may be subsequently reproduced by the playback head 24, which signal is then coupled to the read (playback signal) amplifier 50. The output from the amplifier 50 is coupled to a
threshold and peak detector circuit 52. The read amplifier 50 is further controlled by a gain control circuit 54. The output of the threshold peak detector circuit 52 is in turn coupled to a counter 56 which in turn is controlled by the edge find and gain set processor 58 to provide a feedback circuit to the gain control circuit 54 to ultimately control the gain of the amplifier 50.

The threshold and peak detector circuit 52 responds to the analog output from the read amplifier 50 as shown in the top waveform of Figure 3, and outputs a TTL signal whose transitions represent the peaks of the detected analog signal pulses so long as the output from the read amplifier exceeds a minimum threshold level (Middle waveform of Figure 3). Thus, for example, so long as the playback signal exceeds a minimum threshold level, a square wave at 250 kilohertz will be detected.

These pulses are in turn coupled to the counter 56 to thereby count the number of pulses occurring during the passage of a predetermined length of tape. Accordingly, a signal indicative of the passage of a length of tape, such as 5.1 cm of tape, is derived from the tachometer output on lead 32, which in turn is processed through the motor speed control processor 34, through the command capture processor 36, and back to the edge find gain set processor 58 to provide an activate signal to the counter 56 to initiate the counting of the pulses received from the threshold circuit 52. Upon deactivation of the counter in response to a second signal, indicative of the passage of the predetermined length of tape, the level in the counter 56 is fed out to the edge find gain set processor 58. Depending upon the number of counts measured during the passage of tape, an appropriate signal is applied to the gain control circuit 54. The passage of successive predetermined lengths of tape thus establishes a sequence of sample windows during which the gain of the amplifier 50 may be sequentially adjusted. Such successive windows are identified as zones C-H at the bottom of Figure 3.

Thus in operation, the control circuit 54 is caused to sequentially vary the gain of the read amplifier 50, such that the output signal from the amplifier will similarly vary. Thus, for example, the output from the read amplifier 50 may be represented as shown in the analog waveform at the top of Figure 3. Such a signal is processed through the threshold peak detector circuit 52 to provide corresponding output pulses only when the input pulses exceed a minimum threshold level, for example, 400 millivolts. Thus, as shown in the center waveform in Figure 3, when the gain of the amplifier is set high, as in the left hand portion of the Figure, a large number of pulses will be output from the threshold peak detector circuit. Conversely, when the gain of the amplifier is appreciably reduced, relatively few pulses will be output from the detector circuit 52. It may be noted that a desired minimum threshold level is that at which the number of counts counted during a given sample window is approximately equal to some small number, such as 44. Thus, for example, if all of the possible counts produced during a given sample window exceed the threshold, the total number of counts would be approximately 8300. Thus by establishing a minimum number of counts, such as 44, it will be seen that at the established threshold only pulses resulting from valid flux transitions are counted, and that the absence of pulses such as due to dropouts and other tape irregularities will not produce erroneous results.

The gain control circuit 54 includes a seven bit d/a converter, thus providing a seven bit digital gain control which is converted into an analog signal to actually control the gain of the amplifier 50. The seventh, or most significant, bit adds a factor of five increase in the gain of the amplifier, while the remaining six bits linearly controls the gain of the amplifier 50. Each of the remaining six bits is adapted to be set during one of the successive sample windows. The removal of the seventh bit automatically reduces the gain of the amplifier to twenty percent of the initial level and thus provides a particularly desired calibrate signal. Similarly, as each of the decreasingly significant bits of the remaining six bits are set to zero, the gain of the amplifier will be similarly reduced, thus providing sixty four discrete controllable levels of gain.

The use of the above described equipment to dynamically set the gain of the playback signal amplifier 50 is desirably explained in conjunction with the flow sheet shown in Figure 2. Furthermore, typical wave shapes of signals processed at various stages through the flow sheet are set forth in Figure 3.

