EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 27.07.94 Bulletin 94/30

Int. Cl.5: B60R 16/02, H01R 9/22

Application number: 91100419.0

Date of filing: 15.01.91

Branch junction box and busbars for branch connection.

Priority: 16.01.90 JP 1628/90 U
02.05.90 JP 46660/90 U
01.10.90 JP 102253/90 U
01.10.90 JP 102255/90 U
06.11.90 JP 115935/90 U

Date of publication of application: 24.07.91 Bulletin 91/30

Publication of the grant of the patent: 27.07.94 Bulletin 94/30

Designated Contracting States:
DE FR GB

References cited:
DE-A- 3 731 474
DE-A- 3 923 205

Proprietor: YAZAKI CORPORATION
4-28, Mita 1-chome
Minato-ku Tokyo 108 (JP)

Inventor: Ozaki, Keiichi, c/o Yazaki Parts Co. Ltd.
1424, Washizu
Kosai-shi, Shizuoka 431-04 (JP)

Inventor: Terada, Katsuaki, c/o Yazaki Parts Co. Ltd.
1424, Washizu
Kosai-shi, Shizuoka 431-04 (JP)

Inventor: Tahara, Shinobu, c/o Yazaki Parts Co. Ltd.
1424, Washizu
Kosai-shi, Shizuoka 431-04 (JP)

Representative: Patentanwälte Grünecker,
Kinkeldey, Stockmair & Partner
Maximilianstrasse 58
D-88538 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Jouve, 18, rue Saint-Denis, 75001 PARIS
Description

BACKGROUND OF THE INVENTION

The present invention relates to a branch junction box for interconnecting wiring harnesses in automobiles and also to comblike branch connection busbars used for forming branched circuits in the branch junction box as known from DE-A- 3 731 474.

Prior Art

A branch junction box is used for interconnecting electric wires in automobiles and has an advantage of accommodating joints of wiring harnesses to simplify the wiring configuration.

A method of making concentrated branched circuits which is currently available (as disclosed in the Japanese Patent Preliminary Publication No. Showa 61-45575) consists, as shown in Figure 14, of the steps of: drawing out a group of wires 2A from wiring harnesses 7; placing the draw-out parallel wires between an upper case 3 and a lower case 4; pushing a wire into a U-shaped slot 6a of a pressure contact portion 6 of a pressure terminal 5; projecting a branched tab 7 of the pressure terminal 5 through a hole or pit 3a in the upper case 3 to form a connector mounting portion 8; and then inserting a connector 9 of other group of wires 2B into the connector mounting portion 8.

Another conventional interconnecting structure proposed by this applicant (in the Japanese Patent Application No. Showa 63-131708) as shown in Figure 15, has one lateral edge of straight busbars 10 installed into busbar accommodating grooves 4a in a lower case 4 so that the busbars are arranged in parallel with each other, with other lateral edge of the busbars 10 pressed into U-shaped slots 6a of pressure contact portions 6' of pressure terminals 5'.

The branch junction box shown in Figure 14 is assembled integrally with the wiring harness 1, so that the assembly work cannot be separated, which is disadvantageous for the process control and inventory management. In the branch junction box of Figure 15, the interval D between the adjacent busbars 101 and 102 is restricted by the width D' (D > D') of the pressure terminal 5', making high-density busbar arrangement difficult, which in turn will lead to an increased size of the branch junction box. Further, the busbars 10 and pressure terminals 5' are formed of rigid material such as punched-out metal plate. When, as shown in Figure 16, the branched tab 7' is not correctly aligned with the associated holes 3a when the upper case 3 is mounted, the pressure terminal 5' becomes tilted, distorting the pressure contact portion 6', which, when the distortion exceeds the limit of elasticity, will sustain a plastic deformation, resulting in an open or broken circuit.

It is an object of this invention to provide a branch junction box which has high busbar circuit integration and thus can be formed compact and which prevents poor contact between the branched tabs and the busbars.

Another object of this invention is to provide branch junction box of a construction that can reliably prevent current leakage between busbars.

