EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 28.06.95 Bulletin 95/26

Int. Cl.: G11B 20/00, G11B 20/12, G11B 5/008

Application number: 90311274.6

Date of filing: 15.10.90

Recording and reproducing system.

Priority: 03.01.90 GB 9000105

Date of publication of application: 07.08.91 Bulletin 91/32

Publication of the grant of the patent: 28.06.95 Bulletin 95/26

Designated Contracting States: DE FR GB IT

Proprietor: Racal Recorders Ltd
Western Road
Bracknell RG12 1RG Berkshire (GB)

Inventor: Crick, Neil Martyn
Eden House,
Winchester Hill
Romsey, Hampshire (GB)

Representative: Bibby, William Mark et al
Mathisen, Macara & co.
The Coach House
6-8 Swakeleys Road
Ickenham Uxbridge UB10 8BZ (GB)

References cited:
EP-A- 0 101 301
US-A- 4 575 773
PATENT ABSTRACTS OF JAPAN vol. 9, no. 299 (P-408)(2022) 27 November 1985
PATENT ABSTRACTS OF JAPAN vol. 9, no. 190 (P-378)(1913) 7 August 1985
PATENT ABSTRACTS OF JAPAN vol. 9, no. 50 (P-339)(1773) 5 March 1985

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to a recording and reproducing system, particularly a multi-channel recording and reproducing system having a plurality of individual input channels.

The invention has particular, though not exclusive, application to such multi-channel recording systems as are used to record analogue voice signals derived, for example, from air and ground controllers in airports.

In a known multi-channel recording system, analogue input signals are converted to digital signals and then subjected to digital processing prior to recording. During the replay mode, the recorded digital signals need to be converted back to analogue signals. A multi-channel digital recording system of this kind tends to be both expensive and complex to implement.

In another multi-channel arrangement, the input signals in each input channel could be recorded directly using a respective, linear record head. Again, however, this approach tends to be prohibitively expensive.

There is also known from US-A-4,575,773 an apparatus comprising the precharacterizing features of Claim 1, for recording video and instrument quality data onto commercially available video tape using a conventional unmodified video tape recording device utilizing standard TV synchronisation signals.

According to the present invention, there is provided a recording and reproducing system comprising, a plurality of individual input channels for receiving respective input signals having respective levels; time division multiplexing means for sampling the respective input signals cyclically, according to a pre-determined sequence of the input channels and for outputting a succession of samples occupying respective time slots, each sample representing a level of an input signal received in a respective input channel during a respective time slot, frequency modulation means for frequency modulating the succession of samples output by said time division multiplexing means to produce frequency-modulated samples; means for recording the frequency-modulated samples, as an analogue signal, on magnetic recording tape; means for reading the frequency-modulated samples from the magnetic recording tape; frequency demodulation means for demodulating the frequency modulated samples read by the reading means to produce a succession of frequency-demodulated samples, a plurality of output channels, each output channel corresponding to a respective input channel; time division demultiplexing means for distributing the frequency-demodulated samples output by said frequency-demodulation means to respective output channels and synchronisation signal detection means, characterised in that the samples derived from one of the input channels are used as synchronisation signals, the synchronisation signal detection means detects the frequency-demodulated samples corresponding to said samples that are used as synchronisation signals, and the time division demultiplexing means distributes the frequency-demodulated samples output by said frequency demodulation means to respective output channels in accordance with the timing of the synchronisation signals.

This recording system has the advantage that it requires one channel only for recording, and yet does not suffer from the aforementioned disadvantages. Recording and reproducing systems embodying the invention are now described, by way of example only, with reference to the accompanying drawings, in which:

- Figure 1 shows a block circuit diagram of one embodiment of the recording and reproducing system;
- Figure 2 shows the multiplexing format employed in the recording and reproducing system of Figure 1;
- Figure 3 illustrates successive swipes recorded on magnetic tape by the system of Figure 1;
- Figure 4 illustrates the relative timing of synchronisation signals in respective tracks of the recording; and
- Figure 5 shows a block circuit diagram of another embodiment of the recording and reproducing system.