As set forth in Figure 2, each time a cartridge is inserted into the drive, a switch is activated which in turn activates a cartridge load routine 68. This in turn causes an initialization sequence 70 to be performed in which indicator lights are set, beginning of tape (BOT) and load point (LP) sense routines are established and the like. Subsequent to an initialization operation, an optional conditioning of the tape pack may be performed as set forth in box 72. If such a conditioning operation is desired, the tape will be rapidly cycled to the end of tape and thereupon reversed back to the beginning of tape, as set forth in box 74. If the conditioning operation is not desired, the tape will simply be positioned at the BOT position as set forth in box 76. In the event appropriate hole patterns are not sensed at BOT and LP points, the cartridge will be identified as being improper and an illegal cartridge indicate signal produced as shown in box 78.

At this point, the dynamic gain adjustment operations are commenced. The initial operation, as shown in box 80, is to record a 250 kilohertz test signal beginning at the BOT point and extending to the LP point as defined by the hole patterns 12 and 14 identified in Figure 1. The direction of the tape is then
reversed so as to move from LP to BOT and a sequence of gain adjustment operations is performed as set forth in box 82. Upon initially moving from LP to BOT, a large amplitude playback signal as shown at position A of Figure 3 will be detected. Upon clearing of the seventh bit in the gain control, that amplitude will be then reduced to twenty percent as shown in zone B. After a short period of time represented in zone B during which the signal is allowed to stabilize, a first gain adjustment is performed in zone C. In this zone, the next most significant bit or bit six is inspected to determine whether the input signal exceeds a minimum threshold level. Thus within the sample window C (Figure 3) it may be seen that the gain was sufficiently high that a very large number of pulses were counted during that sample window. Accordingly, the gain was reduced by setting the next most significant or sixth bit to a low state. During the next sample window D, it may be seen that a very small number of pulses exceeded the minimum threshold level. As an insufficient number of pulses were counted, during the sample window E, the gain was then increased by setting the next least significant bit at a high state. Upon examination of that state (sample window F) the number of counted bits was seen to exceed the desired level of 44, hence the next least significant bit was set high. As the number of counted transitions in that window still exceeded the desired number of counts, (sample window G) the yet next least significant bit was set high. In sample window H, the number of counted pulses was found to be approximately 44, and hence the desired gain was accomplished. At the end of the sample window, the most significant seventh bit is again set high so as to restore the output of the amplifier to the desired operating level. Thus, a twenty percent threshold is established due to the reinsertion of the gain of five associated with the seventh bit.

Having established the gain as described above, with the reference back to Figure 2, it can be readily determined whether the head unit 20 is over the tape, as if the gain code is less than sixty the gain must have been established in response to a playback signal. Conversely, if the gain code is indicated to be in excess of sixty, such a result will only occur if the head is not over the tape. Box 84 thus represents a decision point at which the head must move either up or down, as shown in boxes 86 and 88 as appropriate, and the gain set procedure repeated as necessary until the measured gain code indicates that the head is on tape. At this point the sequence of operations setting the gain is completed.

The next sequence of operations pertains to determining an edge of tape reference position. This sequence of operation is particularly set forth in Figures 4 and 6, as further explained in conjunction with the waveshapes shown in Figure 5. As set forth in the box 92, upon performing a gain set sequence, the recorded/playback unit will typically be positioned approximately 280 \(\mu m \) above a lower edge of the tape. Thus to minimize the number of steps necessary to determine the edge of tape reference position, the first operation moves the head unit down 203 \(\mu m \) so that it is positioned 76 \(\mu m \) above the edge of the tape. At the same time, a seek count value is established depending upon how many successive test record and playback operations are desired. Also, it is desired to set the edge high limit to a desired level depending upon the type cartridge being used. Thus, for example, if a type DC-1000 cartridge is being operated upon, wherein there are 48 cm of tape between the BOT and LP points, such that if 5.1 cm of tape are required for each playback sequence a maximum of six such sequences playback could be performed for each recorded track. Similarly if a type DC-2000 cartridge is being implemented, wherein 76 cm of tape exists between the BOT and LP points, so that a maximum of fifteen 5.1 cm segments could be operated upon, a convenient edge high limit count could be nine. These two count values result in a seek bandwidth of 216 \(\mu m \) which corresponds to 54 possible steps.

