EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 28.06.95 Bulletin 95/26

Int. Cl.6: H01R 13/629, G01R 31/04

Application number: 91104351.1

Date of filing: 20.03.91

A connector engagement detecting apparatus.

Priority: 23.03.90 JP 72061/90

Date of publication of application: 25.09.91 Bulletin 91/39

Publication of the grant of the patent: 28.06.95 Bulletin 95/26

Designated Contracting States: DE FR GB

References cited:
- DE-A- 3 920 517
- GB-A- 2 180 657

Proprietor: YAZAKI CORPORATION
4-28, Mita 1-chome
Minato-ku Tokyo 108 (JP)

Inventor: Murakami, Yoshihiro
c/o Yazaki Parts Co. Ltd.,
206-1, Nunochikihara
Haihara, Haihara-gun, Shizuoka,421-04
(JP)

Representative: Patentanwälte Grüneccker,
Kinkeldey, Stockmair & Partner
Maximilianstrasse 58
D-80538 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a connector engagement detecting apparatus which has a means to determine whether or not a pair of mating connectors used for connection of automotive wiring harnesses are normally joined together.

Prior Art

Referring to Figures 6 and 7, one of mating connector housings a is formed with a contact accommodating chamber d in which a pair of electric contacts b, c are inserted in non-contacting condition. The other mating connector housing e has a drive piece f, formed as a resilient cantilever, whose free end f, forces the lower contact c upward into contact with the upper contact b. The connector housing a also has an interfering projection g in front of the electric contact c, which, when the paired connector housings fail to be connected normally, abuts against the free end f, of the drive piece f, deflecting it to block the electric contacts b, c from coming into forced contact with each other. When the mating connector housings are completely connected together, the interfering projection g is received into a recess f, allowing the drive piece f to move from a position indicated by a broken line in Figure 7b to a position of a solid line, which in turn causes the contact c to engage with the contact b to complete a detection circuit.

In the above-mentioned prior art, since the dedicated chamber d for accommodating the detecting electric contacts b, c is necessary, the connector housing becomes complex in shape, making the resin molding process correspondingly more difficult. Moreover, the drive piece f made of resin material may undergo thermal deformation from ambient heat generated during service. In that case, the driving force acting on the electric contact c decreases, degrading the reliability of electric conduction through the electric contacts b and c.

SUMMARY OF THE INVENTION

The present invention has been accomplished to overcome the above drawbacks and its objective is to provide a connector engagement detecting apparatus which requires no dedicated chamber for accommodating the detection contacts, which can simplify the shape of the connector housing and which maintains a high reliability of electric conduction through the detecting contacts.

To achieve the above object, a connector engagement detecting apparatus according to this in-

vention comprises: a first connector housing and a second connector housing, said first and second connector housings being adapted to be joined together; a resilient lock arm provided to the first connector housing, said resilient lock arm is made of an elastic material and formed as a cantilever that has a sufficient recovering force; and an engagement portion provided to the second connector housing for deflecting said resilient lock arm downwardly during connecting process, in a complete connection state of said first and second connector housings said resilient lock arm is snapped back into its original shape.

The inventive connector engagement detecting apparatus is characterized in that it further comprises a movable piece for detecting the correct engagement of the connector housings, said movable piece being mounted on the first connector housing so that it can be moved relative to the resilient lock arm, wherein said engagement portion pushes said movable piece rearwardly during connecting process; two connecting electric paths formed on said movable piece and having electric contact ends; slots formed between a displacement permitting space for the resilient lock arm and adjacent terminal accommodating chambers, said slots being used to accommodate the contact ends of the two connecting electric paths so that the contact ends are in sliding contact with terminal lugs contained in the terminal accommodating chambers; and a short-circuit conducting path provided to a free end of the resilient lock arm, wherein when the first and second connector housings are in the complete connection state, where the resilient lock arm is snapped back to engage said movable piece said short-circuit conducting path engages the two connecting electric paths.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a perspective view of one embodiment of this invention with a pair of connector housings separated;

Figure 2 is a perspective view of the embodiment with the pair of connector housings joined;

Figure 3 is a perspective view of one of the paired connector housings shown partly cut away;

Figure 4 is a perspective view of a movable piece for detecting the correct engagement of the connector housings;

Figures 5a, 5b and 5c are cross sections of the paired connector housings, with Figure 5a showing an initial stage of the joining process, Figure 5b showing the connector housings joined in an imperfect condition, and Figure 5c showing them in a completely joined condition;

Figure 6 is a perspective view of a prior art connector shown partly cut away; and

Figures 7a and 7b are cross sections of essential portion of Figure 6, with Figure 7a showing the
connector housings separated and Figure 7b showing them connected.