The recording and reproducing system which is to be described is intended primarily for voice logging, enabling several independent analogue voice signals, derived from different sources, to be recorded on the same magnetic tape.

In this particular embodiment the magnetic tape is in the form of a standard VHS cassette. Each independent analogue voice signal is received in a respective channel of the recording and reproducing system. The received signals are sampled cyclically using a time division multiplexing technique, and the resultant sequence of samples is then recorded on the magnetic tape as an analogue signal.

In this embodiment, the recording and reproducing system has thirty six discrete input channels. As shown in Figure 1, thirty two of these channels, l_1, l_2, ..., l_{32}, are available to receive analogue voice signals, another channel l_{33} receives a synchronisation signal, in the form of a fixed voltage level, and the three remaining input channels l_{34}, l_{35} and l_{36} enable ancillary functions to be performed, as will be described hereinafter.

Each voice input channel l_1, l_2, ..., l_{32} comprises the series arrangement of an automatic gain control (AGC) circuit 10 and a low pass filter 11, and is connected to a respective input terminal of a time division multiplexing circuit 20 (a 74 HC 4051).

The low pass filters 11 are so chosen that the re-
cording and reproducing system has a desired frequency response which, in this embodiment, is in the frequency range from 300 Hz to 3.4 kHz, the frequency range normally associated with voice signals.

The automatic gain control circuits exercise control over the amplitudes of the analogue voice signals supplied to the multiplexing circuit 20, being effective to confine the input voltage levels to a range of voltage bounded by an upper voltage level of +1 volt and a lower voltage level of -1 volt. The synchronisation signal, on the other hand, which is supplied to the multiplexing circuit 20 via input channel I_38, has a fixed voltage level which lies outside the aforementioned voltage range and which, in this embodiment, is set at -2 volts. In this way, the synchronisation signal in channel I_38 is readily distinguishable from all the other input signals in channels I_1, I_2, ..., I_35.

A commutator circuit 21 receives clock pulses from a timing circuit 22 and, in response thereto, causes the multiplexing circuit 20 to sample the analogue signals in the input channels cyclically, in a pre-arranged sequence. By this means, the voltage level in each channel is sampled once every 125 μsec for a respective sampling period lasting 3.5 μsec. The sampled voltage levels are output to a single output channel 40.

Figure 2 illustrates the multiplexing format for one complete sampling cycle (hereinafter referred to as a "frame") lasting 125 μsec. The first input channel to be sampled (during time slot "0") is channel I_38 containing the synchronisation signal, giving rise to a voltage level of -2 volts in the output channel 40, as shown in Figure 2.

Input channels I_1, I_2, ..., I_35 are then sampled during successive time slots (designated "1" to "35") in the pre-arranged sequence indicated by the channel numbers (1-35) in Figure 2.

In each case, the voltage level which is output to channel 40 represents the voltage level prevailing in the respective input channel during the relevant sampling period. Thus, for example, if an input channel (I_35, say) contains no analogue voice signal, the voltage level supplied to output channel 40 during the corresponding time slots (designated 4 in this case) would be 0 volts.

In effect, therefore, each voltage level in channel 40 represents a "snapshot" of an analogue signal in the corresponding input channel during the respective sampling period.

The input signals in channels I_33, I_34 and I_35 consist of logic levels (either +1 volt or -1 volt) which comprise part of a time code signal, a test signal and a microphone signal respectively.

The time code signals, derived from a succession of sampling cycles, represent the actual time a recording was made and, similarly, the test signals and the microphone signals represent respectively, test data, which can be input to channel I_35, and an audio message which can be recorded by an operator, as desired, via a microphone input 12 to channel I_34.

The sequence of voltage levels in channel 40 is supplied to a further low pass filter 41 which removes high frequency components lying outside the desired frequency range.

The filtered signals are then passed to an FM modulation circuit 42 wherein they modulate a carrier signal preparatory to being recorded on magnetic tape.

In this embodiment, the modulated carrier signal is supplied simultaneously to a pair of record heads 43, 44 forming part of a helical scan recording unit.

