Memory cell matrix and fabrication process.

References cited:
IEEE TRANSACTIONS ON ELECTRON DEVICES vol. 37, no. 4, April 1990, NEW YORK US pages 1046 - 1051 KUNIYOSHI YOSHIIKAWA ET AL. 'An Asymmetrical Lightly Doped Source Cell for Virtual Ground High-Density EPROM's'

Proprietor: SGS-THOMSON MICROELECTRONICS S.r.l.
Via C. Olivetti, 2
I-20041 Agrate Brianza (Milano) (IT)

Inventor: Crotti, Pier Luigi
Via Crosio, 9
I-27015 Landriano (IT)

Representative: Pellegrini, Alberto et al
c/o Società Italiana Brevetti S.p.A.
Via Puccini, 7
I-21100 Varese (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

BACKGROUND OF THE INVENTION

1. Field of the invention

The present invention relates to an integrated semiconductor device containing an array of memory cells with markedly reduced chip's area requirements and wherein the need to form individually contacts on the drain area of all the cells is eliminated. The invention relates also to a process for fabricating such a memory device.

2. Description of the prior art

Monolithically integrated devices and memories using cells formed substantially by a MOS transistor (often a floating gate transistor) are well known and largely used in modern digital technologies. These semiconductor devices are characterized by the presence of one or more matrices of memory cells, either in the form of simple transistors and/or of floating gate type EPROM cells, organized in an array of rows and columns and which may be individually addressed by means of an appropriate selection circuitry.

Frequently in the case of EPROM memories, each cell may be essentially formed by a floating gate (or double gate) MOS transistor. The conventional architecture of these arrays memory cells which is characterized by the presence of parallel interconnection lines for the individual drain contacts of the transistors (cells) of each column and which are oriented orthogonally with respect to the parallel gate lines is similarly well known. The source regions of a pair of adjacent transistors along a column are electrically in common and, according to a conventional arrangement, the pairs of source regions in common of the transistors (cells) disposed along the same row are electrically connected in common through the semiconductor silicon substrate. In these known devices the isolation structures which separates the drains and the gates of pairs of cells disposed on the same row have a substantially rectangular geometry, whether being formed in trenches cut into the semiconductor (e.g. BOX type isolations) or formed by thermally growing a thick layer of field oxide in purpose defined by means of a nitride mask isolation zones. Commonly the drain contacts are formed through a masking step followed by the etching of a dielectric layer deposited on the surface of the semiconductor wafer for isolating the gate lines (i.e. the control gate structures of the transistors) which have already been formed.

From the point of view of photolithographic definition of increasingly small features, the above mentioned topographical arrangements of the conventional architecture of these devices have the following drawbacks.

Isolation Mask (or Active Area Mask) The geometries, though perfectly rectangular on the master mask, inevitably show rounded corners when reproduced on wafer. This depends essentially from optical diffractive limits of the imaging systems. The latent image in the resist layer of the projected geometries already shows a rounding of corners, a rounding which further increases through the following developing process.

With high resolution optical apparatuses (e.g. with a N.A. > 0.45) and with a high contrast masking process, the phenomenon may be limited but persists. At present, the best result which may be obtained are corners with a radius of curvature of about a quarter of micrometer. This value increases when thermally growing a field oxide.

The rounding of corners of rectangular geometries determines an increased criticality of the alignment of the gate lines above and a certain dimensional variance of the channel width of the devices.

Contact Mask The photolithographic problems are the known ones relating to the alignment in respect to the existing layers and to the rounding (which is here even more marked) of the corners of the geometries with a consequent reduction of the real contact area. Moreover the attendant reduction of the cross sectional area of the etched contact holes implies remarkable technological difficulties for adequately "filling" these submicrometric cavities with a metal.

A memory device having discontinuous isolation strips is described in EP-A-0 258 141.

In the prior European patent application EP-A-0 436 475 of the same applicant and cited as prior art according to Art. 54(3) EPC, a memory device was described wherein the above mentioned technical problems were substantially overcome while permitting the achievement of a higher degree of compactness of the memory cell. This was obtained by forming continuous isolation strips instead of discontinuous strips implying a rectangular geometry and by attaining the connection in common of the source regions by means of metal interconnect lines formed in a self-alignment manner directly over the semiconductor substrate in the source areas and above the isolation strips at crossings with the latter. The general configuration was that of a device with source connection lines extending parallel to, and between, gate lines, while individual drain contacts were formed in a selfalignment manner on the respective drain areas between two adjacent isolation strips. The drain interconnection lines could then be formed in a conventional manner for connecting the drain areas belonging to unit cells of the same column. In other words, also according to this solution, the drain connection lines for connecting the individual drain
contacts formed on the respective drain areas of the single cells run over the gate lines and were formed during relatively last phases of the fabrication process.

Another memory device having continuous isolation strips is known from US-A-4 597 060.

In the quest for devices ever more compact wherein submicrometric features must be defined by photolithographic methods, there is the need for further reducing the criticality of masking steps in terms of freedom from severe mask alignment tolerances, or more generally for simplifying the fabrication process with an ultimate objective of ensuring a high reliability and yield also in the case of devices designed for the most advanced limits of integration.

