EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 29.12.1997 Bulletin 1997/52

Application number: 90092691.6

Date of filing: 06.02.1990

Int Cl. #: G11B 15/087, G11B 27/28, G11B 20/02, G11B 20/10, G11B 27/36

International application number: PCT/JP90/00147

International publication number: WO 90/09662 (23.08.1990 Gazette 1990/20)

SYSTEM OF DETECTING A CUE SIGNAL
SYSTEM Zur DETEKTION EINES MARKIERSIGNALS
SYSTEME DE DETECTION D'UN SIGNAL D'INSERTION

Designated Contracting States:
DE ES FR GB IT

Priority: 06.02.1989 JP 30621/89

Date of publication of application: 07.08.1991 Bulletin 1991/32

Representative: Glawe, Delfs, Moll & Partner Patentanwälte
Postfach 26 01 62
80058 München (DE)

References cited:
JP-A-55 058 850
JP-A-56 068 975

JP-B-52 004 925
JP-U-53 076 911

JP-U-57 155 045
US-A-4 384 308

US-A-4 784 822

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

The present invention relates to a method of recording a cue signal and a detecting apparatus thereof, and more particularly, to a method of efficiently recording a cue signal on a magnetic tape and an apparatus for correctly detecting the cue signal recorded on the magnetic tape.

Background Art

In magnetic recording/reproduction devices (such as VTRs and DATs) for business use and some for private use, various controls were carried out by recording a cue signal on a magnetic tape and detecting that cue signal at reproduction. This cue signal becomes a mark of its position to be recorded at the starting point or ending point of a program, or at a splice of an edition, or at a starting point or ending point of repeated reproduction, for example. By using such a cue signal, control is possible of automatic operation of plural magnetic recording/reproduction devices, automatic editing, automatic repeated reproduction and the like.

In Japanese Patent Laying-Open No. 61-8773 (G11B20/10), a structure is disclosed where the address code and cue signals are recorded/reproduced by frequency division multiplexing using the same track to improve the usage efficiency of the tape in the control operation of a magnetic recording/reproduction device, for example.

In the conventional art disclosed in the above mentioned laid-open application, envelope detecting circuits and pass filters for each signal are necessary to separate the address code and the cue signal at the time of reproduction, leading to a problem that the structure of the magnetic recording/reproduction device becomes complicated and costly. Furthermore, there was a problem that it was difficult to efficiently record/reproduce both address code and cue signal due to the fact that two signals or information having significantly different frequencies are recorded/reproduced by the same record/reproduction system in the above mentioned conventional art. When the record and reproduction characteristics of the above mentioned record/reproduction system are conformed to either the address code or the cue signal, the efficiency of record and reproduction of the other signal is deteriorated. It was also difficult to completely separate the address code and the cue signal at the time of reproduction because the address code and the cue signal were recorded by frequency division multiplexing in the above mentioned conventional art. This resulted in the problem that either of the separated address code or the cue signal is mixed with the other signal, leading to more noise.

A system for detecting a cue signal recorded on a magnetic tape according to the preamble part of claims 1 or 2 is known from US-PS 4,384,308. In this system it is required to provide means for discriminating between the cue signal pattern and the tape speed pattern in reproduction, since the cue signal pattern and the tape speed pattern are recorded by time division multiplexing on the audio track where the main audio cue signal is recorded. Furthermore, in this system the audio signal is unfavourably affected by the cue signal since the cue signal is also recorded on the track where the main audio signal is recorded.

From US-PS-4,764,822 a system for detecting a cue signal recorded on a magnetic tape is known in which the cue signal and the PCM audio data are recorded by time division multiplexing on the same track.

Disclosure of the Invention

Accordingly, an object of the present invention is to provide a system in which a cue signal can be efficiently reproduced without causing degradation of S/N ratio, and the structure of the cue signal detecting circuit is simplified.

These objects are solved by the features of claims 1 and 2.

Advantageous embodiments are mentioned in the sub-claims.

Brief Description of the Drawings

Figs. 1 and 2 are a track pattern diagram and a record format diagram for explaining the method of recording a cue signal in accordance with one embodiment of the present invention.

Fig. 3 is a block diagram showing the structure of a cue signal detecting apparatus in accordance with the first embodiment of the present invention.

Fig. 4 is a block diagram showing the structure of a cue signal detecting apparatus in accordance with a second embodiment of the present invention.

Fig. 5 is a flow chart for explaining the operation of the embodiment of Fig. 4.

Fig. 6 is a timing chart for explaining the operation of the embodiment of Fig. 4.

Fig. 7 is a waveform diagram for explaining the problems in the embodiment of Fig. 4.

Fig. 8 is a block diagram showing the structure of a cue signal detecting apparatus in accordance with the third embodiment of the present invention.

Fig. 9 is a waveform diagram for explaining the operation of the embodiment of Fig. 8.

Figs. 10 - 13 are flow charts for explaining the operation of the embodiment of Fig. 8.