As in the helical scan arrangements used to record video signals on magnetic tape, the two record heads are mounted 180° apart at the circumference of a rotating drum relative to which the tape is transported. The two heads record tracks or swipes alternately. The swipes extend diagonally across the tape, as shown in Figure 3, the swipes recorded by one of the heads (43, say) being denoted as "Track A" swipes and the swipes recorded by the other head (44) being denoted as "Track B" swipes, interleaved with the "Track A" swipes. Each swipe contains 512 frames (lasting 64 μsec). However, as will be explained with reference to Figures 4a and 4b, additional frames are recorded at the ends of each swipe.

In order to extend the available recording time, the tape transport mechanism operates at a much lower speed than is used to record video signals and, in this way, it is possible to record continuously for 25 hours using a conventional E240 VHS (i.e. 8 hour) tape.

As will be seen from Figure 2, neighbouring input channels (e.g. channels 1, 2; 3, 4; etc.) occupy time slots (6, 24; 15, 33) which are separated in time by half the sampling period i.e. 62.5 μsec. Accordingly, therefore, by connecting such neighbouring channels in parallel it is possible to sample an analogue input signal at twice the normal rate, thereby enabling the bandwidth for the connected channels to be doubled.

In the replay mode, the same (or alternatively different) heads may be used to read the recorded signals. In the embodiment of Figure 1, head 43 is used to read the "Track A" swipes and head 44 is used to read the "Track B" swipes. The output of each head 43, 44 is connected to an FM demodulator circuit 52 via a respective preamplifier/equalizer circuit 50A, 50B and a common switch circuit 51. The switch circuit is controlled by a track selection signal A/B from the drum and is effective to route the Track A signals (produced at the output of head 43) and the Track B signals (produced at the output of head 44) alternately to the FM demodulation circuit 52.

The output of the demodulator circuit 52 is connected to a low pass filter 53, and a synchronisation level detection circuit 54 compares the amplitudes of the filtered signals with a suitable threshold level (set...
between -1 volt and -2 volts) whereby to detect the synchronisation signal which marks the start of each new frame (time slot “0" in Figure 2). Each time a synchronisation signal is detected, the detection circuit 54 generates a trigger signal V_T effective to initialise a commutator circuit 55 associated with a time division de-multiplexing circuit 56. The commutator circuit 55 receives clock signals from a timing circuit 57 and, in response thereto, causes the de-multiplexing circuit 56 to distribute, in the correct sequence, the voltage levels (in time slots 1 to 35) which follow the synchronisation signal to respective ones of a plurality of output channels O_1, O_2, ..., O_{36}, each corresponding to a respective input channel I_1, I_2, ..., I_{36}, whereby to reproduce the recorded signals. Each output channel comprises the series arrangement of a sample and hold (S/H) circuit 60 and a low pass filter 61.

Although the record/replay heads for Tracks A and B are spaced 180° apart on the drum, the length of tape in contact with the drum subdents a somewhat larger angle, typically 200°. A consequence of this is that signals recorded at one end of a swipe (a Track A swipe, say) will also be recorded at the beginning of the immediately succeeding swipe (a Track B swipe). The regions in each swipe where such duplication occurs are referenced “d” in Figure 3.

Such duplication of the recorded signals would not cause a problem provided corresponding synchronisation signals in the two tracks are read simultaneously. However, in practice, the alignment of the heads in an apparatus used for the record mode could (and probably would) differ slightly from the alignment of heads in a different apparatus used for the replay mode. In such circumstances, the synchronisation signals derived from swipes recorded in one track would be shifted in time relative to the corresponding synchronisation signals derived from swipes recorded in the other track, and this would lead to instantaneous time disruptions of the replayed signals. Tape stretch, which is particularly sensitive to humidity and also temperature, could also give rise to the same problem.

This shift in the relative timings of synchronisation signals is illustrated in Figure 4.

Figures 4(a) and 4(b) illustrate diagrammatically the variations in time of the envelopes of signals recorded in successive swipes and, as before, the regions where duplication occurs are referenced “d’.

