EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 07.06.95 Bulletin 95/23

Application number: 91850088.5

Date of filing: 05.04.91

A method for determining the transmission quality of a home traffic connection in a mobile radio system.

Priority: 23.05.90 SE 9001869

Date of publication of application: 27.11.91 Bulletin 91/48

Publication of the grant of the patent: 07.06.95 Bulletin 95/23

Designated Contracting States: DE FR GB IT

References cited:
EP-A- 0 344 539
DE-B- 2 612 476
US-A- 4 723 303

Proprietor: TELEFONAKTIEBOLAGET L M ERICSSON
Patent and Trademark Department
S-126 25 Stockholm (SE)

Inventor: Borg, Lars Uno
Stickelbärsvägen 4
S-114 23 Stockholm (SE)

Representative: Lövgren, Tage et al
Telefonaktiebolaget L M Ericsson
Patent and Trademark Department
S-126 25 Stockholm (SE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

TECHNICAL FIELD

The present invention relates to a method in a mobile radio system for determining a transmission quality of a home traffic connection that has been established, wherein the mobile radio system that has been established includes a plurality of two-way radio channels, each channel having two carriers with different frequencies at a desired frequency distance from one another and said radio channels being reused within said mobile radio system, the method comprising the steps of:

- establishing between a first and a second radio location the home traffic connection utilizing an indicated one of said radio channels, one of said radio locations being a first base station and the other of said radio locations being a first subscriber mobile station;
- establishing between at least one further base station and at least one further subscriber mobile station a further traffic connection on said indicated radio channel within the mobile radio system, the carrier of the further traffic connection interfering on the home traffic connection; and
- measuring in the first radio location the combined received signal strength of the carriers of the home traffic connection and the further traffic connections.

BACKGROUND ART

In a cell-divided mobile radio system, the geographic regions of the system are divided into cells which are collected into larger groups, often referred to as clusters. Each cell is allocated a number of carrier frequencies in accordance with a frequency plan, so that mutually adjacent cells will not disturb one another and so that a carrier frequency pattern can be formed in the group. Each cell may have a base station, and it is also possible to serve several cells from a single base station. The pattern of carrier frequencies is then repeated with each group. A mobile radio system of this kind is described in more detail in CMS88, Cellular Mobile Telephone System, Ericsson Telecom, 1988, Chapter 6.

In an adaptive mobile radio system, each base station is able to transmit on all carrier frequencies and the channels are allocated to a mobile station subsequent to having established the extent to which the separate carrier frequencies are disturbed. As the channels are allocated, there forms a changing geographic pattern of carrier frequencies which are so allocated that no one connection will disturb the other.

Channel allocation is normally effected with the aid of a control channel on a carrier frequency, and traffic signals are transmitted on traffic channels of other carrier frequencies. When the number of carrier frequencies is limited, it is extremely difficult to avoid disturbances between separate connections which use one and the same carrier frequency. Among other things, this difficulty is because the mobile stations are liable to have a disturbing effect of varying magnitude when they move. Various methods have been proposed for creating a measurement of the quality of a connection, for instance with the aid of SAT (Supervising Audio Tone) as described in the aforesaid reference CMS88, Chapter 1:10. The base station transmits on a desired carrier frequency a tone which has a modulation frequency above the audible range. The tone is received by the mobile station and retransmitted to the base station. The base station can determine the extent to which the selected carrier frequency is disturbed, by comparing the transmitted tone with the retransmitted tone. In the case of digital transmission systems, the Bit Error Rate, BER, can be used as a measurement of the disturbance. The drawback with both of these methods, however, is that they give an indirect measurement of how the carrier frequency from a disturbing connection influences the home connection.

In a thesis submitted at the Royal Institute of Technology (Kungl. Tekniska Högskolan) by Christer Gustavsson and entitled "Simulering av adaptivt kanaal" (Simulation of Adaptive Channel Selection), Ericsson Radio Systems AB, 1987, there is described a method of reducing the number of calls which are blocked when changing base stations, for instance. The base stations have, in the main, permanently allocated channels, but they also have a smaller number of adaptive channels. The base station and the mobile station measure the signal strength on the call channels of the system and use these measurements as a measurement of the signal strength of traffic channels which can be connected. The mobile station and the base station also measure the signal strength of traffic channels between foreign mobile stations and base stations. These traffic channels constitute disturbances on the connection to be established. There is selected a traffic channel whose disturbance has a low signal strength in relation to the signal strength of the call channel. Although the method enables the transmission quality of a traffic connection to be adequately assessed and also provides for an adequate choice of traffic channel, it does not provide a direct measurement of the signal strength of the selected traffic channel, which is a disadvantage. Neither does the method provide the possibility of measuring continuously the transmission quality of the home traffic connection that has been established. A similar method of determining transmission quality has been proposed for the European mobile teleph-
ony system. This method is described in ETSI/GSM 05.08, Version 3.5.0, Chapter 3.