Best Mode for Carrying Out the Invention

The embodiments of the present invention will be explained hereinafter with reference to the drawings. The described embodiments show the example where the present invention is applied to a VTR. However, the present invention is applicable to any magnetic record-
ing/reproduction device using magnetic tape, and can be applied to DAT and the like other than VTR. In such other applications, the following embodiments can be substantially used without modifying the structure there-.

Referring to Fig. 1 and 2, the method of recording a cue signal in accordance with an embodiment of the present invention is described.

In Fig. 1, a video track 22 and a PCM audio track 23 inclining obliquely with respect to the longitudinal direction of a magnetic tape 21 are formed therein by a rotary magnetic head. At one end of the magnetic tape 21 in the width direction, an auxiliary audio track 24 is formed along the longitudinal direction thereof. On the other end in the width direction, a control track 25 is formed along the longitudinal direction thereof. Video signals are recorded on video track 22. Audio signals corresponding to the video contents of video track 22 are recorded on the PCM audio track. A control signal CTL having a constant frequency in synchronism with the speed of the magnetic tape 21 is recorded on control track 25. This control signal CTL is used to track control at the time of reproduction. Audio signals and cue signals are recorded on auxiliary audio track 24. The audio signals recorded on auxiliary audio track 24 are used as auxiliaries to the audio signals recorded on PCM audio track 23. For example, the audio signal recorded on auxiliary audio track 24 has a content identical to that of the audio signal recorded on PCM audio track 23, to be used for monitoring whether or not the audio signal is correctly recorded on PCM audio track 23. Because the audio signal recorded on auxiliary audio track 24 is only a signal for monitoring, there is no problem even if some information is missing.

In auxiliary audio track 24, a cue signal having a frequency of the audio signal band is recorded in time division manner with the audio signal. In other words, as shown in Fig. 2, a starting cue signal having a frequency f_1 (a sine wave of 1 kHz, for example) is recorded for approximately 1 second at the position of approximately 10 seconds before the start of the program after a mute period 26 of 1 second. At the position of approximately 10 seconds before the end of the program, an ending cue signal of a frequency of F_2 (a sine wave of 1.6 kHz, for example) is recorded for approximately 1 second after a mute period 27 of 1 second.

From the foregoing, it is seen that the cue signal recorded in a time division manner with the audio signal has a frequency of a band identical to that of the audio signal. Therefore, even if the record reproduction characteristic of the record reproduction system of auxiliary audio track 24 is selected so as to conform to the original record reproduction of the audio signal, it is possible to efficiently record and reproduce the cue signal without degrading S/N ratio of the cue signal. The cue signal and the audio signal recorded by time division multiplexing can be easily separated at the time of reproduction, and complete separation can be achieved. This eliminates the mixture of the separated cue signal and the audio signal with each other, with improvement in S/N ratio.

To record the aforementioned cue signal, a signal source generating the cue signal is provided from which the cue signal output from this signal source may be applied to a fixed magnetic head (abutted to auxiliary audio track 24) for auxiliary audio recording/reproduction. To form mute periods 26 and 27, a constant bias signal for record/erase may be applied to the above mentioned fixed head. To erase a recorded cue signal, a completely unrelated frequency signal may be recorded in superimposition, or the aforementioned constant bias signal may be applied to the fixed head to erase the recorded contents of auxiliary audio track 24.

Although a starting cue signal and an ending cue signal are recorded in auxiliary audio track 24 as cue signals in the embodiment of Fig. 2, other cue signals (for example, end notifying signal) may be recorded. An end notifying signal is a sine wave signal of 2.4 kHz, for example, recorded for one second after a mute period of one second, and approximately 30 seconds before the end of the program, for example.

Several embodiments of the cue signal detecting apparatus for identifying a cue signal recorded in the above mentioned manner from the reproduced signals of auxiliary audio track 24 will be described hereinafter.

Fig. 3 is a block diagram showing an example of a cue signal detecting apparatus in accordance with a first embodiment of the present invention. The embodiment of Fig. 3 shows the simplest cue signal detecting apparatus. In the figure, a fixed magnetic head 1 is a magnetic head for recording and reproducing signals associated with auxiliary audio track 24. The reproduced signal of fixed magnetic head 1 is applied to an audio circuit 9, band pass filters 10, 11, and a level detecting circuit 12. The audio circuit 9 processes the reproduced signal of fixed magnetic head 1 to generate the audio signal for monitoring. The pass band of band pass filter 10 is selected so as to pass only a starting cue signal from the reproduced signals of fixed magnetic head 1, whereas the pass band of band pass filter 11 is selected so as to pass only the ending cue signal of the reproduced signal of fixed magnetic head 1. The level detecting circuit 12 detects the level of the reproduced signal of fixed magnetic head 1. The outputs of band pass filters 10, 11 and level detecting circuit 12 are provided to CPU 7. For the simplest manner, CPU 7 may make determination that the starting cue signal is reproduced when the output of band pass filter 10 is activated, and that the ending cue signal is reproduced when the output of band pass filter 11 is activated. In the embodiment of Fig. 3, CPU 7 will make determination of the cue signals when a predetermined frequency signal is detected for a predetermined time by band pass filters 10 or 11, after the level of the reproduced signal detected by level detecting circuit 12 is low for a predetermined period. This reduces erroneous operation at the time of cue signal.
However, the embodiment of Fig. 3 can not detect the cue signal correctly if the speed of magnetic tape 21 changes, because the frequency of the cue signal included in the reproduced signal also changes.