SUMMARY OF THE INVENTION

Object of the present invention is an integrated device comprising an array of memory cells as defined in claim 1 and a process of its manufacture as defined in claims 4 or 5, wherein the presence of individual drain contacts is substantially eliminated and which therefore may be fabricated with a relatively high compactness by means of less critical procedures than those followed in known fabrication processes, i.e. with a marked simplification of the fabrication process which has positive reflects on the process’s yield, reliability of the devices produced as well as on fabrication costs.

Also in the device of the present invention, as already in the device of the cited prior patent application, EP-A-0 436 475, the isolation structure is formed by parallel isolation strips, which extend without interruptions for the entire column’s length of the array of cells, which are organized in rows and columns. This fact, as already described in said prior patent application, permits the attainment of a markedly increased compactness degree while utilizing apparatuses for photolithographic definition with uncharged optical resolution, because the active cell areas are defined by means of the same minimum definition distance of the process, i.e. the so-called gate lines "minimum strip's width".

By contrast, in the device of the present invention, the relative positions of the gate lines (WORD LINE) and of the drain lines (BIT LINES) are essentially inverted with respect to those which were respectively occupied in the device object of the cited prior patent application, as well as in the great majority of the devices of the prior art.

In particular, as opposed to the structure disclosed in the cited prior patent application, the gate interconnection lines (i.e. control gate lines or WORD LINE) extend in an orthogonal direction in respect to the direction of extension of the source and of the drain interconnection lines, thus running parallel to the isolation strips in the direction of extension of the "column" of the array of cells.

Contrary to the large majority of the prior art devices, in the device object of the present invention, the gate interconnection lines, run above the drain interconnection lines, by practically inverting the order of superimposition of the relative layers which are formed in succession on the semiconductor wafer. Such a "superimposition" of the gate lines permits the realization of a connection in common of the drain junction belonging to cells which are arranged along a same row of the array by means of a drain connection line which is formed directly on the surface of the semiconducting substrate, above and in contact with the drain areas, and spatially superimposed to the isolation strips in cross over zones with the latter. In this way, the need of individual drain contacts in each cell, the formation and reliability of which present some of the major technological problems, in accordance with the present techniques of manufacture, is substantially eliminated.

The electrical interconnection between drain regions of the single cells may therefore be implemented by forming, in a self-connection manner, substantially continuous metal lines, thus eliminating in large measure, the above mentioned difficulties of photolithographic definition, as well as the problems connected to clean the minuscule contact areas, beside ensuring a real drain contact area which is markedly larger than that which could be obtained by the known techniques and therefore a greater reliability and quality of the ohmic contact which is established in respect to the prior art. Additional advantages are achieved in terms of eliminating the need to recur to ion implantation of the contact area after having defined it, of the so-called traditional METAL mask, as well as in terms of allowing the formation of gate contacts on a remarkably flat structure. This last aspect of the device of the invention further contributes to make the device particularly suited for implementing also ROM type devices, which may be programmed (customized) by creating or not MOS transistors within a "mosaic" of cells, by means of a so-called GATE CONTACTS mask, which may advantageously be used during one of the last phases of the fabrication process and under relatively noncritical conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

The different features and advantages of the invention will become evident through the following detailed description of certain embodiments of the invention and by reference to the annexed drawings, wherein:

the series of Figures from 1 to 11 schematically depicts the device architecture by illustrating the principal steps of the fabrication process, according to a first embodiment;

Figures 12 and 13 schematically show an al-
ternative embodiment of the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

With reference to Figures 1 to 11, on a semiconducting substrate 1, isolation structures 2 are defined and formed as uninterrupted parallel strips, which extend for the entire height of the columns of the array of cells. The isolation structures 2 may be constituted by a field oxide layer, thermally grown on unmasked portions of the surface of the semiconductor 1 which may have previously been ion implanted, according to one of the well known techniques of masking with silicon nitride, as the so-called LOCOS technique (by Philips) or the PLANOX technique (by SGS-THOMSON) or alike. Alternatively the isolation strips may be "inlaid", i.e. made by first cutting trenches on the surface of the semiconducting substrate which, after an ion-implantation, are filled by deposition with a dielectric material such as silicon oxide (BOX type isolations), thus advantageously ensuring a perfect planarity of the surface of the wafer.

As it may be observed the photolithographic definition of the isolation strips 2 is practically free of the inconveniences which derived by the rounding, during the image transfer process, of the corners of substantially rectangular geometries, such as was the case with the known prior art architecture of these devices. The photolithographic definition of parallel strips is far more easy, optically, because the diffraction problems are markedly less pronounced than in the case of rectangular or bi-directionally defined features.