PREFERRED EMBODIMENT OF THE INVENTION

Referring to Figures 1 through 3, denoted A is a male connector housing, and B a female connector housing, both made of synthetic resin material.

The male connector housing A, as is known, is formed with a plurality of terminal accommodating chambers 1 in which female terminal lugs C are inserted and fixed. The female connector housing B also has a plurality of terminal accommodating chambers (not shown) in which male terminal lugs D are inserted and fixed.

In a recessed portion 2 on the upper surface of the male connector housing A is provided a rearwardly extending, resilient cantilever lock arm 3 which has a rising base portion 3a at the front end of the housing. The resilient lock arm 3 has a lock projection 3b formed on the upper surface of the middle portion thereof and an unlock pressing portion 3c at the rear end thereof. The female connector housing B has formed at the center of the front end of an upper wall 4 an engagement frame 5 that engages with the resilient lock arm 3. The engagement frame 5 is formed with an engagement hole 5a to receive the lock projection 3b.

The connector engagement detecting apparatus with the above-mentioned construction acts as follows. When the male and female connector housings A, B are fitted together, the female and male terminal lugs C, D are brought into contact with each other. At the same time, as the lock projection 3b abuts on the engagement frame 5, the resilient lock arm 3 deflects downwardly into a displacement permitting space 5b formed immediately below and, when the lock projection 3b is received into the engagement hole 5a, returns to its original shape, thus locking the male and female connector housings in the complete engagement condition.

Designated 6 is a movable piece for detecting the correct engagement of the connector housings. The engagement detection movable piece 6 is made of synthetic resin and formed into a gate-like contour. The movable piece 6 has two independent connecting electric paths 7 formed of conductive materials which extend from a top plate portion 6a, which is recessed at 6a,, down to leg portions 6b. The connecting electric paths 7 are exposed as contact portions 7a at the underside of the top plate portion 6a and also project as elastic contact ends 7b at the external lower ends of the leg portions 6b.

The engagement detection movable piece 6 straddles on the resilient lock arm 3 in such a manner that it can be moved longitudinally of the male connector housing A over a distance from the lock projection 3b to the unlock press portion 3c. The leg portions 6b of the movable piece 6 are in sliding contact with side walls 2a that form the recessed portion 2. At the bottom of the side walls 2a, the elastic contact ends 7b on the movable piece 6 project into slots 8 formed between the recessed portion 2 and the adjacent terminal accommodating chambers 1 and come into contact with the terminal lugs C installed in the terminal accommodating chambers 1. As the engagement detection movable piece 6 moves, the elastic contact ends 7b also move while in sliding contact with the terminal lugs C.

On the upper surface of the unlock press portion 3c at the free end of the resilient lock arm 3 is provided a short-circuit conducting path 9, which has contacts 9a that correspond to the contact portions 7a of the connecting electric paths 7.

In the above construction, during the initial stage of connecting the male and female connector housings A, B, the top plate portion 6a of the engagement detection movable piece 6 is situated between the lock projection 3b and the unlock press portion 3c of the resilient lock arm 3. As the connecting process proceeds, the top plate portion 6a is pushed rearwardly by the engagement frame 5 of the female connector housing B, as shown in Figure 5a.

Next, as shown in Figure 5b, the lock projection 3b advances into the engagement frame 5 deflecting downwardly the free end of the resilient lock arm 3, i.e. the unlock press portion 3c. In this imperfect engagement condition, the short-circuit conducting path 9 is separated from the connecting electric paths 7 on the movable piece 6.

When the male and female connector housings A, B are completely connected, as shown in Figure 5c, the resilient lock arm 3 snaps back into its original shape causing the unlock press portion 3c to abut against the undersurface of the top plate portion 6a of the movable piece 6. As a result the contact portions 7a are shorted by the short-circuit conducting path 9. Now, the detection circuit is completed through the short-circuit conducting path 9, the connecting electric paths 7, and the female terminal lugs C in contact with the elastic contact ends 7b.

The construction and advantages of this invention may be summarized as follows.

The connector engagement detecting apparatus of this invention consists of a connector housing with a resilient lock arm and another mating connector housing with an engagement portion that cooperates with the resilient lock arm. The first connector housing is provided with an engagement detection movable piece, which has two connecting electric paths and is movable relative to the resilient lock arm. Contact ends of the two connecting electric paths are situated in slots formed between the displacement permitting space for the lock arm and the adjacent terminal accommodating chambers so that the contact ends are in sliding contact with the terminal lugs in-
stalled in the terminal accommodating chambers. When the male and female connector housings are completely connected, the short-circuit conducting path on the free end of the resilient lock arm is brought into contact with the two connecting electric paths. This construction permits the engagement detection movable piece and the short-circuit conducting path to be incorporated into the connector housings without complicating the construction of the connector housings. Moreover, a stable operation of the engagement detection circuit is ensured.