Figures 4(c) and 4(d) illustrated, on an expanded time scale, the relative timing of corresponding synchronisation signals derived from regions referenced “d’ in Figures 4(a) and 4(b) respectively. As will be clear from these Figures, the synchronisation signals derived from the Track B swipe are shifted in time relative to the corresponding synchronisation signals derived from the Track A swipe. It will be appreciated that the synchronisation signals derived from one swipe (in Track A, say) could either precede or succeed in time the corresponding synchronisation signals derived from the adjacent swipe (in Track B).

If the recording consists of audio signals such instantaneous time disruptions, although undesirable, could perhaps be tolerated. However, in the case of a recording of which each sample represents data (a recording of modem data, for example) the aforementioned time disruptions would compromise the operational integrity of the recording system.

With a view to alleviating this problem, the recording system shown in Figure 5 incorporates a modification of the system of Figure 1. Some of the components used in the modified system are identical to those used in the system of Figure 1, and these have been ascribed like reference numerals.

The modified system incorporates a phase-locked loop which, in effect, averages over time the synchronisation signals derived from both the Track A and the Track B swipes and generates a new sequence of pseudo synchronisation signals. These pseudo synchronisation signals are used to control the relative timings of the demultiplexed signals output from both tracks of the recording system in order to remove any instantaneous time disruptions that may be present.

Referring again to Figure 5, in the replay mode, the Track A/Track B output signals are demodulated and demultiplexed separately. To that end, the output signals from each read head 43,44 are routed via a respective pre-amplifier/equaliser circuit 50A,50B to a respective FM demodulation circuit 52A,52B. The output of each demodulation circuit is connected to a respective low pass filter 53A,53B and a respective synchronisation level detection circuit 54A,54B compares the amplitudes of the filtered signals with a suitable threshold level (between -1 volt and -2 volts) whereby to detect the synchronisation signals which mark the start of each new frame in the respective track. Each time a synchronisation signal is detected, the detection circuit 54A,54B generates a trigger signal V_{TA},V_{TB} effective to initialise a respective commutator circuit 55A,55B. The commutator circuits receive clock signals from respective timing circuits 57A,57B and, in response thereto, cause associated time division de-multiplexing circuits 56A,56B to distribute the voltage levels (in time slots 1 to 35) which follow each detected synchronisation signal to respective sample and hold circuits 60A(1), 60A(2) 60A(36); 60B(1), 60B(2) 60B(36) associated with the output channels O_1, O_2, ..., O_{36}.

The trigger signals V_{TA},V_{TB} from both tracks are supplied to a phase-locked loop 70 which, as explained, effectively averages the synchronisation signals detected in Tracks A and B and generates a new sequence of pseudo synchronisation signals S_p. These signals are supplied to a time base correction (TCB) address generator 71 which generates 72 TCB
addresses, each controlling the state of a respective switch 61A(1), 61A(2), ..., 61A(36); 61B(1), 61B(2), ..., 61B(36) connected in series with a respective one of the sample and hold circuits.

The relative timings of the pseudo synchronisation signals, and so of the TCB addresses, are such that any instantaneous time disruptions which may have been present in the demultiplexed signals are removed before the signals are output from channels O1, O2, ..., O36 via the switches and respective low pass filters 62.

A logic circuit 72 is provided to recognise the first few (typically two) synchronisation pulses in each swipe and to cause the address generator 71 to switch from one bank of addresses, appropriate for the current swipe (a Track A swipe, say) to the other bank of addresses, appropriate for the next swipe (a Track B swipe). The logic circuit is also arranged to ignore any remaining synchronisation pulses in the current swipe so as to prevent the address generator from switching back prematurely.

It will be appreciated that although the embodiment described has particular application in recording analogue voice signals (e.g. to monitor the conversations of air and ground controllers in airports), the invention has much wider applicability than this, and can be used, for example, to record analogue and/or digital data.