After having formed the isolation structures 2 by utilizing any of the known techniques, also by following common practices, the gate structures, indicated with 3 as a whole, are formed, which gate structures, in accordance with the present invention, are partially sacrificial structures because they will be further defined later in the process by further masking and etching. As it may be observed in Fig. 2, the gate structures for an array of unit memory cells are, at this stage, parallel spaced strips, which intersect orthogonally the isolation strips 2 previously formed on the front of the semiconducting wafer over them. As shown in the cross sectional view A-A of Fig. 3, for the specific case of EPROM type cells, each individual gate structure comprises a first conducting layer 4, usually of polycrystalline silicon (poly I), which is electrically isolated from the underlying semiconductor 1 by a gate dielectric layer, normally of silicon oxide, 5, previously formed over the active areas between two adjacent isolation strips 2, and which first conducting layer 4 will constitute the floating gate of the EPROM cells of the device, completely insulated by a dielectric layer or multilayer 6, on top of which a second conducting layer of polycrystalline silicon (poly II) 7 is deposited and patterned to constitute a control gate electrode of the cell. The flakes of the composite gate structures 3 are covered by an insulating dielectric layer 8, having a tapered cross sectional profile for forming lateral spacers for conducting the subsequent ion implantation of the drain and source areas of the semiconductor and for forming, in a self-alignment condition, electrical interconnection lines for the drain and source regions of individual cells, as will described later. Also the formation of these tapered dielectric spacers 8 is a well known practice and therefore will not be reiterately described in detail.

Briefly, the fabrication process after having completed the formation of isolation structures in the form of parallel uninterrupted strips 2, in the case of an EPROM memory, may comprise the following steps:

a) thermally oxidizing the semiconductor 1 to form a layer of gate oxide 5 on active areas;

b) depositing by chemical vapor deposition a layer of polycrystalline silicon (poly I) and doping it;

c) forming by thermally oxidizing the surface of the deposited polycrystalline silicon, or by deposition, a dielectric layer or multilayer 6 for isolating the floating gate constituted by the patterned layer of polycrystalline silicon 4 (poly I);

d) depositing by chemical vapor deposition a second layer of polycrystalline silicon 7 (poly II), through which the control gates will be patterned eventually, and optionally also a layer of silicon silicide in order to complete in practice the deposition step of all the layers which form the gate structure stack of the memory matrix;

e) patterning by masking and etching the parallel lines of the gate structure;

f) forming side wall spacers 8 of a dielectric material on the flanks of the lines of the gate structure, and implanting source and drain areas according to common practices.

At the end of this sequence of fabrication steps, the structure is as shown in Figures 2 and 3, in particular in the sectional view of Fig. 3, a gate structure for EPROM cell is depicted. Of course, in case of cells formed by a simple MOS transistor, the gate structure will comprise a single conducting layer (i.e. the gate structure will be formed substantially by the poly I layer only).

At this point the fabrication process may proceed in accordance with two different embodiments of the invention.

According to a first embodiment, which is schematically depicted in the series of Figures 4-11, the process proceeds through the following steps:

g) conformally depositing a single, electrically conducting, matrix layer 9 or a conducting multilayer, followed by the deposition of a layer of a planarizing material 10 (e.g. a silicon oxide glass; SOG) or of a material which lend itself to be planarized (e.g. a mixture of oxides which may be thermally refloated), as depicted in Fig. 4;
h) maskless "blanket" etching of the layer 10 until exposing the tops of the peaks of the underlying matrix conducting layer 9 which was previously deposited, as shown in Fig. 5;

i) selective etching of the conducting material of the matrix layer 9, exposed during the preceding etching step, while utilizing the residues of the planarizing material 10 as a mask during this etching step, until lowering the etch front of the conducting material down the sides of the dielectric spacers 8, as shown in Fig. 6.

With this last step, the source and drain interconnection lines are jointly formed directly on the substrate, above source and drain regions of the cells, respectively, which lines geometrically cross-over the isolation strips when they cross with the latter which extend in an orthogonal direction in respect to said connection lines. It is evident as the contact area on the source regions as well as on the drain regions is advantageously as large as possible. Moreover, the fact that the electrical contact is established on an area of the semiconducting substrate which has not been purposely "exposed" by means of an etching of an isolation dielectric layer which is customarily formed for isolating the gate structures, avoids the problems due to etch induced crystal defects and/or implantation of polluting species and/or to an imperfect or only partial cleaning of the contact area from oxide and/or polymeric residues which normally are formed during the customary Reactive Ion Etching process used for making the contact holes through an isolating dielectric layer. Of course, the most remarkable advantage is represented by the fact that the drain and source connection metal lines are realized without the use of patterning masks whose alignment could be critical. In fact, the metal source and drain connection lines 9 are formed in a substantially self-alignment manner in respect to the existing, partially sacrificial, gate structures, which at this stage are still in the form of uninterrupted parallel strips.

At this point, the fabrication process may proceed further through the following steps:

j) removing the residual strips of planarizing material 10 still present over the conducting lines 9, applying a layer of resist and defining a GATE SEPARATION MASK, whose pattern is schematically shown in Fig. 7 by the profiles M drawn with a dash line. As it is easily observed, this mask has a pattern formed by parallel strips and is substantially free of critical features. Etching through the openings of the mask the unmasked portions of the partially sacrificial gate structure, i.e. of the strips 3 where they cross over the underlying isolation strips, thus interrupting the continuity of the strips of the partly sacrificial gate structure which was formed and defining the permanent gate structures of the single cells, as depicted in Figures 7 and 8;

k) depositing a layer of dielectric material 11 as intermediate isolation layer,

l) defining by means of a dedicated GATE CONTACT mask and etching the layer of dielectric material 11 of intermediate isolation until exposing the surface of the conducting layer of the patterned control gate of EPROM cells or of the unique gate conducting layer in the case of normal MOS transistors, as depicted in Fig. 9.