In a textbook by William C. Y. Lee: "Mobile cellular telecommunications systems", McGraw-Hill Book Company, 1989, is described in Section 9, pages 270-271, use of the carrier-to-interference ratio C/I for the control of handoffs. It is disclosed that, for calculating the ratio C/I, the interference level I is measured before a call is connected and a level C+I is measured during the call.

DISCLOSURE OF THE INVENTION

The inventive method avoids the aforesaid drawbacks associated with known techniques. The invention is based on the concept of measuring the signal strength of the carrier frequency of the home traffic connection and also the signal strength of the carrier frequency of disturbing traffic connections over a time interval in which the carrier frequency of the home connection is closed down.

The invention is characterized by the characterizing features set forth in the following Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

An exemplifying embodiment of the invention will now be described in more detail with reference to the accompanying drawings, in which

Figure 1 illustrates cells and cell-groups of a mobile telephony system;
Figure 2 illustrates schematically signal paths and disturbances between base stations and mobile stations;
Figure 3 illustrates time slots and signal strengths for a time-shared mobile telephony system; and
Figure 4 illustrates a time slot signal sequence.

BEST MODE OF CARRYING OUT THE INVENTION

Figure 1 illustrates schematically the geographic dividing of a cellular mobile radio system. A cell having a base station BS1 is included in a cell group 3. The mobile telephony system is allocated a frequency band which has been divided into a number of channels, for instance 400 separate channels. The mobile system has a fixed frequency plan and each cell in the group 3 has access to a smaller number of the channels, for instance 20 channels for each cell. The 400 channels are so distributed within the cell group 3 that any one channel having a given pair of carrier frequencies will only occur once. This counteracts inter-channel disturbance. A cell 2 having a base station BS2 belongs to an adjacent cell group 4, which has access to the 400 channels in a corresponding manner. The base station BS2 has access to the same channels as the base station BS1 and these base stations are spaced as far apart as possible, so as to avoid disturbances to the greatest possible extent. A more detailed description of cell division and frequency plans is given in the aforesaid reference CMS88, Chapter 6. Figure 2 illustrates the base station BS1 with mobile stations MS1 and MS3 within the cell 1, and the base station BS2 with mobiles MS2 and MS4 within the cell 2. The base station BS1 has a traffic connection with the mobile MS1 on a traffic channel K1, which includes an outgoing channel FVC1 from the base station and an incoming channel RVCC1 to the base station. The mobile MS3 establishes a traffic connection to the base station BS1 with the aid of a control channel K3 with an outgoing control channel FOCC and an incoming control channel RECC. The base station BS2 has a traffic connection with the mobile MS2 on the channel K1 and with the mobile MS4 on a channel K2, which includes an outgoing channel FVC2 and an incoming channel RVCC2. The channels lie in the 800 MHz-band and the frequency difference of the carrier frequency between outgoing and incoming channels is 45 MHz for all channels, both the traffic channels and the control channels. The frequency difference between two mutually adjacent channels is 30 kHz.

There is some risk that the channel K1 in the cell 1 will be disturbed by interferences from channel K1 in cell 2, despite the long distance between the base stations BS1 and BS2, as mentioned above with reference to Figure 1. The object of the present invention is to provide a method for measuring and determining the transmission quality of the home traffic connection on channel K1 between the base station BS1 and the mobile station MS1. More specifically, the transmission quality is determined as the quotient of CI, where the magnitude C is the signal strength of the carrier frequency of the channel K1 between the base station BS1 and the mobile station MS1 and where the magnitude I is the combined interfering signal strength of carrier frequencies for the channel K1 when the connection between the base station BS1 and the mobile station MS1 is closed. In the illustrated case, this interfering signal strength originates from the connection between the base station BS2 and the mobile station MS2, although other connections (not shown) on the channel K1 can also contribute to the strength of the interfering signal.