To solve the above mentioned problem, a cue signal detecting apparatus according to a second embodiment of the present invention shown in Fig. 4 is devised. The embodiment of Fig. 4 has a structure that identifies the cue signal by comparing the frequencies of the signal reproduced from auxiliary audio track 24 and control signal CTL reproduced from control track 25.

In Fig. 4, the signal read out from auxiliary audio track 24 by fixed magnetic head 1 is amplified by an amplifier 2, followed by conversion into a rectangular wave by a wave-form-shaping circuit 5. This rectangular wave is counted by a counter 6. A reset pulse Rₙ from a reset pulse generating circuit 8 is applied to counter 6. Counter 6 is responsive to this reset pulse Rₙ to reset the counting operation.

Reset pulse generating circuit 8 generates reset pulses Rₙ, Rₙ₊₁ according to the control signal using the fixed magnetic head 3 and amplified by amplifier 4, and the clock signal of CPU 7. These reset pulses Rₙ, Rₙ₊₁ are signals in synchronism with control signal CTL, with frequencies identical to that of control signal CTL, or may be a frequency division of control signal CTL. Reset pulse Rₙ₊₁ is a signal earlier in time than reset pulse Rₙ (a signal advancing by one to several clock pulses, for example). This is because it is necessary to fetch the output of counter 6 to CPU 7, before counter 6 is reset.

The main operation of the cue signal identification is carried out mainly by CPU 7. The operation of CPU 7 is schematically shown in Fig. 5. Referring to Fig. 5, the identification operation of the cue signal in accordance with the embodiment of Fig. 4 is described hereinafter.

When a reset signal Rₙ is applied to CPU 7, the count value of counter 6 (a digital signal of n bits) is read into CPU 7 (steps S20, S21). Then, CPU 7 compares the read count value of counter 6 with a reference value provided internally in advance to identify the cue signal (step S22). In other words, because the control signal and the starting cue signal are both a signal with a constant frequency, the ratio of the frequency of the control signal to frequency f₁ of the starting cue signal is known in advance. Even if the speed of magnetic tape 21 changes, the reproduced control signal and the reproduced starting cue signal have their frequencies also changed in response. Accordingly, the aforementioned frequency ratio m is constant. The count value of counter 6 indicates the ratio of the frequency of control signal CTL reproduced by fixed magnetic head 3 to the frequency of the signal reproduced by fixed magnetic head 1. Therefore, CPU 7 can make determination that a starting cue signal is included in the reproduced signal of fixed magnetic head 1 when the count value of counter 6 coincides with the above mentioned frequency ratio m. However, if determination is made that there is a starting cue signal only when the count value of counter 6 coincides with the aforementioned frequency ratio m, there is a possibility of determination of no starting cue signal even when negligible mixture of small noise or slight change in frequency or the like occurs. In practical use, a lower limit value L₁ and an upper limit value L₂ are set so that L₁ < m < L₂, where determination is made that a starting cue signal is reproduced when L₁ < count value < L₂. The identification procedure of an ending cue signal is carried out similarly in the aforementioned manner.

At step S23, a check is performed as to whether the identification of the same cue signal is carried out n times in succession. If control signal CTL is recorded in 30 Hz, identical results are obtained 30 times because the cue signal is recorded for a period of 1 second. In practice, n is set to 10 to 20 times.

The result of a cue signal identification is provided for the first time (step S25) when determination is made that the identification of the same cue signal occurs n times in succession at step S23. Alternatively, a corresponding control of VTR by CPU 7 is carried out. If the identification of the same cue signal is not carried out n times in succession, the output will indicate a state where a cue signal is not identified (step S24). Operation is returned to step S20 after steps S25 or S24 to repeat the above mentioned serial operation.

In the above mentioned embodiment of Fig. 4, the frequency ratio of the reproduced signals of fixed magnetic head 1 and head 3 are sought using a counter, from which determination of a cue signal is made in response to this frequency ratio. Therefore, as shown in Fig. 6, the counter value (frequency ratio) is identical even when the speed of the magnetic tape 21 is changed, (or when the speed differs from that of normal reproduction, i.e., fast forward, or rewind), to allow correct identification of a cue signal. Although the reproduced control signal CTL is used as the object of comparison in frequency in the embodiment of Fig. 4, other signals may be used instead of control signal CTL as long as it is a signal having a frequency proportional to the speed of magnetic tape 21. In the case where a time code track is formed on magnetic tape 21, having the FG (rotate detection) signal of the capstan motor which drives magnetic tape 21 recorded by the fixed magnetic head, the clock signal from this time code track can be used as the object of frequency comparison. Then, in response to the ratio and high/low relation of the frequency, the structure of the embodiment of Fig. 4 is modified.