Having thus appropriately set the count values a command is output to cause the write amplifier to write the 250 kilohertz test signal continuously from the BOT to LP points on the tape as shown in box 94. Further as shown in box 96, the direction of the tape is then reversed so as to go from LP to the BOT point, and as shown in box 98 two inches of tape are initially played back. A first inquiry will then determine whether data is present as shown in box 100. This will simply be indicated by the output from the counter 56 as an indication that the total number of counts during the sequence corresponding to the passage of a 5.1 cm length tape is greater than the above described minimum count of 44.

A graphic representation of the various signals present at both this and subsequent sequences is set forth in Figure 5. Thus it may be seen that the analog output from the read amplifier 50 is set forth in the top Curve (a) of that Figure. As the signal is processed through the peak detector 52 a constant amplitude stabilized signal as shown in Curve (b) results, wherein only those peaks whose amplitude exceeds the previously established threshold are allowed to pass. The thus processed peaks are then counted within the counter 56 in the same manner as described above in conjunction with the gain set operations during successive sampling intervals A, B, C, D, E, F and G as shown in the bottom of Figure 5. As there shown, the first sample period A is slightly longer in time in order to allow the initial signal to stabilize such that the sample window is actually initiated after a first 2.5 cm length of tape has passed. Since, as shown in the top Curve (a), all of the signal pulses are well above the minimum threshold a full number of possible counts will in all likelihood be counted by the
counter such that the total count within the sample period A will be in the range of 8000.

Accordingly, as shown in box 102, instructions are then provided to cause the head unit to take a single step toward the edge and to increment the edge count by one unit. Following that step as shown in box 104, an inquiry is made to determine whether the edge limit is now equal to the edge count. Provided that it is not, instructions are provided to search a second 5.1 cm of tape by repeating the sequence through boxes 98, 100 and 102 thereby stepping through as many sample intervals (B, C, D, E, F and G) as necessary. If within any of the sample windows it is determined that the number of counted transitions is less than 44, an edge found signal will be produced.

At this point, approximately 25.4 μm of the 127 μm wide playback gap width (i.e., twenty percent) will still be on the tape. If after any of the sequences it is determined that the edge limit is equal to the edge count, such that no further stepwise stepping and playing back of a previously recorded test signal is desired, the seek count is then decremented by one step as indicated in box 106 thereby causing a further test signal to be recorded along a new track at the same position as that at which the last playback signal was obtained. A new sequence of playback operations is then commenced beginning with the determination that the seek count is equal to zero, as shown in box 108. If it is not, a new sequence of record and successful record and playback operations is commenced by beginning again at box 94 and proceeding through boxes 98, 98 and 100, until an edge found signal is produced, or again as shown in box 106, decrementing the seek count by an additional value and again iteratively going through the write and sequential playback and head stepping operations.

As further shown in box 108, if after any of the decremented seek count operations, the seek count is indicated to be equal to zero and it is determined that the head is already off tape as shown in box 110, the head is then stepped 406 μm (box 112) and the sequence of operations beginning as shown in box 92 is then commences. If on the other hand it is found that the head is still on tape, a coarse edge seek operation is then commenced as shown in box 114.

During the coarse edge seek operation, the head is arbitrarily stepped 508 μm toward the edge, a test signal recorded, and a single playback sample obtained to determine if a signal is present. If such a signal is present, the head is again stepped an additional 508 μm toward the edge and another test signal recorded and another playback signal produced. Such operations are repeated until no playback signal is produced, thus ensuring that the head is off of the edge of the tape. At this point the head is repositioned 508 μm in the opposite direction thereby ensuring that the head is proximate to the edge of the tape. The head is then stepped down in sequences of 127 μm per step and single playback operations performed until no playback signal is obtained, again indicating that the head is off of the edge of the tape. The head is then stepped in the opposite direction 127 μm to ensure that the head is at least within 127 μm of the edge of the tape. The sequence of edge find operations beginning with box 92 is then repeated.