This GATE CONTACT mask is appreciably far less critical than the mask normally used for "opening" the drain contacts in prior art architectures. In fact, the surface to be exposed for the contact is at a relatively higher and constant level on the front of the wafer, which front, after depositing the intermediate isolation dielectric layer 11, is relatively flat and may easily be further planarized if needed.

The fabrication process may then proceed through the following steps:

m) depositing a conducting layer (doped polycrystalline silicon, aluminum, aluminum alloy and the like) and patterning by means of dedicated mask the gate connection lines 12, which are lines parallel to each other and orthogonal in respect to the underlying source and drain connection lines and run projectively parallel to two underlying adjacent isolation strips, as shown in Figures 10 and 11.

According to an alternative embodiment of the invention, it is possible to form the source and drain connection lines by depositing above the patterned, partially sacrificial strips of the gate structure 3, a layer of conducting material (e.g. tungsten), not in a conformal manner, but in such a way that the deposited layer of conducting material substantially planarizes the surface of the front of the wafer, as depicted in Fig. 14. This may be obtained by utilizing techniques which favor the tendency of the specific metallic material deposited to readily fill the cavities of the surface by growing thicker therein rather than on the top of the peaks of the surface.

Such a planarizing conducting layer 9' may then be etched under highly anisotropic conditions, e.g. by a RIE etch process, until the etch front of the conducting material 9' is lowered down the sides of the dielectric spacers 8 which are present on the flanks of the underlying strips 3 of the gate structure, as schematically depicted in Fig. 15, in order to form in a simplified manner the drain and gate metallic connection lines, self-aligned to the existing strips 3 of the gate structure.

While in Fig. 3 a typical composite stack gate structure of an EPROM cell has been shown in detail, in the following Figures the gate structure has been more generally indicated with 3, as a whole, purposely without showing the intrinsic specific multilayered structure, because as it will be evident to the skilled technician, the present invention is equally applicable both in the case of EPROM type unit cells, as well as
in the case of unit cells formed by a standard MOS transistor or alike structure, i.e. having a single gate electrode. The so-called ROM memories are normally made with such a type of unit cells which cannot be erased (neither programmed) solely by electrical means. The discrimination between the status "1" and "0" of the binary code is conventionally implemented by either one of the following methods:

a) by creating (or not creating) a transistor structure in a particular location of the array (matrix) of transistors;

b) by differentiating by means of channel implantation, the switch-on threshold of a particular transistor of the array;

c) by connecting (or not connecting) a particular transistor of the array.

The latter technique is often preferred because it permits to "customize" a device advantageously during the terminal steps of the fabrication process so as to permit standardization of the greater part of the preceding fabrication steps. According to known techniques, this customization may occur by connecting each drain to two selectable channels. The advantage of such an architecture is given by a 100% redundancy, while the drawback is the requirement for a relatively large area of silicon. The lithographic difficulties are practically the same which are encountered when fabricating EPROM type cells.

By contrast, the present invention allows the implementation of a "programmed" connection of each transistor of the memory array during the terminal steps of the fabrication, by means of the gate contact mask and this fact greatly reduces the criticality of alignment and patterning in respect to the prior art practice of employing for the same purpose a far more critical DRAIN CONTACT mask, as mentioned before. Advantageously each transistor or memory cell may be addressed through two selectable channels thus obtaining the same 100% redundancy as in the case of the prior art, while taking advantage of the extreme compactness of the array of the invention, in respect to an array made according to the prior art.

In more general terms, or in particular in the case of EPROM memory arrays, different decoding circuits may be used which would include or not a certain redundancy. In other words, in case single memory cells are to be individually addressed, the memory matrix must be provided with an appropriate decoding circuitry for discriminating among the source lines, in accordance with a well known technique. By contrast if a more traditional decoding circuitry is utilized, with all the source lines electrically connected in common, each memory "cell" must be considered as formed in practice by two half cells, i.e. by a pair of unit cells or of transistors of the memory array, which will act in conjunction to each other thus determining a 100% redundancy, according to well known practices.

Claims

1. A semiconductor device comprising an array of memory cells, each having a gate structure formed above a channel region between a source and a drain region of a semiconducting substrate, organized in rows and columns with source, gate and drain electrical interconnection lines and with an isolation structure comprising parallel isolating strips which extend uninterruptly for the whole columnwise length of said array of cells and separate a cell from an adjacent cell disposed on the same row, wherein:

- said drain interconnection lines of said array are uninterrupted parallel metal lines formed on the surface of said semiconducting substrate, each line running over and in electrical contact with the drain regions of cells arranged in a row of the array and being physically superimposed on said isolation strips where said drain interconnection line crosses said isolation strips;
- said source interconnection line of said array are uninterrupted parallel metal lines formed on the surface of said semiconducting substrate, each line running over and in electrical contact with the source regions of cells arranged in a row of the array and being physically superimposed on said isolation strips where said source interconnection line crosses said isolation strips;
- any of said gate interconnection lines connecting the gate structures of cells disposed in a column of said array runs parallel to said isolation strips and orthogonally to said drain and source interconnection lines and is physically superimposed on the gate structures of cells contained between two adjacent isolation strips and over said underlying drain and source interconnection lines where said gate interconnection line crosses said drain and source lines.