Claims

1. A recording and reproducing system comprising,
a plurality of output channels (O1, ..., O36), each output channel corresponding to a respective input channel;
time division demultiplexing means (56) for distributing the frequency-demodulated samples output by said frequency-demodulation means to respective output channels (O1, ..., O36), and synchronisation signal detection means (54), characterised in that the samples derived from one of the input channels (I1) are used as synchronisation signals, the synchronisation signal detection means (54) detects the frequency-demodulated samples corresponding to said samples that are used as synchronisation signals, and the time division demultiplexing means (56) distributes the frequency-demodulated samples output by said frequency demodulation means (54) to respective output channels (O1, ..., O36) in accordance with the timing of the synchronisation signals.

2. A recording and reproducing system as claimed in claim 1, wherein the samples used as synchronisation signals have a level greater than that of any other sample.

3. A recording and reproducing system as claimed in claim 1 or claim 2, wherein at least some of the input channels (I1, ..., I36) include a low pass filter (11) responsive to frequencies in the range from 300Hz to 3.4kHz.

4. A recording and reproducing system as claimed in any one of claims 1 to 3, wherein said time division multiplexing means (20) has a sampling cycle of predetermined period, and the time division multiplexing means (20) samples the input signals received in physically neighbouring said input channels at respective times during said sampling cycle that are spaced in time by half said predetermined period.

5. A recording and reproducing system as claimed in any one of claims 1 to 4, wherein said recording and reading means (43,44) comprises two record/read heads for recording the frequency-modulated samples onto, and reading the recorded samples from, respective helical tracks on magnetic tape, and including means (70,71) for deriving additional synchronisation signals from the respective synchronisation signals recorded in both said helical tracks, and for using the additional synchronisation signals to control output of the frequency-demodulated samples from the output channels (O1, ..., O36).

6. A recording and reproducing system as claimed in claim 5 comprising a respective said time divi-
sion demultiplexing means (56A,56B), each responsive to the synchronisation signals recorded by a respective said head (43,44) to distribute the frequency-demodulated samples read by that head to respective output channels (O₁ ... O₃₉).

7. A recording and reproducing system as claimed in claim 5 or claim 6, wherein said means (70,71) for deriving said additional synchronisation signals includes a phase-locked loop (70) to which the synchronisation signals recorded in both said helical scan tracks are supplied.

Patentansprüche

1. Aufzeichnungs- und Wiedergabesystem, umfassend eine Vielzahl von individuellen Eingangs-kanälen (l₁ ... l₃₉) zum Empfangen von entsprechenden, entsprechende Pegel aufweisenden Eingangssignalen;
 Zeitteilermultiplexmittel (20) zum zyklischen Abtasten der entsprechenden Eingangssignale gemäß einer vorbestimmten Sequenz der Eingangskanäle (l₁ ... l₃₉) und zum Ausgeben einer Folge von entsprechende Zeitschlitze einnehmenden Abtastungen, wobei jede Abtastung einen Pegel eines in entsprechendem Eingangskanal (l₁ ... l₃₉) während eines entsprechenden Zeitschlitzes empfangenen Eingangssignals darstellt;
 Frequenzmodulationsmittel (42) zum Frequenzmodulieren der Folge von durch die Zeitteilermultiplexmittel (22) ausgegebenen Abtastungen, um frequenzmodulierte Abtastungen zu erzeugen;
 Mittel (43,44) zum Aufzeichnen der frequenzmodulierten Abtastungen als ein Analogsignal auf magnetischem Aufzeichnungsband;
 Mittel (43,44) zum Wiedergeben der frequenzmodulierten Abtastungen von dem magnetischen Aufzeichnungsband;
 Frequenzdemodulationsmittel (52) zum Demodulieren der frequenzmodulierten, durch das Wiedergabemittel (43,44) wiedergegebenen Abtastungen, um eine Folge von frequenzmodulierten Abtastungen zu erzeugen;
 eine Vielzahl von Ausgangskanälen (O₁ ... O₃₉), wobei jeder Ausgangskanal einem entsprechenden Eingangskanal entspricht;
 Zeitteilermultiplexmittel (56) zum Verteilen der frequenzmodulierten, von dem Frequenzdemodulationsmittel abgegebenen Abtastungen zu entsprechenden Ausgangskanälen (O₁ ... O₃₉) und Synchronisationssignaldektionsmittel (54), dadurch gekennzeichnet, daß die von eingesendeter Eingangskanäle (l₃₉) erhaltenen Abtastungen als Synchronisationssignale verwendet werden, wobei das Synchronisationssignaldektionsmittel (54) die frequenzdemodulierten Abtastungen entsprechend zu den Abtastungen detektiert, die als Synchronisationssignale verwendet werden, und das Zeitteilermultiplexmittel (56) die frequenzmodulierten, von besagtem Frequentzdemodulationsmittel (52) zu entsprechenden Ausgangskanälen (O₁ ... O₃₉) in Übereinstimmung mit der zeitlichen Zuordnung der Synchronisationssignale ausgegebenen Abtastungen verteilte.