There is a possibility that erroneous determination is made sometimes because the number of the pulses are simply counted in the embodiment of Fig. 4. For example, even if the number of pulses during a predetermined period (33.3 msec) is equal regarding the reproduced signal of fixed magnetic head 1, the frequency may be changed at random, as shown in Fig. 7. In this
case, there is a possibility that CPU 7 will make erroneous determination that signals that are not the cue signal (a normal audio signal, for example) is a cue signal.

An embodiment that can solve the above mentioned problem is described hereinafter. Fig. 8 is a block diagram showing a structure of a cue signal detecting apparatus in accordance with the third embodiment at the present invention. In the embodiment of Fig. 8, the period of the reproduced audio signal is checked in details to make determination whether it is a cue signal or not.

In Fig. 8, fixed magnetic head 1 is connected to a record amplifier 30 or a reproduction amplifier 2 by a change over switch 38. Change over switch 38 is switched by a record/reproduce switching signal. That is to say, change over switch 38 is switched to the record amplifier 30 side at the time of record mode. Therefore, the signal provided from the record amplifier 30 is applied to fixed magnetic head 1. In response, fixed magnetic head 1 records the signal on auxiliary audio track 24 of Fig. 1. On the other hand, in reproduction mode, the change over switch 38 is switched to the reproduction amplifier 2 side. The reproduced signal read out from auxiliary audio track 24 by fixed magnetic head 1 is amplified by reproduction amplifier 2, to be provided to level shifting circuit 31 via a direct current blocking condenser C1. Because the reproduced signal is applied to level shifting circuit 31 after the direct current component is blocked by direct current blocking condenser C1, the average level of the reproduced signal provided from the level shifting circuit becomes 2.5V. The output of level shifting circuit 31 is provided to the positive input end of comparator 32. The reference voltage (2.5V) from a voltage dividing circuit 36 is supplied to the negative input end of comparator 32. The positive input end and the output end of comparator 32 are short-circuited therewith insulation by a resistor having a resistance value of \(R_2 \). Comparator 32 converts sine wave A into rectangular wave B. The sine wave is converted into a rectangular wave in a stable manner, due to the fact that comparator 32 comprises hysteresis characteristic. The output of comparator 32 is provided to a CPU 33 via an input port 34. A ROM 36 and a RAM 37 are connected to CPU 33. The operation program of CPU 33 is stored in ROM 36. RAM 37 stores various data. A microcomputer is implemented by CPU 33, ROM 36, and RAM 37. The substantial determination operation of the cue signal is carried out by this microcomputer. The output of the microcomputer, i.e., the output of CPU 33 is provided via an output port 35.

The frequencies of the respective cue signals are provided as in the following, for example:

Starting cue signal	800 ± 60 Hz
Ending cue signal	1600 ± 100 Hz
User cue	2400 ± 100 Hz

The frequency of the sampling signal for processing at CPU 33 is set to frequency 19.2 kHz which is in an integral multiple relation of the above described three cue signals. Accordingly, the sampling points in one period of a starting cue signal are 24, the sampling points in one period of an ending cue signal are 12, and the sampling points in one period of a user cue are 8.

Determination is made of a cue signal being reproduced if a signal of the above mentioned predetermined frequency continue for 0.6 seconds or more, after a mute period of 0.5 seconds or more. Therefore, by dividing the output of comparator 32 into blocks of 100 msec, for example, to determine whether each block is a mute state block or a cue signal block, determination may be made of a cue signal being reproduced when a cue signal block of identical type continues for 6 times or more in succession, after 5 or more mute blocks in succession. If the size of the divided block is too small, determination will become impossible due to effects such as noises, whereas identification between the mute period and the cue signal period will become difficult if the size is too large. In the embodiment of Fig. 8 comprising the aforementioned conditions, a block with the size of about 100 msec is appropriate.

Figs. 10 and 13 are flow charts for explaining the operation of mainly CPU 33 in the embodiment of Fig. 8. The flow chart of Fig. 11 shows the step G subroutine of the flow chart of Fig. 10 in detail, while Figs. 12 and 13 show in detail the step H subroutine of the flow chart of Fig. 10. In reference with Figs. 10 - 13, the operation of CPU 33 will be described hereinafter.

At the start of the operation, CPU 33 carries out the initialization (step F1). At step F2, the mute block succession counter, the cue block succession counter, and the cue waiting state flag (these counters and flag are set within RAM 37) are each reset. At the next step of G, the output of comparator 32 is sampled for a period of approximately 95 msec, and the data is stored. At the next step F3, a timer of 5 msec (a soft timer comprised in CPU 33) is started. At the next step F4, determination is made of the type of the current blocks according to the data obtained at step G. At step F4, the operation is branched in response to the determination result of step H. When determination is made of a mute block, the cue block succession counter is reset at step F5, and the mute block succession counter is incremented (+1) at step F6. A check is performed at step F7 to see whether the contents of the mute block succession counter is 5 or more. If 5 or more, operation proceeds to step F8 where the cue waiting state flag is set, further proceeding to step F23. If less than 5, operation proceeds to step F23 directly. At step F23, operation is suppressed until the elapse of 5 msec of the timer. Then, operation returns to step G.