2. A device as defined in claim 1, wherein said memory cells are EPROM cells and said gate structure is formed by a floating gate electrode and by a control gate electrode capacitively coupled to said floating gate electrode.

3. A device as defined in claim 1, wherein said memory cells are ROM cells essentially formed by a MOS transistor, the gate of which is programmably connected or not connected to a respective gate interconnection line of transistors belonging to the same column of said array.

4. A process for fabricating a semiconductor device according to claim 1 comprising an array of memory cells, each having a gate structure formed above a channel region between a source and a drain region of a semiconducting substrate, or-
ganized in rows and columns with source, gate and drain electrical interconnection lines and with an isolation structure comprising parallel isolating strips which extend uninterruptedly for the whole columnwise length of said array of cells and separate a cell from an adjacent cell disposed on the same row,

which comprises the following steps:

forming said isolation structure among the cells of a row of said array in the form of uninterrupted isolation strips uniformly spaced and parallel to each other and extending for the whole columnwise length of said array;

forming a partially sacrificial gate structure in the form of spaced parallel strips running orthogonally to said underlying isolation strips and forming dielectric sidewall spacers along the flanks of said partially sacrificial gate structure strips;

conformally depositing a metal layer or multilayer over said substrate and strips; depositing a layer of planarization material;

anisotropically etching without a mask said layer of planarization material until exposing the tops of the underlying conformally deposited metal layer, thus leaving residual ribbons of said planarization material on the bottom of valleys of said metallic layer between two underlying partially sacrificial adjacent strips of said gate structure;

etching the exposed portions of said metal layer utilizing said residual ribbons of planarization material on the bottom of said valleys as a mask, until lowering the etch front of the metal of said layer down the side walls of said dielectric spacers formed along the flanks of said partially sacrificial strips of the gate structure;

removing said residual ribbons of planarization material;

forming a gate-separation mask having openings coinciding with the superimposition zones of said partially sacrificial gate structure strips over said underlying isolation strips;

etching the exposed portions of said partially sacrificial gate structure strips for defining permanent gate structures and successively removing said mask;

depositing an intermediate isolation layer of a dielectric material;

defining by means of a gate-contact mask individual gate contacts and etching said intermediate isolation dielectric material layer through openings of the mask until exposing the top surface of said permanent gate structures and removing said mask;

depositing a gate-contact metal layer in electrical contact with said permanent gate structures and patterning said deposited metal layer to form said gate interconnection lines parallel to the underlying isolation strips and orthogonal to said underlying drain and source interconnection lines and connecting the gate structures of the cells of a column of the array.

5. A process for fabricating a semiconductor device according to claim 1 comprising an array of memory cells, each having a gate structure formed above a channel region between a source and a drain region of a semiconducting substrate, organized in rows and columns with source, gate and drain electrical interconnection lines and with an isolation structure comprising parallel isolating strips which extend uninterruptedly for the whole columnwise length of said array of cells and separate a cell from an adjacent cell disposed on the same row,

which comprises the following steps:

forming said isolation structure among the cells of a row of said array in the form of uninterrupted isolation strips uniformly spaced and parallel to each other and extending for the whole columnwise length of said array;

forming a partially sacrificial gate structure in the form of spaced parallel strips running orthogonally to said underlying isolation strips and forming dielectric sidewall spacers along the flanks of said partially sacrificial gate structure strips;

depositing a planarizing metal layer over said substrate and strips;

anisotropically etching without a mask said layer of planarizing metal layer until lowering the etch front of said planarizing metal layer down the side walls of said dielectric spacers formed along the flanks of said partially sacrificial gate structure strips;

removing said residual ribbons of planarization material;

forming a gate-separation mask having openings coinciding with the superimposition zones of said partially sacrificial gate structure strips over said underlying isolation strips;

etching the exposed portions of said partially sacrificial gate structure strips for defining permanent gate structures and successively removing said mask;

depositing an intermediate isolation layer of a dielectric material;

defining by means of a gate-contact mask individual gate contacts and etching said intermediate isolation dielectric material layer through openings of the mask until exposing the top surface of said permanent gate structures and removing said mask;

depositing a gate-contact metal layer in electrical contact with said permanent gate structures and patterning said deposited metal layer to
form said gate interconnection lines parallel to
the underlying isolation strips and orthogonal to
said underlying drain and source interconnection
lines and connecting the gate structures of the
cells of a column of the array.