Figure 2 illustrates an interfering signal F1 passing from the base station BS2 to the mobile MS1, and an interfering signal R1 passing from the mobile MS2 to the base station BS1. The quality of the transmission is determined in the following manner, provided that F1 and R1 are the only interfering signals. The mobile MS1 measures the combined signal strength C+I of the outgoing channel FVC1 from the base stations BS1 and BS2. When the carrier frequency of the outgoing channel FVC1 from the home base station
BS1 is closed, the mobile MS1 measures the strength I of the interfering signal FI. The quality of the transmission is then calculated as \((C/I) / 1 = C/I\). The base station BS1 measures the combined signal strength C+I of the incoming channel RVC1 from the mobile MS1 and MS2 in a corresponding manner. When the carrier frequency of the incoming signal RVC1 from the mobile MS1 is closed, the base station BS1 measures the strength I of the interfering signal RI. According to the present invention, only one of the base stations or one of the mobile stations measures the signal strengths and the result obtained for C/I is exchanged between the stations.

In the case of the aforesaid method, a problem exists in measuring the signal strength I of the carrier frequency for the interfering signal, represented by the signals FI and RI respectively in the illustrated example. This measurement shall be taken when the carrier frequency on the home traffic connection is closed and, according to one embodiment, the problem is solved in the following manner. In order to save battery power, the transmitter, normally the mobile MS1, is equipped with a device for closing the carrier frequency. This is done during a time interval in which no modulated signal is delivered to the transmitter. The subscriber only listens, and no information is transmitted to the base station BS1 on the carrier frequency of the channel RVC1. The base station BS1 measures the strength I of the interfering signal RI during these silent intervals. The device used to close down the carrier frequency is well known to those skilled in this art and will not be described in detail. The receiver, i.e. the base station BS1, can ascertain that solely the interfering signal RI has been measured, by listening on the aforesaid SAT-signal. If the carrier frequency of the mobile is closed, the SAT-signal transmitted by the base station is not re-transmitted. This supervisory signal occurs in a frequency-shared mobile radio system, a FDMA-system. A corresponding supervisory signal, normally referred to as a DVCC-signal (Digital Verification Colour Code) occurs in a time-shared radio system. In a time-shared system, the base station can listen to the DVCC-signal in a corresponding manner, so as to determine when the carrier frequency of the mobile MS1 is closed.

In a time-shared mobile telephony system, the strength I of the interfering signal can also be measured in the following manner. Each carrier frequency is divided into a number of time slots, for instance in accordance with the exemplifying time slots TS1, TS2 and TS3 shown in Figure 3. Traffic is found on the time slots TS1 and TS3, as illustrated by a curve A in the Figure, where the magnitude C denotes the signal strength of the carrier frequency and T denotes time. Information concerning the ongoing traffic is stored in the base station BS1. The base station measures the strength of the interfering signal RI at time points T1, T2, T3 and T4 over the duration of the time slot TS2, which is silent. The interfering signal RI also includes the three time slots designated TS11, TS12 and TS13, which are not synchronized with the time slots TS1, TS2 and TS3. There is, however, some correlation, between the disturbance in the silent time slot TS2 and the disturbance in the trafficked time slots TS1 and TS3. By measuring at repeated time points, as illustrated in the Figure, there is obtained a measurement of the strength I of the interfering signal RI, which is also relevant to the trafficked time slots TS1 and TS3. A corresponding measuring procedure can be effected from the mobile MS1, which receives from the base station BS1 information as to which time slots are trafficked. This information is transmitted on the traffic channel, the time slot TS1, as illustrated in Figure 4. The time slot TS1 from the base station BS1 includes a signal sequence which includes a synchronizing sequence SYNC, a control sequence SACCH (Slow Associated Control Channel), a data sequence DATA containing the speech transmitted, the aforesaid DVCC-signal, and a sequence RSV (Research) which can be used for any desired purpose. The control sequence SACCH can be utilized for transmitting the aforesaid information to the mobile MS1 relating to trafficked time slots. When measuring the interference I outside the home time slot, measurements are advantageously taken on several occasions, for instance at the time points T1, T2, T3 and T4 in Figure 3, in order to enable the interference value to be well calculated. Such repeated measurements are particularly important when measuring from the base station BS1, since the disturbances originate from cells peripheral to mobile stations. The mobile stations are randomly distributed over the cell areas and are movable, and statistical processing of the interference measurements obtained is advantageously carried out.