That is to say, a cue waiting state flag is set if 5 blocks or more determined as a mute block continues, whereby the state to determine the cue signal of the next block is attained.

If the determination result of step F4 shows a cue
block, step F9 is executed where the mute succession counter is reset. The cue waiting state flag is checked in step F10. If there is no cue waiting state, operation returns to step G upon expiration of the 5 mssec timer. If at a cue waiting state, operation proceeds to step F11, where the value of the cue block succession counter is checked whether it is 0 or not.

If the value of the cue block succession counter is 0, there is a possibility that a cue signal is detected for the first time. Therefore, the type of this cue signal is stored, and the cue block succession counter is set to 1 (steps F12, F13). Then the operations of steps F23 and et seq are executed. That is to say, because there is possibility that the current block is a cue signal block after a mute period continuing for a predetermined period, the cue block succession counter is set to 1, preparing to check whether the same cue block continues or not.

If the content of the cue block succession counter is not 0 according to the determination in step F11, the type of the cue signal is checked whether it is identical to that of the cue signal of the immediately preceding block (step F14). If it is not the same type, it is considered that it is not the correct cue signal. The cue block succession counter and the cue waiting state flag are reset at step F20, and operation returns to step G.

If the result of the check in step F14 is YES, i.e., if the current block and the last block are of the same cue signal, the cue block succession counter is incremented (step F15). Operation then proceeds to step F16 where the content of the cue block succession counter is checked to see if it is 6 or more. If it is less than 6, operation proceeds to step F23. If 6 or more, a cue detection signal is output (step F17). Each of the counters and the flag are reset at step F19, and operation returns to step G.

Thus, determination is made of the detection of a cue signal when there are 5 or more mute blocks in succession, followed by 6 or more cue signal blocks of the same type in succession.

Fig. 11 is a flow chart for explaining in details the data collecting step G of Fig. 10. To gather data, the L level point counter, the wave number counter, and the period counter in RAM 37 are reset at step G1 to clear the period number distribution table (provided within RAM 37) for initialization.

Next, a timer of 52 μsec (a soft timer incorporated in CPU 33) is set (step G2). The output of comparator 32 is fetched from input port 34 (step G3) and the period counter is incremented (+1) at the next step G4. At step G5, the current sample value is checked whether it is a L level or not. If a L level, the L level point counter is incremented at step G6. If not a L level, a operation directly proceeds to step G7.

A check is performed whether the previous sample value is at a H level and the current sample value is at a L level in step G7, to branch the operation. If this condition is satisfied, the level of the applied signal has changed, that is to say, the continuing H level period has ended. Then the wave number counter is incremented at step G8, whereby the current content of the period counter is recorded in the period number distribution table at step G9. The period number distribution table has a structure that comprises a plurality of counter areas corresponding to each count value of the period counter. That is to say, if the count value of the period counter is k at this time, the counter area corresponding to k in the period number distribution table is incremented. Then, the period counter is reset (step G10), and operation proceeds to step G11.

If the condition of the previous sample value being a H level and the current sample value being a L level is not satisfied by the determination in step G7, operation proceeds directly to step G11.

At step G11, check is made as to whether sampling of 1 block (approximately 95 mssec) has ended or not. If not, operation proceeds to step G12 for the next sampling. At step G12, the state of the 52 μsec timer is checked and waits until it ends. If it ends, operation returns to step G2. If determination is made that sampling of 95 mssec has ended at step G11, the collecting operation of data is terminated and returns to step F3 of Fig. 10. That is to say, in the data collecting step G, the output of comparator 32 is sampled by every 52 μsec (a period of 19.2 Khz) for checking the state of that level, whereby the sampling number during fall to fall is recorded in the period counter, the sampling number during the L level period is recorded in the L level point counter, and the number of changes from H level to L level is recorded in the wave number counter, respectively, to store the plural period number distribution of one block in the number distribution table.

Figs. 12 and 13 are flow charts showing step H in detail in Fig. 10 where the type of the flag is determined. Although Figs. 12 and 13 show a serial operation, the operation is divided into two figures for convenience of illustration.

At step H shown in Figs. 12 and 13, determination is made whether the current block is a user cue, an ending cue, a starting cue, a mute period, or none of these. To make this determination, the results of the aforementioned data collect step G are utilized.

In Figs. 12 and 13, steps H1 to H6 are steps to determine a user cue signal, steps H7 to H12 are steps to determine an ending cue signal, steps H13 to H18 are steps to determine a starting cue signal, and steps H19 to H21 are steps to determine the mute block period.

Because steps H1-H6, H7-H12, H13-H18 carry out substantially the same operation, the operation of steps H1-H6 will be described in detail, while the other steps will be described briefly. Because the sampling period is 52 μsec, the sampling points in one block are:
to result in 1827 points.

Because the frequency of a user cue signal is 2400 Hz, the user cue signal is equivalent to 8 sampling points. Therefore, if the signal reproduced by fixed magnetic head 1 is a user cue signal, the wave number between blocks is precisely:

$$1827/8 = 228$$

However, there is some allowance in step H1, where a check is made as to whether the wave number is 70 % or more of this value.