2. Aufzeichnungs- und Wiedergabesystem wie in Anspruch 1 beansprucht, bei dem die als Synchronisationssignale verwendeten Abtastungen einen Pegel größer als derjenige irgendeiner anderen Abtastung besitzen.

3. Aufzeichnungs- und Wiedergabesystem wie in Anspruch 1 oder Anspruch 2 beansprucht, bei dem wenigstens einer der Eingangskanäle (l₁ ... l₃₉) ein auf Frequenzen im Bereich von 300 Hz ... 3,4 kHz ansprechendes Tiefpassfilter (11) einschließt.

4. Aufzeichnungs- und Wiedergabesystem wie in einem der Ansprüche 1 bis 3 beansprucht, bei dem besagtes Zeitteilermultiplexmittel (20) einen Abtastzyklus vorbestimmter Periode besitzt und das Zeitteilermultiplexmittel (20) die in physikalisch benachbarten besagten Eingangskanäle zu entsprechenden Zeiten während besagten Abtastzyklus empfangenen Eingangssignale abstellt, die zeitlich durch die halbe vorbestimmte Periode getrennt sind.

5. Aufzeichnungs- und Wiedergabesystem wie in einem der Ansprüche 1 bis 4 beansprucht, bei dem besagtes Aufzeichnungs- und Wiedergabemittel (43,44) zwei Aufnahme-/Wiedergabeköpfe zum Aufzeichnen der frequenzmodulierten Abtastungen auf und zum Wiedergeben der aufgezeichneten Abtastungen von entsprechenden spiralförmigen Spuren auf Magnetband umfaßt und Mittel (70,71) zum Ableiten von zusätzlichen Synchronisationssignalen von entsprechenden in beiden spiralförmigen Spuren aufgezeichneten Synchronisationssignalen und zum Nutzen der zusätzlichen Synchronisationssignale zum Kontrollieren des Ausgangs der frequenzdemodulierten Abtastungen von den Ausgangskanälen (O₁ ... O₃₉) einschließt.

6. Aufzeichnungs- und Wiedergabesystem wie in Anspruch 5 beansprucht, umfassend ein entsprechendes Zeitteilermultiplexmittel (56A,
Revendications