Assuming that at some point during the above operations an edge find signal was produced at the output of box 100, another sequence of operation is commenced to verify the accuracy of that reference position as shown in Figure 6. Thus beginning at box 116 and going to box 118 the initial step is to verify that the gain has been properly determined. Thus the head is first moved down 102 μm off of the edge of tape and the noise floor is set to establish a proper signal to noise ratio. During such an operation the gain set operation as described above in conjunction with Figure 2 is repeated in the absence of any playback signal as the head is now off the tape. The gain is repeatedly decreased until fewer than 44 noise produced pulses are counted, thereby establishing a minimum gain for noise produced signals. At this point the head is moved 381 μm up onto tape and the gain setting is rechecked. As indicated in box 120 if the new gain setting is determined to be greater than two gain counts different from the previously selected gain setting, the new gain setting is taken as a desired gain level and the sequence of edge find operations is repeated.

Conversely, if the gain difference is less than two counts, a check is determined to ensure that an adequate signal to noise ratio is present. This is done as indicated in box 122 by adding three gain counts to the established gain level and determining whether it is less than the previously established noise floor. If it is not less a fault signal is now produced. Assuming that it is appropriately less than the noise floor, verification of the edge of tape reference position is performed, as indicated in box 124, with the head positioned six steps up from the previously determined edge and repeating boxes 94 through 104 as shown in Figure 4. A new edge of tape reference value is then determined and compared with the previously determined value, and if it is greater than three steps and less than nine steps different than the previously determined value, the further edge of tape position verification steps will be commenced. If the new value is not within the allowed range, a new edge of tape value will be determined as shown in boxes 92 through 104, and also the rechecking of the gain setting as shown in boxes 116 through 120 will be repeated.

Upon verifying an appropriate edge of tape value as indicated above, the head will next be stepped down four steps so as to be positioned below the edge of the tape as shown in box 128, and the head subsequently moved one step at a time toward the edge until a number of counts in any given sampling win-
dow exceeds the minimum count number of 44, at which point an edge found signal 130 will be produced. Such an operation is desired to ensure that no excessive stepper hysteresis is present in the system. Thus if the new established position is greater than nine counts different then the previous one, an excessive hysteresis fault signal will be produced, as indicated in box 132. Conversely if the new level is less than nine counts different from the previous level, a finally verified edge of tape reference position will be stored, from which subsequent positioning of the recording and playback unit may be indexed.

In the discussion presented above, it has been assumed that a wide record narrow read heads have been employed. Such an embodiment is particularly desirable as it enables the head unit to be sequentially stepped a number of times for each recorded track. Similarly however, head constructions may be utilized in which both record and read head are the same width, such embodiment requiring an additional record operation prior to each playback. The present invention may similarly be performed utilizing combined read and write heads having but a single gap. Other modifications such as utilizing the method in conjunction with 1.77 cm (half inch) as well as 0.89 cm (quarter inch) and other variations in tape and/or cartridge configurations may similarly be utilized.

Claims

1. A method of dynamically calibrating the gain of a variable gain read amplifier in a magnetic tape drive having the following steps:
 a) playing back (24) tape (10) having a test signal recorded thereon, said test signal having plural transitions, to produce a playback test signal;
 b) amplifying (50) the playback test signal in said read amplifier (50) to produce an amplifier output signal;
 c) adjusting (54) the gain according to a detected number of transitions in said amplifier output signal;

 characterised in that said adjusting step comprises:
 reducing the gain of the read amplifier (50) by a predetermined factor whereby said read amplifier produces a calibrate signal as said amplifier output signal;
 setting said reduced gain to a threshold gain value where said detected number of transitions in said calibrate signal equals a predetermined fixed number; and
 increasing said threshold gain by said predetermined factor.

2. A method according to claim 1, wherein the set-

3. A method according to claims 1 or 2 having the step of:
 recording a sufficiently large predetermined number of transitions onto a sufficiently long predetermined length of tape to provide a greater than minimum number of detected transitions to compensate for temporary loss of playback test signal due to normally anticipated dropouts and short term variations in tape edge, before said playing back step.