At the next step H2, a check is performed whether the sampling points of in the range of 7 to 9 representing the period in the period distribution occupies 95 % or more of the entire wave number. Furthermore, a check is performed whether the number of waves of sampling points 8 representing the period is 60 % or more of the entire wave number in step H3, whether the number of waves of sampling points 7 representing the period is 30 % or less than the entire wave number in step H4, and whether the number of waves of sampling points 9 representing the period is 30 % or less than the entire wave number in step H5, respectively.

If the checks from steps H1 to H5 are all detected to be OK, determination is made that a user cue signal has been applied (step H6). The operation then returns to step F4.

The correct period in the case of an ending cue signal is 12. Although there is a slight difference, the steps from H7 to H12 are basically similar to those in the case of a user cue. The threshold value of the wave number used in determination slightly differs. This is because the frequency in the case of an ending cue signal is higher than that of a user cue signal, whereby the difference in frequency when the number of sampling points differ by 1 is smaller. For example, in the case of an ending cue signal, the frequency is 1.75 kHz if the sampling points are 11, and the frequency is 1.48 kHz if the sampling points are 13.

Because the frequency of a starting cue signal is further higher, the conditions differ. That is to say, with respect to the correct period of 24, checks are made whether the sampling points of in the range of 21 to 27 representing the period is 95 % or more of the entire wave number in step H14, whether the number of waves of sampling points 23, 24 and 25 representing the period is 60 % or more of the entire wave number in step H15, whether the number of waves of sampling points 21, 22 representing the period is 30 % or less than the entire wave number in step H16, whether the number of waves of sampling points 26, 27 representing the period is 30 % or less than the entire wave number in step H17.

When determination is made that the current block is neither of the above mentioned cue signals, the L level or the H level states are checked in steps H19, H20 to see if they occupy 95 % or more of the entire period. A mute state is considered as to be fixed to either level because comparator 32 has hysteresis. If the condition matches either step H19 or H20, determination is made that it is a mute period.

When neither of the conditions of steps H19, H20 match, determination is made that it is neither a cue signal or a mute period.

Although an audio signal for monitoring PCM audio track 23 is recorded in auxiliary audio track 24 in the above-mentioned embodiment, the audio signal recorded in this auxiliary audio track 24 may be other audio signals. For example, when the audio to be recorded is recorded on PCM audio track 23 in the case of stereo voice, and recorded on auxiliary audio track 24 in the case of monaural voice, not the auxiliary audio signal, but the monaural main audio signal is recorded on the auxiliary audio track.

Industrial Applicability

Thus, the present invention can be applied widely to magnetic recording/reproduction devices using a magnetic tape as the recording medium.

Claims

1. A system for detecting a cue signal recorded on a magnetic tape (21), said magnetic tape having a main audio signal recorded on a plurality of tracks (23) and having an auxiliary audio signal and said cue signal recorded by time division multiplexing on a same first longitudinal track (24), said cue signal being in the frequency band of said auxiliary audio signal, characterized by proportional frequency signal reproducing means (3, 4, 8) for reproducing a control signal (CTL) having a frequency proportional to the speed of the magnetic tape from a second longitudinal track (25) different from said first track (24) of said magnetic tape, and cue signal detecting means (6, 7) for detecting that said cue signal is reproduced by generating the ratio of the frequencies of the reproduced signal from said first and second tracks and for comparing the ratio with a predetermined value being stored for a specific cue signal and for evaluating the number of positive results in succession.

2. A system for detecting a cue signal recorded on a magnetic tape (21), said magnetic tape having a main audio signal recorded on a plurality of tracks (23) and having an auxiliary audio signal and said cue signal recorded by time division multiplexing on a same first longitudinal track (24), said cue signal being in the frequency band of said auxiliary audio signal, characterized by means (31, 32, 39, F2) for converting the signal reproduced from the first lon-
8. The cue signal detecting system according to claim 7, further comprising type determination means (33) for determining the type of the reproduced signal from said audio track (24) in the block in response to the count result.

Patentansprüche

Markiersignal-Erfassungsmittel (6, 7) zum Erfassen, daß das Markiersignal wiedergegeben wird, indem das Verhältnis der Frequenzen des wiedergegebenen Signals von der ersten und der zweiten Spur erzeugt wird, und zum Vergleichen des Verhältnisses mit einem vorbestimmten Wert, der für ein bestimmtes Markiersignal gespeichert wird, und zum Bewerten der Anzahl aufeinanderfolgender positiver Ergebnisse.