Patentansprüche

1. Halbleiterbauelement, umfassend ein Feld aus
Speicherzellen, die jeweils eine oberhalb einer
Kanalzone zwischen einer Source- und einer
Drainzone eines Halbleitersubstrats ausgebildete
Gatestruktur besitzen, die in Reihen und Spalten
mit elektrischen Source-, Gate- und Drain-
Verbindungsleitungen und mit einer Trennstruktur
organisiert sind, welche parallele Isolierstreifen
umfaßt, die sich ohne Unterbrechung über die
gesamte Spaltenlänge des Feldes von Zellen erstrecken
und eine Zelle von einer benachbarten
Zelle derselben Reihe trennen, wobei
die Drain-Verbindungsleitungen des Feldes unterbrochene parallele Metallleitungen sind, die
auf der Oberfläche des Halbleitersubstrats ausgebildet sind, wobei jede Leitung über und in
elektrischem Kontakt mit die bzw. den Drainzonen
der in einer Reihe des Feldes angeordneten Zellen läuft und baulich den Trennstreifen dort
überlagert ist, wo die Drain-Verbindungsleitung
die Isolierstreifen kreuzt;
die Source-Verbindungsleitungen des Feldes in Form ununterbrochener paralleler Metallleitungen
vorliegen, die auf der Oberfläche des Halbleitersubstrats gebildet sind, wobei jede Leitung über die und in elektrischem Kontakt mit den Sourcezonen der Zellen in einer Reihe des Feldes läuft und baulich den Isolierstreifen dort
überlagert ist, wo die Source-Verbindungsleitung
die Isolierstreifen kreuzt;
jede der Gate-Verbindungsleitungen, die die
Gate-Strukturen der Zellen in einer Spalte des Feldes verbinden, parallel zu den Isolierstreifen
und orthogonal zu den Drain- und Source-Verbindungsleitungen verläuft und baulich den Gate-
Strukturen der Zellen, die zwischen zwei benachbarten Isolierstreifen enthalten sind, und über
den darunterliegenden Drain- und Source-
Verbindungsleitungen dort überlagert ist, wo die
Gate-Verbindungsleitung die Drain- und Source-
leitungen kreuzt.

2. Bauelement nach Anspruch 1, bei dem die Speicherschalter EPROM-Zellen sind und die Gate-
Struktur gebildet wird durch eine schwimmende
gateelektrode und durch eine Steurelektrode, die
mit der schwimmenden Gateelektrode kapa-
zitiv gekoppelt ist.

3. Bauelement nach Anspruch 1, bei dem die Speicherschalter ROM-Zellen sind, im wesentlichen
gedeckpt durch einen MOS-Transistor, dessen
Gate durch Programmierung mit einer zugehöri-
gen Gate-Verbindungsleitung von zu derselben
Spalte des Feldes gehörigen Transistoren verbunden oder nicht verbunden ist.

4. Verfahren zum Herstellen eines Halbleiterbauelements nach Anspruch 1, umfassend ein Feld
aus Speicherzellen, jeweils mit einer Gatestruktur, die über einer Kanalzone zwischen einer Source-
und einer Drainzone eines Halbleitersubstrats
ausgebildet ist, organisiert in Reihen und Spalten
mit elektrischen Source-, Gate- und Drain-
Verbindungsleitungen und mit einer Trennstruktur,
die parallele Isolierstreifen umfaßt, welche
sich ununterbrochen über die gesamte Spalten-
länge des Feldes von Zellen erstrecken und eine
Zelle von einer benachbarten Zelle in derselben
Reihe trennen,

5. Verfahren nach Anspruch 4, bei dem die
nach Anspruch 3 angegebenen Speicherzellen
als Speicherschalter EPROM-Zellen ausgegeben sind.

6. Verfahren nach Anspruch 4, bei dem die
nach Anspruch 3 angegebenen Speicherzellen
als Speicherschalter ROM-Zellen ausgegeben sind.

7. Verfahren nach Anspruch 4, bei dem die
nach Anspruch 3 angegebenen Speicherzellen
als Speicherschalter ROM-Zellen ausgegeben sind.

8. Verfahren nach Anspruch 4, bei dem die
nach Anspruch 3 angegebenen Speicherzellen
als Speicherschalter EPROM-Zellen ausgegeben sind.

9. Verfahren nach Anspruch 4, bei dem die
nach Anspruch 3 angegebenen Speicherzellen
als Speicherschalter EPROM-Zellen ausgegeben sind.

10. Verfahren nach Anspruch 4, bei dem die
nach Anspruch 3 angegebenen Speicherzellen
als Speicherschalter EPROM-Zellen ausgegeben sind.