Claims

1. A connector engagement detecting apparatus comprising:
a first connector housing (A) and a second connector housing (B), said first and second connector housings (A, B) being adapted to be joined together;
a resilient lock arm (3) provided to the first connector housing (A), said resilient lock arm (3) is made of an elastic material and formed as a cantilever that has a sufficient recovering force; and
an engagement portion (5) provided to the second connector housing (B) for deflecting said resilient lock arm (3) downwardly during connecting process, in a complete connection state of said first and second connector housings (A, B) said resilient lock arm (3) is snapped back into its original shape;
characterized in that said detecting apparatus further comprises;
a movable piece (6) for detecting the correct engagement of the connector housings (A, B), said movable piece (6) being mounted on the first connector housing (A) so that it can be moved relative to the resilient lock arm (3), wherein said engagement portion (5) pushes said movable piece (6) rearwardly during connecting process;
two connecting electric paths (7, 7) formed on said movable piece (6) and having electric contact ends (7b, 7b);
slots (8, 8) formed between a displacement permitting space (R) for the resilient lock arm (3) and adjacent terminal accommodating chambers (1, 1'), said slots (8, 8) being used to accommodate the contact ends (7b, 7b) of the two connecting electric paths (7, 7) so that the contact ends (7b, 7b) are in sliding contact with terminal lugs (C, D) contained in the terminal accommodating chambers (1, 1'); and
a short-circuit conducting path (9) provided to a free end of the resilient lock arm (3), wherein when the first and second connector housings (A, B) are in the complete connection state, where the resilient lock arm (3) is snapped back to engage said movable piece (6) said short-circuit conducting path (9) engages the two connecting electric paths (7, 7).

2. A connector engagement detecting apparatus as claimed in claim 1, wherein said engagement detection movable piece (6) is formed into a gate-like contour and movably straddled on the resilient block arm (3), said two connecting electric paths (7, 7) provided to the movable piece (6) extend from a top plate portion (6a) down to leg portions (6b, 6b) of the movable piece (6) and said elastic contact ends (7b, 7b) of the connecting electric paths (7, 7) are projected at the lower ends of the leg portions (6b, 6b) of the movable piece (6).

Patentansprüche

1. Verbindereignigfriffs-Nachweissvorräichtung, mit: einem ersten Verbindergehäuse (A) und einem zweiten Verbindergehäuse (B), wobei erstes und zweites Verbindergehäuse (A, B) angepaßt sind, miteinander verbunden zu werden;
einem elastischen Verriegelungssarm (3), der an dem ersten Verbindergehäuse (A) vorgesehen ist, wobei der elastische Verriegelungssarm (3) aus einem elastischen Material besteht und als ein Freitreger ausgebildet ist, der eine genügend große Rückfederkraft hat, und
seinem Eigningsbereich (5), der an dem zweiten Verbindergehäuse (B) vorgesehen ist zum Ver-
biegen des elastischen Verriegelungssarms (3)
nach unten während des Verbindungsvorganges,
wobei in einem vollständigen Verbindungszustand des ersten und zweiten Verbindergehäus-
es (A, B) der elastische Verriegelungssarm (3) in seine ursprüngliche Form zurückgedrückt ist;
dadurch gekennzeichnet, daß

 die Nachweiseinrichtung ferner umfaßt:
 ein bewegliches Teil (6) zum Nachweisen des richtigen Eignings der Verbindergehäuse (A, B), wobei das bewegliche Teil (6) so auf dem ersten Verbindergehäuse (A) angebracht ist, daß es relativ zu dem elastischen Verriegelungssarm (3) bewegt werden kann, wobei der Eigningsbereich (5) das bewegliche Teil (6) während des Verbin-
dungsvorganges nach hinten drückt;
zwei Verbindungsstrompfade (7, 7), die auf dem beweglichen Teil (6) ausgebildet sind und elektri-
sche Kontaktenden (7b, 7b) aufweisen;
Schlitze (8, 8), die zwischen einem eine Verschie-
bung ermöglichen Raum (R) für den elastischen Verriegelungssarm (3) und angrenzen-
enden Anschlußaufnahmeckammern (1, 1') ausgebildet sind, wobei die Schlitze (8, 8) zur Aufnahme der Kontaktenden (7b, 7b) der beiden Verbindungs-
stropfände (7, 7) verwendet werden, so daß die Kontaktenden (7b, 7b) in einem gleitenden Kontakt mit den Anschlußklemmen (C, D) sind, die in den Anschlußaufnahmekammern (1, 1') aufgenommen sind; und einen Kurzschluß-Leitungspfad (9), der an einem freien Ende des elastischen Verriegelungssarms (3) vorgesehen ist, wobei, wenn die ersten und zweiten Verbindergehäuse (A, B) in einem vollständigen Verbindungszustand befindlich sind, bei dem der elastische Arm (3) zurückgedrängt ist, um mit dem beweglichen Teil (6) in Eingriff zu sein, der Kurzschluß-Leitungspfad (9) mit den beiden Verbindungstropfenden (7, 7) in Eingriff ist.