4. A method according to any of claims 1-3 further comprising:
 a) recording a said test signal along a track bounded by one edge of the tape, and extending along at least a predetermined length thereof;
 b) incrementally positioning playback means having a playback head (20) at a plurality of transverse locations, each of which is a small fraction of the width of the recorded track closer to the edge, and playing back a corresponding test signal at each successive position as a said predetermined length of tape traverses said playback means;
 c) counting the number of transitions occurring in said corresponding test signal during the passage of said predetermined length of tape, the intensity of which exceeds a minimum threshold detection level;
 d) comparing the number of counted transitions in the test signal occurring during the tape passage with said fixed number; and
 e) storing information indicative of the transverse position of the playback head when the number of counted transitions falls below said fixed number, as an edge of tape reference position, whereby the reference position is established when the same fraction of the playback means remains on the tape as that fraction determined by said threshold gain value, thus enabling subsequent transverse locations of said record and playback unit to be indexed relative to the edge of tape reference position to enable subsequent recording and playback of signals of any of a plurality of parallel tracks along the tape.

5. A system for dynamically calibrating the gain of a
variable gain read amplifier having:
 a) playback means (24) for playing back tape
 having a test signal recorded thereon, said
 test signal having plural transitions, to pro-
 duce a playback test signal;
 b) a variable gain read amplifier (50) for am-
 plifying the playback test signal to produce an
 amplifier output signal;
 c) means (54) for adjusting the gain according
to a detected number of transitions in said ampl-
 ifier output signal;
 characterised in that said adjusting
 means comprises:
 means (58) for reducing the gain of the
read amplifier (50) by a predetermined factor
whereby said read amplifier produces a cali-
brate signal as said amplifier output signal;
means (58) for setting said reduced
gain to a threshold gain value where said de-
tected number of transitions in said calibrate
signal equals a predetermined fixed number; and
 means (58) for increasing said thresh-
hold gain by said predetermined factor.

6. A system according to claim 5, wherein the
means for setting the gain comprises:
 means for counting the number of transi-
tions in the calibrate signal occurring during
the passage of a predetermined length of tape at suc-
cessive settings of the gain of said playback sig-
nal amplifier; and
 means for fixing the gain of said amplifier
when the number of counted transitions in the
calibrate signal equals said fixed number.

7. A system according to claims 5 or 6, having
means for recording said test signal to said tape
(10) and means for recording said plural transi-
tions onto a predetermined length of tape suffi-
ciently long so as to provide a greater than mini-
mum number of counts, to compensate for tem-
porary loss of playback signal due to normally antici-
pated dropouts and short term variations in
 tape edge.

Patentansprüche

1. Verfahren zur dynamischen Verstärkungskali-
 bierung eines Leseverstärkers mit variabler Ver-
 stärkung in einem Magnetbandlaufwerk, umfas-
 send die folgenden Schritte:
 a) Wiedergabe (24) eines Bandes (10) mit ei-
 nem darauf aufgezeichneten Prüfsignal, wo-
 bei das Prüfsignal eine Mehrzahl von Über-
 gängen zur Erzeugung eines Wiedergabe-
 Prüfsignals aufweist;

2. Verfahren nach Anspruch 1, dadurch gekenn-
 zeichnet, daß der Festsetzungsschritt folgendes
 umfaßt:
 Zählen der Anzahl von Übergängen in dem
 Eichsignal, welche während dem Durchlauf einer
 vorbestimmten Bandlänge auftreten, und zwar
 bei aufeinanderfolgenden Festsetzungen der
 Verstärkung des Leseverstärkers; und
 Bestimmung der Verstärkung des Verstär-
 kers, wenn die Anzahl der gezählten Übergänge
 in dem Eichsignal gleich der festen Anzahl ist.

3. Verfahren nach Anspruch 1 oder 2, umfassend
 den folgenden Schritt:
 Aufzeichnen einer ausreichend großen
 vorbestimmten Anzahl von Übergängen auf eine
 ausreichend lange vorbestimmte Bandlänge, so
 daß eine größere Anzahl erfaßter Übergänge als
 die minimale Anzahl vorgesehen wird, um einen
 vorübergehenden Verlust des Wiedergabe-Prüf-
 signals aufgrund normalerweise zu erwartender
 Ausfälle und kurzer Abweichungen des Bandran-
 des vor dem Wiedergabeschnitt auszugleichen.