2. System zum Erfassen eines auf einem Magnetband (21) aufgezeichneten Markiersignals, wobei das Magnetband ein auf einer Vielzahl von Spuren (23) aufgezeichnetes Haupt-Audiosignal hat sowie ein Hilfs-Audiosignal und das Markiersignal hat, die durch Zeitmultiplexierung auf ein und derselben ersten Längsspur (24) aufgezeichnet sind, wobei das Markiersignal in dem Frequenzband des Hilfs-Audiosignals ist, gekennzeichnet durch Mittel (31, 32, 39, R2) zum Umwandeln des von der ersten Längsspur (24) wiedergegebenen Signals in rechteckförmi ge Daten, welche durch eine Abtastfrequenz abgetastet werden, die ein Vielfaches der Markierfrequenzen ist, Mittel (33) zum Aufteilen der abgetasteten Daten in Blöcke vorbestimmter Länge und zum Bewerten der Zahlenverteilung von Abtastungen innerhalb des Blocks, um einen Markiersignal-Block, einen Sturmsignal-Block oder keinen von beiden zu erfassen, und Mittel (33) zum Bestimmen von mindestens einer vorbestimmten Anzahl aufeinanderfolgen-
der Stummsignal-Blöcke gefolgt von mindes-
stens einer vorbestimmten Anzahl von Markier-
signal-Blöcken, um ein Markiersignal zu erfas-
sen.

3. Markiersignal-Erfassungssystem nach Anspruch 1, be-
dem das Steuerungssignal ein Taktsignal von
einer Zeitcode-Spur ist.

4. Markiersignal-Erfassungssystem nach Anspruch 1
oder 3, bei dem das Markiersignal-Erfassungs-
mitteleiht eine Wellenzahl-Erfassungsmittel (5), um
die Wellenzahl des wiedergegebenen Signals von
der Audiospur (24) innerhalb einer vorbestimmten
Zeitdauer zu erfassen, die durch das Ausgabe-
signal der Proportional-Frequenzsignal-Wiederga-
bemittel (6) definiert wird, und
ein Bestimmungsmittel (7) zum Durchführen einer
Bestimmung, daß das Markiersignal wiedergege-
ben wird, indem die Ausgabe des Wellenzahl-Erfas-
ssungsmittels (6) mit vorbestimmten Bedingungen
verglichen wird.

5. Markiersignal-Erfassungssystem nach Anspruch 4,
bem dem das Bestimmungsmittel (7) die Bestim-
mung durchführt, daß das von der Spur (24) wie-
dergebene Signal das Markiersignal ist, wenn die
Ausgabe des Wellenzahl-Erfassungsmittels (6) mit
den vorbestimmten Bedingungen eine vorbestim-
tete Anzahl von Malen aufeinanderfolgend überbein-
stimmt.

6. Markiersignal-Erfassungssystem nach Anspruch 5,
bem dem die vorbestimmten Bedingungen mit einem
zulässigen Bereich einer Wellenzahl bestimmt wer-
den, die einen oberen Grenzwert und einen unteren
Grenzwert hat.

7. Markiersignal-Erfassungssystem nach Anspruch 2,
bem dem das Markiersignal-Erfassungsmittel auf-
weist: ein Zählmittel (33) zum Zählen der Abtastzahl
in jeder Periode des entsprechenden wiedergege-
enen Signals,
ein Speichermittel (37) zum Speichern des
Zählerergebnisses des Zählmittels, und
ein Bestimmungsmittel (33) zum Durchführen
einer Bestimmung, ob das von der Audiospur
wiedergegebene Signal das Markiersignal ist
oder nicht, als Reaktion auf den gespeicherten
Inhalt des Speichermittels.

8. Markiersignal-Erfassungssystem nach Anspruch 7,
welches weiterhin ein Typ-Bestimmungsmittel (33)
aufweist zum Bestimmen des Typs des von der Au-
diospur (24) in dem Block wiedergegebenen Si-
gnals als Reaktion auf das Zählerergebnis.

Revendications

1. Système pour détecter un signal de repère enregis-
tré sur une bande magnétique (21) ladite bande ma-
gnétique ayant un signal audio principal enregistré
sur une pluralité de pistes (23) et ayant un signal
audio auxiliaire et le signal de repère enregistrés
par multiplexage par partage de temps sur la même
première piste longitudinale (24), le dit signal de re-
père étant dans la bande de fréquence dudit signal
audio auxiliaire,
caractérisé par des moyens de reproduction pro-
portionnelle de signal de fréquence (3, 4, 8) pour
produire un signal de commande (CTL) ayant une
fréquence proportionnelle à la vitesse de la bande
magnétique d'une seconde piste longitudinale (25)
différente de ladite première piste (24) de ladite
bande magnétique, et
des moyens détecteurs de signal de repère (6, 7)
pour détecter que ledit signal de repère est repro-
duit, en générant le rapport des fréquences du si-
nal reproduit desdites première et seconde pistes,
et pour comparer ledit rapport à une valeur prédé-
terminée qui est mémorisée pour un signal de re-
père spécifique, et pour évaluer le nombre de résul-
tats positifs qui se succèdent.