The signal sequence from the base station BS1 illustrated in Figure 4 provides the mobile MS1 with a further possibility of measuring the interference I. The base station BS1 can interrupt the transmission of its carrier frequency in one of the time slots TS1 during the sequence RSVD, and the mobile MS1 can measure the interference I during this sequence. The base station BS1 sends to the mobile in the preceding time slot TS1, during the sequence RSVD, a message to the effect that the carrier frequency from the home base station has actually been closed, so that the mobile will be prepared to measure the interference. It is also possible for the mobile to measure the signal strength continuously during the signal sequence RSVD and subsequently receive from the base station a message to the effect that the carrier frequency in RSVD was actually closed down throughout the duration of the preceding time slot.

A further example of how the interference I can be measured is described below. It is possible for the
mobile or the base station to interrupt the carrier frequency during the whole of a time slot, even though information should normally have been transmitted in this time slot. The strength I of the interfering signal is measured by the receiving station during this time slot. In this case, a message is exchanged between the base station and the mobile station, so that the receiving station will be informed of the fact that the carrier frequency of the transmitting station is closed down. This message can be transmitted on the signal SACCH in Figure 4. In the future European mobile telephony system GSM, there is space in the signal sequence for the mobile to order the base station to close its carrier frequency. The drawback with this method is that information which should have been exchanged between the stations in the closed time slot is lost and the bit-error content increases.

The aforesaid method enables the signal quality of the home traffic connection to be determined by measuring and calculating the quotient C/I. This value constitutes a valuable measurement since, for instance, it enables a decision to be made as to whether the mobile needs to hand-over, i.e. pass from one channel to another. The method has the advantage of being based on direct measurement of partly the signal strength C of the home carrier frequency and partly the signal I of the interfering signal. It should be noted that the C/I-value used in accordance with the invention does not replace other measurements of transmission quality, for instance bit-error content, but complements these measurements. This circumstance is demonstrated by the following example.

The total disturbance on the channel FVC1 to the mobile MS1 shown in Figure 2 is, among other things, composed of the aforesaid interference I, noise and multipath propagation. Multipath propagation results from the fact that the base station BS1 is able to reach the mobile MS1 partly through direct signals, as indicated in Figure 2, and partly through signals reflected from buildings, surrounding hills and the like. The reflected signals are delayed in relation to the direct signals and the multipath propagation contributes in increasing the bit-error content. When the signal strength C is sufficiently high, a high bit-error content can be due to strong interference I or pronounced multipath propagation. In order to reduce the bit-error content, the mobile MS1 can either shift to a new channel from the home base station BS1 or to a new base station, for instance the base station BS3 in Figure 1. In this situation, an adequate choice can be made with the aid of the inventive C/I-value. If this value is high, the large bit-error content is most probably due to multipath propagation. A change of channel with the home base station BS1 will not change the propagation conditions of the signals and will likely not affect the bit-error content. A switch to a new base station is the best choice in this case. If, on the other hand, the C/I-value is low, the large bit-error content is most probably due to the fact that the interference I is strong, implying that a change of channel with the home base station BS1 is more than likely to be the best choice for reducing the bit-error content. In the case of a time-shared system, the interference I, and therewith the bit-error content, can be reduced by switching to a new time slot on the same carrier frequency.

Claims

1. A method in a mobile radio system for determining a transmission quality of a home traffic connection that has been established, wherein the mobile radio system includes a plurality of two-way radio channels (K1,K2), each channel having two carriers (FVC1, RVC1) with different frequencies at a desired frequency distance from one another and said radio channels being reused within said mobile radio system, the method comprising the steps of:

- establishing between a first and a second radio location (BS1,MS1) the home traffic connection utilizing an indicated one of said radio channels (K1), one of said radio locations being a first base station (BS1) and the other of said radio locations being a first subscriber mobile station (MS1);
- establishing between at least one further base station (BS2) and at least one further subscriber mobile station (MS2) a further traffic connection on said indicated radio channel (K1) within the mobile radio system, the carrier (F1,R1) of the further traffic connection interfering on the home traffic connection; and
- measuring in the first radio location (BS1, MS1) the combined received signal strength (C+I) of the carriers (FVC1,RVC1; F1,R1) of the home traffic connection and the further traffic connections;

the method comprising the further method steps of:

- closing down in the second radio location (BS1, MS1), during a closed down time interval (TS2, RSVD) of the established home traffic connection, the carrier (FVC1,RVC1) of the home traffic connection;
- measuring in the first radio location (BS1, MS1) the signal strength (I) of said interfering carrier (F1, R1) over said closed down time interval;
- calculating the transmission quality as a quotient (C/I) of the signal strength (C) of the carrier (FVC1,RVC1) of the home traffic connection.
connection and the signal strength (I) of the interfering carrier (F1, R1).

