EUROPÄISCHE PATENTSCHRIFT

Veröffentlichungstag der Patentschrift: 15.12.93 Patentblatt 93/50

Anmeldenummer: 90119713.7

Anmeldetag: 15.10.90

Klebstoff zum Verbinden von Formteilen aus Polycarbonat-Kunststoffen.

Priorität: 21.04.90 DE 4012720

Veröffentlichungstag der Anmeldung: 23.10.91 Patentblatt 91/43

Bekanntmachung des Hinweises auf die Patenterteilung: 15.12.93 Patentblatt 93/50

Benannte Vertragsstaaten: DE FR GB

Entgegennahmen:
- DE-A- 2 202 040
- DE-A- 3 310 904
- DE-A- 3 632 868
- FR-A- 2 107 767

Patentinhaber: Heraeus Kulzer GmbH
Heraeusstr. 12 - 14
D-63450 Hanau (DE)

Erfinder: Eppinger, Bernhard
Am Kirmesplatz 17
W-6290 Weilburg (DE)

Krahmer, Melanie
Spessartstrasse 6
W-6393 Wehrheim/Ts. (DE)

Vertreter: Kühn, Hans-Christian
Heraeus Holding GmbH, Stabsstelle
Schutzrechte, Heraeusstrasse 12-14
D-63450 Hanau (DE)

Beschreibung

Die Erfindung betrifft einen Klebstoff zum Verbinden von Formteilen aus Polycarbonat-Kunststoffen miteinander.


Obwohl eine Vielzahl von Klebstoffen der unterschiedlichsten Art für sehr viele Werkstoffe bekannt ist - die vorstehend genannten Polymersationsklebstoffe darunter, können Klebeverbindungen in der Praxis nicht immer alle an sie gestellten Anforderungen in befriedigender Weise erfüllen. So ist es bisher nicht möglich, zwischen Formteilen aus Polycarbonat-Kunststoffen Klebeverbindungen herzustellen, die eine gute Festigkeit auch bei Beanspruchung durch wechselnde Temperaturen besitzen und gegenüber Wasser und Treibstoffen dicht und beständig sind.

Es ist daher die Aufgabe der Erfindung, einen Klebstoff zum Verbinden von Formteilen aus Polycarbonat-Kunststoffen miteinander zu finden, mit dem sich Klebeverbindungen, die in dem Temperaturbereich von etwa -35°C bis etwa +85°C fest und gegenüber Wasser und Treibstoffen dicht und beständig sind, herstellen lassen. Der Klebstoff soll außerdem keine Lösungsmittel enthalten, lagerbeständig sein und bei Raumtemperatur verarbeitet werden können.


Das Polymethylmethacrylat kann bei der Zubereitung der Klebstoff-Komponenten als solches, vorzugsweise in Form von Polymerisat-Perlen mit einer Teilchengröße von 10 bis 150 Mikrometer, oder als Lösung in Methylmethacrylat eingesetzt werden.

Das auf beiden Klebstoff-Komponenten verteilte Katalysator-System aus Dibenzoylperoxid und N,N-Dimethyl-p-toluolamin ist an sich bekannt und gehört zu den für die Kaltpolymerisation von Methacrylsäureestern häufig benutzten Redox-Systemen.

Die beiden Komponenten des erfindungsgemäßen Klebstoffs sind lagerfähige Flüssigkeiten, die erst unmittelbar vor Gebrauch miteinander vermischen. Aufgrund ihres flüssigen Zustandes lassen sich die Komponenten - anders als die Komponenten der Pulver-/Flüssigkeits-Systeme - sowohl manuell als auch maschinell sehr genau dosieren und vollständig miteinander vermischen.

Nach dem Auftragen auf die miteinander zu verbindenden Polycarbonat-Formteile und deren Zusammenfügen härtert der Klebstoff bei Raumtemperatur aus. Durch eine Wärme- oder Druckbehandlung der durch den Klebstoff zunächst fixierten Formteile kann die für die Härting benötigte Zeit verkürzt werden.


Zur näheren Erläuterung werden in den folgenden Beispielen einige bevorzugte Ausführungsformen des erfindungsgemäßen Klebstoffs und - zum Vergleich dazu - einige ähnlich zusammengesetzte Klebstoffe und im Anschluß daran die Prüfung der Klebstoffe durch Festigkeitsuntersuchungen an damit verklebten Polycarbonat-Prüfkörpern beschrieben.

Beispiel 1

1. Komponente: 78 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% 2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 2 Gewichts-% Dibenzoylperoxid,
2. Komponente: 78 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% 2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 2 Gewichts-% N,N-Dimethyl-p-
toluidin.

Beispiel 2

1. Komponente: 88 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
10 Gewichts-% 2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 2 Gewichts-% Dibenzoylperoxid,
2. Komponente: 88 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
10 Gewichts-% 2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 2 Gewichts-% N,N-Dimethyl-p-
toluidin.

Beispiel 3

1. Komponente: 78 Gewichts-% einer 55 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% 2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 2 Gewichts-% Dibenzoylperoxid,
2. Komponente: 78 Gewichts-% einer 55 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% 2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 2 Gewichts-% N,N-Dimethyl-p-
toluidin.