4. Verfahren nach einem der Ansprüche 1-3, ferner
 umfassend:
 a) Aufzeichnen eines Prüfsignals auf einer
 Spur, die durch einen Rand des Bandes be-
 grenzt ist und die sich mindestens entlang ei-
 ner vorbestimmten Länge des Bandes er-
 streckt;
 b) Inkrementale Positionierung einer Wiederga-
 geb Einsatzrichtung mit einem Wiedergabekopf
 (20) an einer Mehrzahl von Querstellen, von
denen jede einen geringen Teil der Breite der
 beschriebenen Spur näherr zu dem Rand dar-
 stellt, und Wiedergabe eines entsprechenden
Prüfsignals an jeder aufeinanderfolgenden Position, während die vorbestimmte Bandlänge die Wiedergabe einrichtung durchläuft; c) Zählen der Anzahl von Übergängen, die in dem entsprechenden Prüfsignal während dem Durchlauf der vorbestimmten Bandlänge auftreten, wobei deren Intensität einen minimalen Grenzerfassungspegel übersteigt; d) Vergleich der Anzahl gezählter Übergänge des Prüfsignals, die während dem Durchlauf des Bandes auftreten, mit der genannten festen Anzahl; und e) Speichern von Informationen, welche die Querposition des Wiedergabekopfes als ein Rand der Band bezugsposition anzeigen, wenn die Anzahl gezählter Übergänge niedriger ist als die feste Anzahl, wobei die Bezugsposition begründet wird, wenn der Teil der Wiedergabe einrichtung, der auf dem Band verbleibt, dem Teil gleicht, der durch den Schwellen-Verstärkungswert bestimmt ist, wodurch folgende Querpositionen der Aufzeichnung und Wiedergabe einheit relativ zu dem Rand der Band bezugsposition indiziert werden können, um eine folgende Aufzeichnung und Wiedergabe von Signalen jeder Spur einer Mehrzahl paralleler Spuren auf dem Band zu ermöglichen.

5. System zur dynamischen Verstärkungskalibrierung eines Leseverstärkers mit variabler Verstärkung, mit:
 a) einer Wiedergabe einrichtung (24) zur Wiedergabe eines Bandes mit einem darauf aufgezeichneten Prüfsignal, wobei das Prüfsignal eine Mehrzahl von Übergängen zur Erzeugung eines Wiedergabe-Prüfsignals aufweist;
 b) einem Leseverstärker (50) mit variabler Verstärkung, zur Erzeugung eines Verstärker-Ausgangssignals;
 c) einer Einrichtung (54) zur Einstellung der Verstärkung gemäß einer erfaßten Anzahl von Übergängen in dem Verstärker-Ausgangssignal;
 dadurch gekennzeichnet, daß die genannte Einstellungseinrichtung folgendes umfaßt:
 eine Einrichtung (58) zur Verringerung der Verstärkung des Leseverstärkers (50) um einen vorbestimmten Faktor, wodurch der Leseverstärker ein Eichsignal als das genannte Verstärker-Ausgangssignal erzeugt;
 eine Einrichtung (58) zur Festsetzung der verringerten Verstärkung auf einen Schwellen-Verstärkungswert, wobei die genannte erfaßte Anzahl von Übergängen in dem Eichsignal gleich einer vorbestimmten festen Anzahl ist; und
 eine Einrichtung (58) zur Erhöhung der Schwellenverstärkung um den vorbestimmten Faktor.

6. System nach Anspruch 5, dadurch gekennzeichnet, daß die Einrichtung zur Festsetzung der Verstärkung folgendes umfaßt:
 eine Einrichtung zum Zählen der Anzahl von Übergängen in dem Eichsignal, welche während dem Durchlauf einer vorbestimmten Bandlänge auftreten, und zwar bei aufeinanderfolgenden Festsetzungen der Verstärkung des Leseverstärkers; und
 eine Einrichtung zur Bestimmung der Verstärkung des Leseverstärkers, wenn die Anzahl der gezählten Übergänge in dem Eichsignal gleich der festen Anzahl ist.