2. A method according to Claim 1 comprising interrupting in a transmitter of the second radio location (MS1) the transmission of the carrier (RVC1) over a silent time interval, during which no modulated signal is delivered to the transmitter, characterized by measuring in the first radio location (BS1) the signal strength (I) of the interfering carrier (R1) during the silent time interval constituting said closed down time interval.

3. A method according to Claim 1, wherein the radio channels (K1, K2) of the mobile radio system are time-shared and divided into time slots (TS1, TS2, TS3), characterized by
 - interrupting in the second radio location (BS1, MS1) the transmission of the carrier (F1, R1) during indicated ones of the time slots of the home traffic connection, the indicated time slots constituting said closed down time interval,
 - transmitting from the second radio location (MS1, BS1) to the first radio location (BS1, MS1) a message making said indicated time slots known.

4. A method according to Claim 1, wherein the radio channels (K1, K2) of the mobile radio system are time shared and divided into time slots (TS1, TS2, TS3), a signal sequence transmitted in the timeslots of the home traffic connection comprising a reserved part sequence (RSVD) which is available to the user, characterized in that the method comprises:
 - interrupting in the second radio location (BS1, MS1) the transmission of the carrier (FVC1, RVC1) during the reserved part sequence (RSVD) of an indicated one of the time slots of the home traffic connection, the part sequence constituting said closed down time interval,
 - transmitting from the second radio location (BS1, MS1) to the first radio location (MS1, BS1) a message making the indicated time slot known, the message being transmitted on the home traffic connection in the reserved part sequence (RSVD) of a time slot adjacent to said indicated time slot.

5. A method in a mobile radio system for determining a transmission quality of a home traffic connection that has been established, wherein the mobile radio system includes a plurality of time-shared, two-way radio channels (K1, K2) divided into time slots (TS1, TS2, TS3), each channel having two carriers (FVC1, RVC1) with different frequencies at a desired frequency distance from one another and said radio channels being reused within said mobile radio system, the method comprising the steps of:
 - establishing between a first and a second radio location (BS1, MS1) the home traffic connection utilizing one of said time slots (TS1) on an indicated one of said radio channels (K1), one of said radio locations being a first base station (BS1) and the other of said radio locations being a first subscriber mobile station (MS1);
 - establishing between at least one further base station (BS2) and at least one further subscriber mobile station (MS2) a further traffic connection on said indicated radio channel (K1) within the mobile radio system, the carrier (F1, R1) of the further traffic connection interfering on the home traffic connection; and
 - measuring in the first radio location (BS1, MS1) the combined received signal strength (C+I) of the carriers (FVC1, RVC1; F1, R1) of the home traffic connection and the further traffic connections; the method comprising the further method steps of:
 - measuring in the first radio location (BS1, MS1) the signal strength (I) of the interfering carrier (R1, F1) over an intermediate time slot (TS2, T1, T2, T3, T4) on the indicated radio channel (K1) between successive ones of the time slots (TS1) of the home traffic connection, said intermediate time slot being silent; and
 - calculating the transmission quality as a quotient (C/I) of the signal strength (C) of the carrier (FVC1, RVC1) of the home traffic connection and the signal strength (I) of the interfering carrier (F1, R1).