5. Verfahren zum Herstellen eines Halbleiterbauelements nach Anspruch 1, umfassend ein Feld aus Speichereinheiten, jeweils mit einer Gatestruktur, die über einer Kanalzone zwischen einer Source- und einer Drainzone eines Halbleitersubstrats ausgebildet ist, organisiert in Reihen und Spalten mit elektrischen Source-, Gate- und Drain- Verbindungsleitungen und mit einer Trennschicht, die parallele Isolierstreifen umfaßt, welche sich ununterbrochen über das gesamte Spaltenlänge des Feldes von Zellen erstrecken und eine Zelle von einer benachbarten Zelle in derselben Reihe trennen, umfassend die folgenden Schritte: Ausbilden der Trennschicht unter den Zellen einer Reihe des Feldes in Form von ununterbrochenen Trennstreifen, die gleichmäßig befrachtet sind und parallel zueinander verlaufen und sich über die gesamte Spaltenlänge des Feldes erstrecken; Ausbilden einer Teil-Opfergatestruktur in der Form befrachterter paralleler Streifen, die orthogonal zu den darunterliegenden Trennstreifen verlaufen und die dielektrische Seitenwand-Abstandselemente entlang der Flanken der Teilopfergatestruktur-Streifen bilden; Niederschlagen einer Eibeinigungs metallschicht über dem Substrat und den Streifen; anisotropes Ätzen der Schicht aus der Eibein- nigungsmetallschicht ohne Maske, bis die Ätzfront der Eibeinigungs metallschicht unter die Seiten-

wände der dielektrischen Distanzelemente absinkt, die entlang den Flanken der Teilopfer-Gate struktur streifen gebildet sind; Bildern einer Gatesepariermaske mit Öffnungen, die übereinstimmen mit den Überlagerungszonen der Teilopfer-Gatestrukturenreihe über den darunterliegenden Trennstreifen; Ätzen der freiliegenden Abschnitte der Teilopfer-Gatestrukturenreihe, um permanente Gatestrukturen zu definieren, und sukzessives Entfernen der Maske; Niederschlagen einer Zwischenisolierschicht aus dielektrischem Material; Definieren von individuellen Gatekontakten mit Hilfe einer Gatekontaktmaske, und Ätzen der aus dielektrischem Material bestehenden Zwischenisolierschicht durch Öffnungen der Maske hindurch, bis die Oberseite der permanenten Gatestrukturen frei liegt, und Entfernen der Maske; Aufbringen einer Gatekontakt-Metallschicht in elektrischem Kontakt mit den permanenten Gatestrukturen und Versehen der aufgebrachten Metallschicht mit einem Muster zur Ausbildung der Gate-Verbindungsleitungen parallel zu den darunterliegenden Trennstreifen und orthogonal zu den darunterliegenden Drain- und Source- Verbindungsleitungen, und Verbinden der Gatestrukturen der Zellen einer Spalte des Feldes.

Reivendications

1. Dispositif semiconducteur comprenant un réseau de cellules mémoire, ayant chacune une structure de grille formée au-dessus d'une région de canal entre une région de source et une région de drain d'un substrat semiconducteur, organisées en rangées et en colonnes avec des lignes d'interconnexion électriques de source, de grille et de drain et avec une structure d'isolement comprenant des bandes isolantes parallèles qui s'étendent sans interruption sur toute la longueur d'une colonne du réseau de cellules et séparent une cellule d'une cellule adjacente disposée sur la même rangée, dans lequel :
- les lignes d'interconnexion de drain du réseau sont des lignes métalliques parallèles ininterrompues formées sur la surface du substrat semiconducteur, chaque ligne courant sur et étant en contact avec les régions de drain des cellules disposées dans une rangée du réseau et étant physiquement superposée aux bandes d'isolant là où la ligne d'interconnexion de drain croise les bandes d'isolant; - les lignes d'interconnexion de source du réseau sont des lignes métalliques parallèles...
ininterrompues formées à la surface du substrat semi-conducteur, chaque ligne courant sur et étant en contact avec les régions de source des cellules disposées selon une rangée du réseau et étant physiquement superposée aux bandes d'isolant là où la ligne d'interconnexion de source croise les bandes d'isololation ; l'une quelconque des lignes d'interconnexion de grille reliant les structures de grille des cellules disposées dans une colonne du réseau s'étend parallèlement aux bandes d'isolément et orthogonalement aux lignes d'interconnexion de drain et de source et est physiquement superposée aux structures de grille des cellules contenues entre deux bandes d'isolément adjacentes et au-dessus des lignes d'interconnexion de drain et de source sous-jacentes là où la ligne d'interconnexion de grille croise les lignes de source et de drain.

2. Dispositif selon la revendication 1 dans lequel les cellules mémoire sont des cellules EPROM et la structure de grille est formée d'une électrode de grille flottante et d'une électrode de grille de commande couplées capacitivement à l'électrode de grille flottante.

3. Dispositif selon la revendication 1 dans lequel les cellules mémoire sont des cellules ROM essentiellement constituées d'un transistor MOS dont la grille est connectée ou non de façon programmable à une ligne d'interconnexion de grille respective de transistors appartenant à la même colonne du réseau.