Beispiel 4

2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 3 Gewichts-% Dibenzoylperoxid,
2,2-Bis-[4-(2-methacryloyloxyäthoxyphenyl)]-propan und 3 Gewichts-% N,N-Dimethyl-p-toluidin.

Beispiel 5 (Vergleichsbeispiel)

1. Komponente: 77 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% Diurethandimethacrylat aus 2,2,4-Trimethylhexamethyldiisocyanat und 2-Hydroxy-
äthylmethacrylat und 3 Gewichts-% Dibenzoylperoxid,
2. Komponente: 77 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% Diurethandimethacrylat aus 2,2,4-Trimethylhexamethyldiisocyanat und 2-Hydroxy-
äthylmethacrylat und 3 Gewichts-% N,N-Dimethyl-p-toluidin.

Beispiel 6 (Vergleichsbeispiel)

1. Komponente: 77 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% Triäthylen glykoldimethacrylat und 3 Gewichts-% Dibenzoylperoxid,
2. Komponente: 77 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% Triäthylen glykoldimethacrylat und 3 Gewichts-% N,N-Dimethyl-p-toluidin.

Beispiel 7 (Vergleichsbeispiel)

1. Komponente: 77 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% Hydroxyäthylmethacrylat und 3 Gewichts-% Dibenzoylperoxid,
2. Komponente: 77 Gewichts-% einer 60 %igen Lösung von Polymethylmethacrylat in Methylmethacrylat,
20 Gewichts-% Hydroxyäthylmethacrylat und 3 Gewichts-% N,N-Dimethyl-p-toluidin.

Beständigkeitsprüfung der Klebstoffe

Die Beurteilung der in den Beispielen beschriebenen Klebstoffe erfolgt durch Festigkeitsuntersuchungen
an aus damit verklebten Polycarbonat-Formteilen bestehenden Prüfkörpern. Dazu werden die Prüfkörper
A) einem Temperaturwechsel ("thermal cycling") ausgesetzt, indem sie 20 mal abwechselnd 30 Minuten
lang in Kochendwasser und 1 Stunde lang bei -35°C im Kühlkranck,
B) 10 Stunden lang in Kochendwasser,
C) 5 Stunden lang bei 80°C in Benzin und
D) 5 Stunden lang bei 80°C in Dieselöl gehalten werden.
Anschließend werden die Prüfkörper belastet, bis es - bei stetiger Erhöhung der Last - zum Bruch kommt.


**Tabelle**

<table>
<thead>
<tr>
<th>Beispiel</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>3</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>7</td>
<td>---</td>
<td>---</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+++ = Materialbruch

+ = Bruch im Klebstofffilm

- = Bruch zwischen Klebstofffilm und Materialoberfläche

--- = Ablösung des Klebstofffilms während der Prüfung

**Patentansprüche**

1. Klebstoff zum Verbinden von Formteilen aus Polycarbonat-Kunststoffen miteinander, dadurch gekennzeichnet, daß er ein kaltärternder zweikomponentiger Polymerisationsklebstoff ist und jede Komponente 25 - 35 Gewichts-% Methacrylat, 10 - 25 Gewichts-% 2,2-Bis-[4-(2-methacyloyloxyäthoxyphenyl)]-propan und 40 - 50 Gewichts-% Polymethylmethacrylat und die erste Komponente zusätzlich 2 - 3 Gewichts-% Dibenzoylperoxid und die zweite Komponente zusätzlich 2 - 3 Gewichts-% N,N-Dimethyl-p-
toluidin enthält.


Claims

1. An adhesive for connecting shaped parts of polycarbonate plastics with each other, characterised in that it is a cold-hardening two-component polymerisation adhesive and each component contains 25 - 35 % by weight methyl methacrylate, 10 - 25 % by weight 2,2-bis-[4-(2-methacryloxyethoxyphenyl)]-propane and 40 - 50 % by weight polymethylmethacrylate and the first component additionally contains 2 - 3 % by weight dibenzoylperoxide and the second component additionally contains 2 - 3 % by weight N,N-dimethyl-p-toluidine.

2. The use of the adhesive according to Claim 1 for the production of adhesive connections between shaped parts of polycarbonate, polycarbonate reinforced with glass fibres and/or polycarbonate reinforced with carbon fibres, which adhesive connections are stable in the temperature range from -35°C to +85 °C and are resistant to water and fuels.

Revendications

1. Colle d’assemblage mutuel de pièces moulées en matières synthétiques à base de polycarbonate, caractérisée en ce qu’il s’agit d’une colle de polymérisation à deux composants, durcissant à froid, et en ce que chaque composant contient 25 à 35 % en poids de méthacrylate de méthyle, 10 à 25 % en poids de 2,2-bis-[4-(2-méthacryloyloxyéthoxyphényl)]-propane et 40 à 50 % en poids de poly(méthacrylate de méthyle), que le premier composant contient en outre 2 à 3 % en poids de peroxyde de dibenzoylène et le second composant contient en outre 2 à 3 % en poids de N,N-diméthyl-p-toluidine.

2. Utilisation de la colle selon la revendication 1 pour réaliser des assemblages collés, solides dans la plage de température de -35°C à +85°C et résistant à l’eau et aux combustibles, entre des pièces moulées en polycarbonate, polycarbonate renforcé aux fibres de verre et/ou polycarbonate renforcé aux fibres de carbone.