Patentansprüche

1. Verfahren in einem Mobilfunksystem zur Bestimmung einer Übertragungsqualität einer Ausgangs-Gesprächsverbindung, welche eingerichtet wurde, wobei das Mobilfunksystem mehrere Zweige-we-Funkkanäle (K1, K2) aufweist, jeder Kanal zwei Träger (FVC1, RVC1) mit unterschiedlichen Frequenzen bei einer gewünschten Frequenzentfernern voneinander aufweist, und die Funkkanäle innerhalb des Mobilfunksystems erneut verwendet werden, mit folgenden Schritten:
 - Einrichtung der Ausgangs-Gesprächsverbindung zwischen einem ersten und einem
zweiten Funkort (BS1, MS1) unter Verwen- 5
dung eines angegebenen Kanals (K1) unter
den Funkkanälen, wobei einer der Funkorte
eine erste Basisstation (BS1) ist, und der 10
andere der Funkorte eine erste Teilnehmer-
Mobilstation (MS1) ist;
- Einrichten einer weiteren Gesprächsverbin- 15
dung zwischen zumindest einer weiteren
Basisstation (BS2) und zumindest einer
weiteren Teilnehmer-Mobilstation (MS2)
auf dem angegebenen Funkkanal (K1) in-
nerhalb des Mobilradiosystems, wobei der
Träger (F1, R1) der weiteren Gesprächsver-
bindung eine Störung der Ausgangs-Ges-
sprächsverbindung hervorruft; und
- Messung an dem ersten Radioort (BS1, 20
MS1) der kombinierten empfangenen Si-
gnalstärke (C1) der Träger (FVC1, RVC1;
F1, R1) der Ausgangs-Gesprächsverbin-
dung und der weiteren Gesprächsverbin-
dungen;
- Abschalten an dem zweiten Funkort (BS1, 25
MS1) während eines Abschalt-Zeitinter-
vals (TS2, RSVD) der eingerichteten Aus-
gangs-Gesprächsverbindung, des Trägers
(FVC1, RVC1) der Ausgangs-Gesprächs-
verbindung;
- Messung der Signalstärke (I) des störenden
Trägers (F1, R1) an dem ersten Funkort
(BS1, MS1) über das Abschaltzeitintervall; 30
und
- Berechnung der Übertragungsqualität als
ein Quotient (C/I) der Signalstärke (C) des
Trägers (FVC1, RVC1) der Ausgangs-Ges-
sprächsverbindung und der Signalstärke (I)
des störenden Trägers (F1, R1).

2. Verfahren nach Anspruch 1, bei welchem in ei-

einem Sender des zweiten Funkortes (MS1) das 40
Senden des Trägers (RVC1) über ein stummes
Zeitintervall unterbrochen wird, während wel-
chem kein moduliertes Signal dem Sender zuge-
führt wird, gekennzeichnet durch Messung der
Signalstärke (I) des störenden Trägers (R1) an
dem ersten Funkort (BS1) während des stummen
Zeitintervalls, welches das Abschaltzeitintervall
bildet.

3. Verfahren nach Anspruch 1, bei welchem die 45
Funkkanäle (K1, K2) des Mobilfunksystems zeit-
unterteilt und in Zeitschlitze (TS1, TS2, TS3) un-
terteilt sind, gekennzeichnet durch
- Unterbrechen der Aussendung des Träges
(F1, R1) an dem zweiten Funkort (BS1, 50
MS1) während angegebener Zeitschlitze der
Ausgangs-Gesprächsverbindung, wo-
bei die angegebenen Zeitschlitze das Ab-
schalt-Zeitintervall bilden,
- Senden einer Nachricht, welche die ange-
gebenen Zeitschlitze bekannt gibt, von dem
zweiten Funkort (MS1, BS1) an den ersten
Funkort (BS1, MS1).

4. Verfahren nach Anspruch 1, bei welchem die 55
Funkkanäle (K1, K2) des Mobilfunksystems zeit-
unterteilt und in Zeitschlitze (TS1, TS2, TS3) un-
terteilt sind, und eine der in Zeitschlitze der
Ausgangs-Gesprächsverbindung gesendete Si-
gnalsequenz eine Sequenz (RSVD) bezüglich ei-
nes reservierten Teils enthält, der für den Benut-
zer verfügbar ist, dadurch gekennzeichnet, daß
das Verfahren umfaßt:
- Unterbrechung der Sendung des Trägers
(FVC1, RVC1) an dem zweiten Funkort
während der Sequenz (RSVD) des reser-
vierten Teils bei einem angegebenen Zeit-
schlitze unter den Zeitschlitzen der Aus-
gangs-Gesprächsverbindung, wobei die
Teilsequenz das Abschaltzeitintervall bil-
det,
- Senden von dem zweiten Funkort (BS1, 60
MS1) an den ersten Funkort (MS1, BS1), ei-
er Nachricht, welche den angegebenen
Zeitschlitze angibt, wobei die Nachricht bei
der Ausgangs-Gesprächsverbindung in der
Sequenz (RSVD) mit reserviertem Teil ei-
nes Zeitschlitzes neben dem angegebenen
Zeitschlitze gesendet wird.