2. Système pour détecter un signal de repère enregis-
tré sur une bande magnétique (21) ladite bande ma-
gnétique ayant un signal audio principal enregistré
sur une pluralité de pistes (23) et ayant un signal
audio auxiliaire et le signal de repère enregistrés
par multiplexage par partage de temps sur la même
première piste longitudinale (24), le dit signal de re-
père étant dans la bande de fréquence dudit signal
audio auxiliaire,
caractérisé par des moyens (31, 32, 39, R2) pour
convertir le signal reproduit de ladite première piste
longitudinale (24) en des données rectangulaires
échantillonnées par une fréquence d'échantillonna-
eg qui est un multiple des fréquences de repère,
un moyen (33) pour diviser les données échan-
tillonnées dans des blocs d'une longueur prédé-
terminée et pour évaluer la distribution de nom-
bre d'échantillons à l'intérieur du bloc afin de
détecter un bloc du type signal de repère, un
bloc du type signal muet ou aucun des deux, et
un moyen (33) pour déterminer au moins un
nombre prédéterminée de blocs du type signal
muet suivis par au moins un nombre prédéter-
miné de blocs du type signal de repère afin de
détecter un signal de repère.

3. Système détecteur de signal de repère selon la re-
vendication 1, dans lequel ledit signal de coman-
de est un signal d'horloge à partir d'une piste de co-
de de temps.
4. Système détecteur de signal de repère selon la revendication 1 ou 3, dans lequel ledit moyen détecteur de signal de repère comprend un moyen détecteur de nombre d'ondes (6) pour détecter le nombre d'ondes du signal reproduit à partir de ladite piste audio (24) dans une période de temps prédéterminée et définie par le signal de sortie dudit moyen de reproduction proportionnelle de signal de fréquence (5), et un moyen de détermination (7) pour déterminer que ledit signal de repère est reproduit en comparant la sortie dudit moyen détecteur de nombre d'ondes (6) à des conditions prédéterminées.

5. Système détecteur de signal de repère selon la revendication 4, dans lequel ledit moyen de détermination (7) détermine que le signal reproduit à partir de ladite piste (24) est ledit signal de repère lorsque la sortie dudit moyen détecteur de nombre d'ondes (6) s'adapte auxdites conditions prédéterminées un nombre prédéterminé de fois en succession.

6. Système détecteur de signal de repère selon la revendication 5, dans lequel lesdites conditions prédéterminées sont déterminées avec une plage admissible d'un nombre d'ondes ayant une valeur limite supérieure et une valeur limite inférieure.

7. Système détecteur de signal de repère selon la revendication 2, dans lequel ledit moyen détecteur de signal de repère comprend un moyen de comptage (33) pour compter le nombre d'échantillonnages dans chaque période du signal reproduit correspondant,

un moyen de mémoire (37) pour mémoriser le résultat de comptage dudit moyen de comptage,

et un moyen de détermination (33) pour déterminer si le signal reproduit à partir de ladite piste audio est ledit signal de repère ou non, en réponse au contenu mémorisé dudit moyen de mémoire.

8. Système détecteur de signal de repère selon la revendication 7, comprenant en outre un moyen de détermination de type (33) pour déterminer le type du signal reproduit à partir de ladite piste audio (24) dans ledit bloc en réponse au résultat de comptage.
FIG. 5

CUE SIGNAL IDENTIFICATION

\[R_2 \]

\(S_{20} \)

\(S_{21} \)

COUNT VALUE INPUT

IDENTIFICATION

\(S_{22} \)

\(S_{23} \)

\(S_{24} \)

NORMAL OUTPUT

IDENTIFICATION RESULT OUTPUT

n TIMES IN SUCCESSION?
FIG. 9

800 Hz

A

B

5v

0v

C

1

0

T = 52 μsec

SAMPLING FREQUENCY 19.2 kHz
FIG. 11

GATHER DATA G

1. RESET LOW LEVEL POINT COUNTER
2. RESET WAVE NUMBER COUNTER
3. RESET PERIOD COUNTER
4. CLEAR PERIOD NUMBER DISTRIBUTION TABLE

G1

SET 50 μsec TIMER

G2

INPUT REPRODUCED BINARY SIGNAL FROM INPUT PORT

G3

INCREMENT PERIOD COUNTER

G4

G5

NO

CURRENT INPUT (SAMPLE VALUE) = Low?

YES

INCREMENT LOW LEVEL POINT COUNTER

G6

NO

G7

LAST INPUT high AND CURRENT INPUT low?

YES

INCREMENT WAVE NUMBER COUNTER

G8

RECORD PERIOD COUNTER (FROM LAST FALL TO CURRENT FALL) IN PERIOD NUMBER DISTRIBUTION TABLE

G9

RESET PERIOD COUNTER

G10

G11

SAMPLING OF 1 BLOCK (95 μsec) ENDED?

YES

52 μsec TIMER EXPIRED?

NO

NO

RETURN
FIG. 13

- Wave number \(\geq (1827/24) \times 0.7 \) ?

 - Yes: Total wave number of periods 21-27 is 95% or more of entire wave number?

 - No: Total wave number of periods 23, 24, 25 is 60% or more?

 - Yes: Total wave number of periods 21, 22 is 30% or less?

 - No: Total wave number of periods 26, 27 is 30% or less?

 - Yes: Determined as starting cue
 - No: Return

- Low level points are 95% or more of entire number?

 - Yes: Determined as neither cue nor mute
 - No: Return

- High level points are 95% or more of entire number?

 - Yes: Determined as mute
 - No: Return