7. System nach Anspruch 5 oder 6, mit einer Einrichtung zur Aufzeichnung des Prüfsignals auf dem Band (10) und mit einer Einrichtung zur Aufzeichnung der Mehrzahl von Übergängen auf eine vorbestimmte ausreichende Bandlänge, so daß eine größere Anzahl von Zählnamen als die minimale Anzahl vorgesehen wird, um einen vorübergehenden Verlust des Wiedergabesignals aufgrund normalerweise zu erwartender Ausfälle und kurzer Abweichungen des Bandrandes auszugleichen.

Revendications

1. Procédé de calibrage dynamique du gain d’un amplificateur de lecture à gain variable dans un entraînement de bande magnétique, qui comprend les étapes suivantes:
 a) la reproduction (24) de la bande (10) sur laquelle est enregistré un signal de test, le dit signal de test comportant plusieurs transitions, pour produire un signal de test de reproduction ;
 b) l’amplification (50) du signal de test de reproduction dans le dit amplificateur de lecture (50), pour produire un signal de sortie d’amplificateur ;
 c) le réglage (54) du gain en fonction d’un nombre détecté de transitions dans un dit signal de sortie d’amplificateur ;
 caractérisé en ce que ladite étape de réglage comprend:
 la réduction du gain de l’amplificateur de lecture (50), d’un facteur prédéterminé, de sorte que le dit amplificateur de lecture produise un signal de calibrage comme dit signal de sortie d’amplificateur ;
 le réglage dudit gain réduit à une valeur
de gain de seuil pour laquelle ledit nombre dédêté de transitions dans ledit signal de calibrage est égal à un nombre fixe prédéterminé et, l’augmentation dudit gain de seuil, par ledit facteur prédéterminé.

2. Procédé suivant la revendication 1, dans lequel l’étape de réglage comprend :
pour des réglages successifs du gain dudit amplificateur de lecture, le comptage du nombre de transitions dans le signal de calibrage, se produisant pendant le passage d’une longueur de bande prédéterminée ; et la fixation du gain dudit amplificateur lors-que ledit nombre de transitions comptées dans le signal de calibrage est égal audit nombre fixe.

3. Procédé suivant la revendication 1 ou 2, comprenant l’étape de :
 enregistrement d’un nombre de transitions prédéterminé suffisamment grand sur une longueur de bande prédéterminée suffisamment longue pour fournir un nombre supérieur à un nombre minimal de transitions détectées, afin de compenser la perte temporaire du signal de test de reproduction due aux effacements prévus et aux variations de courte durée du bord de bande, avant ladite étape de reproduction.

4. Procédé suivant une quelconque des revendica- tions 1 à 3, comprenant en outre :
(a) l’enregistrement d’udit signal de test le long d’une piste délimitée par un bord de la bande, et s’étendant le long d’au moins une longueur prédéterminée de ladite piste ;
(b) le positionnement par incrément de moyens de reproduction comportant une tête de lecture (20), à une pluralité de positions transversales dont chacune est une petite fraction de la largeur de la piste enregistrée la plus proche du bord, et la reproduction d’un signal de test correspondant à chaque position successive lorsqu’une dite longueur prédéterminée de bande passe devant ledits moyens de reproduction ;
(c) le comptage du nombre de transitions se produisant dans ledit signal correspondant pendant le passage de ladite longueur prédéterminée de bande, l’intensité de chaque transi-tion dépassant un niveau de détection de seuil minimal ;
(d) la comparaison du nombre de transitions comptées dans le signal de test, se produisant pendant le passage de la bande, avec ledit nombre fixe ; et
(e) le stockage d’une information indicative de la position transversale de la tête de lecture lorsquelse numéro de transitions comptées tombe au-dessous dudit nombre fixe, comme position de référence de bord de bande, de sorte que la position de référence est établie lorsqu’il reste sur la bande la même fraction des moyens de reproduction que la fraction déterminée par ladite valeur de gain de seuil, ce qui permet d’indexer les positions trans- versales suivantes de ladite unité d’enregis- trement et de reproduction par rapport à la po-sition de référence de bord de bande, afin de permettre l’enregistrement subséquent et la reproduction de signaux sur une quelconque d’une pluralité de pistes parallèles le long de la bande.