4. Procédé de fabrication d'un dispositif semi-conducteur selon la revendication 1, comprenant un réseau de cellules mémoire ayant chacune une structure de grille formée au-dessus d'une région de canal entre une région de source et une région de drain d'un substrat semi-conducteur, organisées en rangées et colonnes avec des lignes d'interconnexion électriques de source, de grille et de drain et avec une structure d'isoloment comprenant des bandes d'isolément parallèles qui s'étendent de façon ininterrompue sur toute la longueur d'une colonne du réseau de cellules et séparent une cellule d'une cellule adjacente de la même rangée, comprenant les étapes suivantes :

former la structure d'isoloment entre les cellules d'une rangée du réseau sous forme de bandes d'isolément ininterrompues uniformément espacées et parallèles les unes aux autres et s'étendant sur toute la longueur d'une colonne du réseau ;

former une structure de grille partiellement sacrificielle sous forme de bandes parallèles espacées s'étendant orthogonalement aux bandes d'isolement sous-jacentes et former des espaces latéraux diélectriques le long des flancs des bandes de structure de grille partiellement sacrificielles ;

déposer de façon conforme une couche ou un multicouche métallique sur le substrat et les bandes ;

déposer une couche de matériau de planarisation ;

graver de façon anisotrope sans masque la couche de matériau de planarisation jusqu'à exposer les sommets de la couche de métal sous-jacente déposée de façon conforme, laissant ainsi en place des rubans résiduels du matériau de planarisation au fond des vallées de la couche métallique entre deux bandes adjacentes sous-jacentes partiellement sacrificielles de la structure de grille ;

graver les parties exposées de la couche métallique en utilisant les rubans résiduels de matériau de planarisation au fond des vallées comme masque, jusqu'à abaisser le front de gravure du métal de la couche en dessous des parois latérales des espaces diélectriques formés le long des flancs des bandes partiellement sacrificielles de la structure de grille ;

everber les rubans résiduels de matériau de planarisation ;

former un masque de séparation de grille ayant des ouvertures qui coïncident avec les zones de superposition des bandes de structure de grille partiellement sacrificielles au-dessus des bandes d'isolément sous-jacentes ;

graver les parties exposées des bandes de structure de grille partiellement sacrificielles pour définir des structures de grille permanentes et éliminer ensuite le masque ;

déposer une couche d'isoloment intermédiaire d'un matériau diélectrique ;

définir, au moyen d'un masque de contact de grille, des contacts de grille individuels et graver la couche de matériau diélectrique d'isoloment intermédiaire à travers les ouvertures du masque jusqu'à exposer la surface supérieure des structures de grille permanentes, et éliminer le masque ;

déposer une couche de métal de contact de grille en contact électrique avec les structures de grille permanentes et graver la couche de métal déposée pour former les lignes d'interconnexion de grille parallèles aux bandes d'isoloment sous-jacentes et orthogonalement aux lignes d'interconnexion sous-jacentes de drain et de source et connecter les structures de grille des cellules d'une colonne du réseau.

5. Procédé de fabrication d'un dispositif semi-conducteur selon la revendication 1, comprenant un
réseau de cellules mémoire ayant chacune une
structure de grille formée au-dessus d’une région
de canal entre une région de source et une région
de drain d’un substrat semiconducteur, organi-
sées en rangées et colonnes avec des lignes d’in-
erconnexion électriques de source, de grille et
de drain et avec une structure d’isolement
comprenant des bandes d’isolement parallèles
qui s’étendent de façon ininterrompue sur toute la
longueur d’une colonne du réseau de cellules et
séparent une cellule d’une cellule adjacente de la
même rangée, comprenant les étapes suivantes :
former la structure d’isolement parmi les
cellules d’une rangée du réseau sous forme de
bandes d’isolement ininterrompues uniforme-
ment espacées et parallèles les unes aux autres
et s’étendant sur toute la longueur d’une colonne
du réseau ;
former une structure de grille partiellement
sacrificielle sous forme de bandes parallè-
les espacées s’étendant orthogonalement aux
bandes d’isolement sous-jacentes et former des
espaceurs latéraux diélectriques le long des
flancs des bandes de structure de grille partiel-
lement sacrificielles ;
déposer une couche de métal de planari-
sation au-dessus du substrat et des bandes ;
graver de façon anisotrope sans masque
la couche de métal de planarisation jusqu’à
abaisser le front de gravure de la couche de métal
de planarisation au niveau des parois latérales
des espaceurs diélectriques formés le long des
flancs des bandes de structure de grille partiel-
lement sacrificielles ;
former un masque de séparation de grilles
ayant des ouvertures qui coïncident avec les zo-
es de superposition des bandes de structure de
grille partiellement sacrificielles au-dessus des
bandes d’isolement sous-jacentes ;
graver les parties exposées des bandes
de structure de grille partiellement sacrificielles
pour définir des structures de grille permanentes,
et enlever ensuite le masque ;
déposer une couche d’isolement intermé-
diaire de matériau diélectrique ;
définir au moyen d’un masque de contact
de grille des contacts de grille individuels et gra-
ver la couche de matériau diélectrique d’iso-
lement intermédiaire à travers les ouvertures du
masque jusqu’à exposer la surface supérieure
des structures de grille permanentes, et enlever
le masque ;
déposer une couche de métal de contact
de grille en contact électrique avec les structures
de grille permanentes et graver la couche de mé-
tal déposée pour former les lignes d’intercon-
exion de grille parallèles aux bandes d’iso-
lement sous-jacentes et orthogonales aux lignes
d’interconnexion sous-jacentes de drain et de
source, et connecter les structures de grille des
cellules d’une colonne du réseau.