2. Verbindereingriffs-Nachweisvorrichtung nach Anspruch 1, wobei das bewegliche Teil (6) für den Eingriffsnachweis in einer torförmigen Kontur ausgebildet ist und beweglich den elastischen Verriegelungssarm (3) überbrückt, wobei die beiden Verbindungstropfenden (7, 7), die an dem beweglichen Teil (6) vorgesehen sind, sich an einem oberen Plattenbereich (6a) nach unten zu Schenkelbereichen (6b, 6b) des beweglichen Teils (6) erstrecken, und wobei die elastischen Kontaktenden (7b, 7b) der Verbindungstropfende (7, 7) an den unteren Enden (6b, 6b) des beweglichen Teils (6) vorstehen.

Revidications

1. Dispositif de détection d'accouplement de connecteur comprenant :
 un premier logement de connecteur (A) et un second logement de connecteur (B), lesdits premier et second logements (A, B) de connecteur étant conçus pour être assemblés ;
 une patte de verrouillage élastique (3) disposée sur le premier logement de connecteur (A), ladite patte de verrouillage élastique (3) est faite d’une matière élastique et est formée comme un cantilever qui a une force de récupération suffisante ; et
 une partie d’accouplement (5) disposée sur le second logement de connecteur (B) pour dévier ladite patte de verrouillage élastique (3) vers le bas pendant le processus de connexion, dans un état de connexion totale desdits premier et second logements de connecteur (A, B) ladite patte de verrouillage élastique (3) se détend dans sa forme d’origine ;
 caractérisé en ce que
 le dit dispositif de détection comprend de plus :
 une pièce mobile (6) pour détecter l’accouplement correct des logements de connecteur (A, B), ladite pièce mobile (6) étant montée sur le premier logement de connecteur (A) de façon à ce qu’elle puisse être déplacée par rapport à la patte de verrouillage élastique (3), dans lequel ladite partie d’accouplement (5) pousse ladite pièce mobile (6) vers l’arrière pendant le processus de connexion ;
 deux chemins électriques de connexion (7, 7) formés sur ladite pièce mobile (6) et ayant des extrémités de contact électrique (7b, 7b) ;
 des fentes (8, 8) formées entre un espace permettant un déplacement (R) pour la patte de verrouillage élastique (3) et des chambres de logement de bornes adjacentes (1, 1'), lesdites fentes (8, 8) étant utilisées pour loger les extrémités de contact (7b, 7b) des deux chemins électriques de connexion (7, 7) de façon à ce que les extrémités de contact (7b, 7b) soient en contact glissant avec des cosse de bornes (C, D) contenues dans les chambres de logement de bornes (1, 1') ; et
 un chemin conducteur en court-circuit (9) disposé à une extrémité libre de la patte de verrouillage élastique (3), dans lequel, lorsque lesdits premier et second logements de connecteur (A, B) sont dans l’état de connexion totale, où la patte de verrouillage élastique (3) est détenue par connexion (7, 7) est projetée au niveau des extrémités inférieures des parties formant jambes (6b, 6b) de la pièce mobile (6), le dit chemin conducteur en court-circuit (9) s’ac- coupe aux deux chemins électriques de connexion (7, 7).

2. Dispositif de détection d'accouplement de connecteur selon la revendication 1, dans lequel ladite pièce mobile (6) de détection d'accouplement a un profil en forme de porte et est à cheval, de façon mobile, sur la patte de verrouillage élastique (3), lesdits deux chemins électriques de connexion (7, 7), disposés sur la pièce mobile (6), s'étendent depuis une partie plate supérieure (6a) jusqu'à des parties formant jambes (6b, 6b) de la pièce mobile (6) et lesdites extrémités de contact élastiques (7b, 7b) des chemins électriques de connexion (7, 7) sont projetées au niveau des extrémités inférieures des parties formant jambes (6b, 6b) de la pièce mobile (6).