1. Système d’enregistrement et de reproduction comprenant,
 une pluralité de canaux d’entrée individuels (I₁ ... I₉₈) pour recevoir des signaux d’entrée respectifs ayant des niveaux respectifs ;
 un dispositif de multiplexage par répartition temporelle (20) pour échantillonner de façon cyclique les signaux d’entrée respectifs, selon une séquence prédéterminée des canaux d’entrée (I₁ ... I₉₈) et pour fournir une succession d’échantillons occupant des tranches de temps respectives, chaque échantillon représentant un niveau de signal d’entrée reçu dans un canal d’entrée respectif (I₁ ... I₉₈) pendant une tranche de temps respective,
 un dispositif de modulation de fréquence (42) pour moduler en fréquence la succession d’échantillons fournis par ledit dispositif de multiplexage par répartition temporelle (20) pour produire des échantillons modulés en fréquence ;
 un dispositif (43, 44) pour enregistrer les échantillons modulés en fréquence, comme un signal analogique, sur une bande d’enregistrement magnétique ;
 un dispositif (43, 44) pour lire à partir d’une bande d’enregistrement magnétique les échantillons modulés en fréquence ;
 un dispositif de démodulation de fréquence (52) pour démoduler les échantillons modulés en fréquence lus par le dispositif de lecture (43, 44) pour produire une succession d’échantillons démodulés en fréquence,
 une pluralité de canaux de sortie (O₁ ... O₉₈), chaque canal de sortie correspondant à un canal d’entrée respectif ;
 un dispositif de démultiplexage par répartition temporelle (56) pour distribuer les échantillons démodulés en fréquence fournis par ledit dispositif de démodulation en fréquence aux canaux de sortie respectifs (O₁ ... O₉₈), et au dispositif de détection de signaux de synchronisation (54), caractérisé en ce que les échantillons dérivés d’un des canaux d’entrée (I₉₈) sont utilisés comme signaux de synchronisation, le dispositif de détection de signal de synchronisation (54) détecte les échantillons démodulés en fréquence correspondant aux échantillons qui sont utilisés comme signaux de synchronisation, et le dispositif de démultiplexage par répartition temporelle (56) distribue les échantillons démodulés en fréquence fournis par ledit dispositif de démodulation en fréquence (52) aux canaux de sortie respectifs (O₁ ... O₉₈) selon les temporisations des signaux de synchronisation.

2. Système d’enregistrement et de reproduction selon la revendication 1, dans lequel les échantillons utilisés comme signaux de synchronisation ont un niveau supérieur à celui de tout autre échantillon.

3. Système d’enregistrement et de reproduction selon la revendication 1 ou la revendication 2, dans lequel au moins certains des canaux d’entrée (I₁ ... I₉₈) comprennent un filtre passe-bas (11) sensible à des fréquences dans l’intervalle de fréquence de 300 Hz à 3,4kHz.

4. Système d’enregistrement et de reproduction selon l’une quelconque des revendications 1 à 3, dans lequel ledit dispositif de multiplexage par répartition temporelle (20) a un cycle d’échantillonnage d’une période prédéterminée et le dispositif de multiplexage par répartition temporelle (20) échantillonne les signaux d’entrée reçus dans lesdits canaux d’entrée physiquement voisins à des instants respectifs pendant ledit cycle d’échantillonnage qui sont espacés en temps par une moitié de ladite période prédéterminée.

5. Système d’enregistrement et de reproduction selon l’une quelconque des revendications 1 à 4, dans lequel ledit dispositif d’enregistrement et de lecture (43, 44) comprend deux têtes d’enregistrement/lecture pour y enregistrer les échantillons modulés en fréquence et lire les échantillons enregistrés sur elles, à partir des pistes héliocaidales respectives sur la bande magnétique, et comprenant un dispositif (70, 71) pour dériver des signaux de synchronisation supplémentaires à partir des signaux de synchronisation respectifs enregistrés dans lesdites deux pistes héliocaidales, et pour utiliser les signaux de synchronisation supplémentaires pour commander une sortie des échantillons démodulés en fréquence à partir des canaux de sortie (O₁ ... O₉₈).
6. Système d’enregistrement et de reproduction selon la revendication 5 comprenant le dit dispositif de démultiplexage par répartition temporelle respectif (56A, 56B), sensibles chacun aux signaux de synchronisation enregistrés par une dite tête respective (43, 44) pour distribuer les échantillons démodulés en fréquence lus par cette tête aux canaux de sortie respectifs (O₁ ... Oₙₑ).

7. Système d’enregistrement et de reproduction selon la revendication 5 ou la revendication 6, dans lequel le dit dispositif (70, 71) utilisé pour dériver lesdits signaux de synchronisation supplémentaires comprend une boucle à verrouillage de phase (70) à laquelle sont appliqués les signaux de synchronisation enregistrés dans lesdites deux pistes de balayage hélicoïdal.
Fig.2.