5. Verfahren in einem Mobilfunksystem zur Bestimm-
ung einer Übertragungsqualität einer Aus-
gangs-Gesprächsverbindung, welche eingerich-
tet wurde, wobei das Mobilfunksystem mehrere
zeitunterteilte Zweigewe-Funkkanäle (K1, K2)
onweist, die in Zeitschlitze (TS1, TS2, TS3) un-
terteilt sind, jeder Kanal zwei Träger (FVC1,
RVC1) mit unterschiedlichen Frequenzen in ei-
inem gewünschten Frequenzabstand voneinan-
der aufweist und die Funkkanäle innerhalb des
Mobilfunksystems erneut verwendet werden, mit
folgenden Schritten:
- Einrichten, zwischen einem ersten und ei-
inem zweiten Funkort (BS1, MS1), der Aus-
gangs-Gesprächsverbindung unter Ver-
wendung eines der Zeitschlitze (TS1) auf
einem angegebenen Funkkanal (K1) unter
den Funkkanälen, wobei einer der Funkorte
eine erste Basisstation (BS1) ist, und der
andere der Funkorte eine erste Teilnehmer-
Mobilstation (MS1) ist;
- Einrichten, zwischen zumindest einer wei-
teren Basisstation (BS2) und zumindest ei-
er weiteren Teilnehmer-Mobilstation
(MS2), einer weiteren Gesprächsverbin-
dung auf dem angegebenen Funkkanal
(K1) innerhalb des Mobilfunksystems, wo-
Revendications

1. Un procédé dans un système de radiocommunication mobile pour déterminer une qualité de transmission d’une connexion de trafic intérieure qui a été établie, dans lequel le système de radiocommunication mobile comprend un ensemble de canaux hertziens bidirectionnels (K1, K2), chaque canal ayant deux portueuses (FVC1, RVC1) ayant des fréquences différentes, avec un écart de fréquence mutuel désiré, et ces canaux hertziens étant réutilisés dans le système de radiocommunication mobile, le procédé comprenant les étapes suivantes :
 - on établit la connexion de trafic intérieure entre un premier emplacement de radiocommunication et un second emplacement de radiocommunication (BS1, MS1) en utilisant l’un indiqué des canaux hertziens (K1), l’un des emplacements de radiocommunication étant une première station de base (BS1) et l’autre emplacement de radiocommunication étant une première station mobile d’abonné (MS1);
 - on établit entre au moins une station de base supplémentaire (BS2) et au moins une station mobile d’abonné supplémentaire (MS2) une connexion de trafic supplémentaire sur le canal hertzien indiqué (K1) dans le système de radiocommunication mobile, la porteuse (F1, R1) de la connexion de trafic supplémentaire produisant un brouillage sur la connexion de trafic intérieure; et
 - on mesure au premier emplacement de radiocommunication (BS1, MS1) le niveau de signal reçu combiné (C+H) des portueuses (FVC1, RVC1; F1, R1) de la connexion de trafic intérieure et des connexions de trafic supplémentaires; le procédé comprenant les étapes de procédé supplémentaires suivantes :
 - on interrompt la porteuse (FVC1, RVC1) de la connexion de trafic intérieure, au second emplacement de radiocommunication (BS1, MS1), pendant un intervalle de temps d’interruption (TS2, RSVD) de la connexion de trafic intérieure établie;
 - on mesure au premier emplacement de radiocommunication (BS1, MS1) le niveau de signal (l) de la porteuse brouillée (F1, R1) pendant l’intervalle de temps d’interruption précité;
 - on calcule la qualité de transmission sous la forme d’un quotient (C/I) du niveau de signal (C) de la porteuse (FVC1, RVC1) de la connexion de trafic intérieure, et du niveau de signal (l) de la porteuse brouillée (F1, R1).

2. Un procédé selon la revendication 1, comprenant l’interruption dans un émetteur du second emplacement de radiocommunication (MS1), de l’émission de la porteuse (RVC1) au cours d’un intervalle de temps de silence, pendant lequel aucun signal modulé n’est appliqué à l’émetteur, caractérisé par la mesure du niveau de signal (l) de la porteuse brouillée (R1), au premier emplacement de radiocommunication (BS1), pendant l’intervalle de temps de silence constituant l’intervalle de temps d’interruption précité.