5. Système de calibrage dynamique du gain d’un amplificateur de lecture à gain variable, comprenant :
(a) des moyens de reproduction (24) pour lire une bande sur laquelle est enregistré un si-gnal de test, ledit signal de test comportant plusieurs transitions, afin de produire un si-gnal de test de reproduction ;
(b) un amplificateur de lecture à gain variable (50) pour amplifier le signal de test de repro-duction, afin de produire un signal de sortie d’amplificateur ;
(c) des moyens (54) de réglage du gain en fonction d’un nombre détecté de transitions dans ledit signal de sortie d’amplificateur ; caractérisé en ce que ledits moyens de ré-glage comprennent :
 des moyens (58) de réduction du gain de l’amplificateur de lecture (50), d’un facteur prédéterminé, de sorte que ledit amplificateur de lecture produise un signal de calibrage comme dit signal de sortie d’amplificateur ;
 des moyens (58) pour établir ledit gain réduit à une valeur de gain de seuil lorsque ledit nombre détecté de transitions dans ledit si-gnal de calibrage est égal à un nombre fixe prédéterminé ; et
 des moyens (58) d’augmentation dudit gain de seuil, dudit facteur prédéterminé.

6. Système suivant la revendication 5, dans lequel les moyens pour établir le gain comprennent :
 des moyens de comptage du nombre de transitions dans le signal de calibrage apparaîs-sant pendant le passage d’une longueur prédéterminée de bande, pour des réglages successifs du gain dudit amplificateur de signal de reproduc-tion ; et
 des moyens de fixation du gain dudit amplificateur lorsque le nombre de transitions comptées dans le signal de calibrage est égal au dit nombre fixe.
7. Système suivant la revendication 5 ou 6, comportant des moyens d'enregistrement dudit signal de test sur ladite bande (10) et des moyens d'enregistrement de ladite pluralité de transitions sur une longueur prédéterminée de bande suffisamment longue pour fournir un nombre de comptes supérieur à un nombre minimal, afin de compenser la perte temporaire de signal de reproduction due à des effacements normalement prévus et à des variations de courte durée du bord de bande.
Fig. 1A
Fig. 1B
CARTRIDGE LOAD ROUTINE

INITIALIZE

NO

REVERSE 90 IPS TO BOT

YES

CONDITION PASS

FIND EOT REV 90 IPS TO BOT

ILLEGAL CARTRIDGE

YES

INDICATE ILLEGAL CARTRIDGE

NO

MOVE HEAD UP 60 mils

WRITE 250kHz PATTERN BOT TO LP

SET GAIN MOVING LP TO BOT

2nd TIME

GAIN CODE <= 1 = 60

NO

SET FAULT SIGNAL

3rd TIME

YES

3rd TRY?

NO

MOVE HEAD DOWN 187 mils (DC2000) 87 mils (DC1000)

Fig. 2

TO FIG. 4
FROM FIG. 4

EDGE FOUND?

MOVE HEAD DOWN 4 mils
SET AND STORE NOISE FLOOR
MOVE HEAD UP 15 mils
RECHECK R/W GAIN

FAIL EDGE COMPARE FAULT

MOVE HEAD DOWN 4 STEPS BELOW EDGE
OF TAPE
RESEEK EDGE FROM BELOW BOTTOM EDGE

3 < EDGE COMPARE COUNT < 9
FIRST TIME?

YES

3 < EDGE COMPARE COUNT < 9
2ND TIME?

NO

YES

FAIL EDGE COMPARE FAULT

GAIN DIFFERENCE < 2 COUNTS?

YES

122

R/W GAIN + 3 < NOISE FLOOR?

YES

RESEEK EDGE OF TAPE FROM ABOVE

NO

120

MOVING HEAD DOWN 4 STEPS BELOW EDGE
OF TAPE
RESEEK EDGE FROM BELOW BOTTOM EDGE

HYST COUNT < 9?

YES

END

NO

EXCESSIVE STEPPER HYST FAULT SIGNAL

132

130

128

126

124

122

120

118

116

FIG. 6