3. Un procédé selon la revendication 1, dans lequel les canaux hertziens (K1, K2) du système de radiocommunication mobile sont utilisés en temps partagé et sont divisés en créneaux temporels (TS1, TS2, TS3), caractérisé par
 - l’interruption, au second emplacement de radiocommunication (BS1, MS1), de l’émission de la porteuse (F1, R1) pendant des créneaux temporels indiqués parmi les créneaux temporels de la connexion de trafic intérieure, les créneaux temporels indiqués constituant l’intervalle de temps d’interruption précité,
 - l’émission à partir du second emplacement de radiocommunication (MS1, BS1), vers le premier emplacement de radiocommunication (BS1, MS1), d’un message qui fait connaître ces créneaux temporels indiqués.
4. Un procédé selon la revendication 1, dans lequel les canaux hertziens (K1, K2) du système de radiocommunication mobile sont utilisés en temps partagé et sont divisés en crêtes temporels (TS1, TS2, TS3), une séquence de signaux qui est émise dans les crêtes temporels de la connexion de trafic intérieure comprenant une séquence de partie réservée (RSVD) qui est disponible pour l'utilisateur, caractérisé en ce que le procédé comprend :

- l'interruption, au second emplacement de radiocommunication (BS1, MS1), de l'émission de la porteuse (FVC1, RVC1) pendant la séquence de partie réservée (RSVD) de l'un indiqué des crêtes temporels de la connexion de trafic intérieure, la séquence de partie réservée constituant l'intervalle de temps d'interruption précité;
- l'émission à partir du second emplacement de radiocommunication (BS1, MS1) vers le premier emplacement de radiocommunication (BS1, MS1), d'un message qui fait connaître le créneau temporel indiqué, ce message étant émis sur la connexion de trafic intérieure dans la séquence de partie réservée (RSVD) d'un créneau temporel adjacent au créneau temporel indiqué.

5. Un procédé dans un système de radiocommunication mobile pour déterminer une qualité de transmission d'une connexion de trafic intérieure qui a été établie, dans lequel le système de radiocommunication mobile comprend un ensemble de canaux hertziens bidirectionnels fonctionnant en temps partagé (K1, K2) divisés en crêtes temporels (TS1, TS2, TS3), chaque canal ayant deux porteuses (FVC1, RVC1) avec des fréquences différentes ayant un écart de fréquence mutuel désiré, et ces canaux hertziens étant réutilisés dans le système de radiocommunication mobile, le procédé comprenant les étapes suivantes :

- on établit la connexion de trafic intérieure entre un premier emplacement de radiocommunication et un second emplacement de radiocommunication (BS1, MS1) en utilisant l'un des crêtes temporels (TS1) sur l'un indiqué des canaux hertziens (K1), l'un de ces emplacements de radiocommunication étant une première station de base (BS1) et l'autre emplacement de radiocommunication étant une première station mobile d'abonné (MS1);
- on établit entre au moins une station de base supplémentaire (BS2) et au moins une station mobile d'abonné supplémentaire (MS2) une connexion de trafic supplémentaire sur le canal hertzien indiqué (K1) dans le système de radiocommunication mobile, la porteuse (F1, R1) de la connexion de trafic supplémentaire occasionnant un brouillage sur la connexion de trafic intérieure; et
- on mesure au premier emplacement de radiocommunication (BS1, MS1) le niveau de signal reçu combiné (C+H) des porteuses (FVC1, RVC1; F1, R1) de la connexion de trafic intérieure et des connexions de trafic supplémentaires; le procédé comprenant les étapes de procédé supplémentaires suivantes :
 - on mesure au premier emplacement de radiocommunication (BS1, MS1) le niveau de signal (I) de la porteuse brouilleuse (R1, F1) sur un créneau temporel intermédiaire (TS2; T1; T2; T3; T4) sur le canal hertzien indiqué (K1), entre des crêtes temporels successifs (TS1) de la connexion de trafic intérieure, ce créneau temporel intermédiaire étant silencieux; et
 - on calcule la qualité de transmission sous la forme d'un quotient (C/I) du niveau de signal (C) de la porteuse (FVC1, RVC1) de la connexion de trafic intérieure et du niveau de signal (I) de la porteuse brouilleuse (F1, R1).