A further object of the invention is to provide a branch junction box of a construction that allows an increase in the number of internal circuits without changing the lateral dimensions of the case and that permits fixing and positioning of the branched terminals.

A further object of the invention is to provide comb-shaped, branch connection busbars which can be punched out and formed by a single die and which can be used commonly in the manufacture of busbars with different numbers of poles of branched tabs.

SUMMARY OF THE INVENTION

The branch junction box of this invention is defined in claim 1.

As mentioned in claim 3, it is desired that the busbars be formed with notches at intersecting points with the tab connecting pieces, to prevent current leaks between the busbars.

In the above construction, since the branched tabs are formed integral with the busbar - a construction which is different from that which employs conventional pressure terminals 5, 5' (Figures 14 and 15) - there is no possibility of bad contact and the contact pressing process can be eliminated reducing the number of assembly processes for the branch junction box.

The interval between the busbars need only be slightly larger than the bent portion of the tab connecting piece (or the width of the branched tab), permitting a high density circuit arrangement as a whole, which in turn leads to a reduction in the size of the branch junction box.

Where there is a need to lead out three or more poles of branched tab from the same part of the busbar, this can be accomplished by a tab connecting piece which extends to cross the adjacent busbars. This arrangement makes it easy to perform the branched tab alignment for each connector (or for each connector insertion portion).

To reliably prevent the current leakage between the busbars, it is desired, as mentioned in claim 6, that a plurality of busbar accommodating grooves are arranged in parallel with each other at specified intervals be formed in opposing contact surfaces of the upper and lower cases and that raised and recessed walls that engage each other be provided to the opposing contact surfaces of the upper and lower cases between and along the busbar accommodating
grooves.

With this construction, since the adjacent busbars are isolated from each other by the engagement of the raised wall and the recessed wall, the current leak between the busbars can reliably be prevented even when water seeps into the branch junction box.

A branch junction box which allows the number of circuits to be increased without changing the lateral dimensions of the case and which permits reliable fixing and positioning of the branched terminals has, as mentioned in claim 8, a construction which comprises: branch connection busbars each consisting of a strip of busbar, a plurality of tab connecting portions provided on the upper and lower lateral edges of the busbar, and a plurality of branched tabs projecting upwardly and downwardly from the upper and lower tab connecting portions, respectively, said upper and lower tab connecting portions being staggered; a pair of upper and lower cases for accommodating the branch connection busbars in such a manner that the busbars are parallelly arranged at specified intervals and that the upper and lower groups of branched tabs on the branch connection busbars are aligned in a direction perpendicular to the busbars, said upper and lower cases having tab insertion holes; a plurality of connector insertion portions provided to the outer surfaces of the upper and lower cases at positions corresponding to the upper and lower groups of branched tabs so that the connector insertion portions on the upper case and those on the lower case are staggered; and a plurality of seats provided to the inner surfaces of the upper and lower cases at positions corresponding to the lower and upper tab connecting portions; whereby the upper and lower branched tabs on each branch connection busbar are passed through the tab insertion holes in the upper and lower cases and projected into the connector insertion portions, and the upper and lower tab connecting portions are firmly held between one case and the seats of the other case.

To facilitate the work of assembling the branch connection busbars into the upper and lower cases and also the work of positioning the branched tabs, it is desired, as mentioned in claim 9, that the seats of at least one of the upper and lower cases are formed with insertion grooves into which the tab connecting portions are inserted.

With the construction according to claims 8 and 9, since the upper and lower groups of tab connecting portions on the branch connection busbars are firmly held between one case and the seats of another case, the branched tabs and also the branch connection busbars can be prevented from becoming loose or dislocated by external force produced when external connectors are mounted to or dismounted from the connector insertion portions.

Further, since the seats in one of the cases are provided with insertion grooves that guide the tab connecting portions into predetermined positions, the alignment of the branched tabs as well as the mounting of the other case (insertion of the branched tabs through the tab insertion holes) are made easy.

A comblike branch connection busbar, that can be used commonly in the manufacture of various kinds of busbars with different numbers of branched tab poles, has, as mentioned in claim 10, a construction in which a plurality of parallel branched tabs project perpendicularly from one side of a laterally extending base strip through perforated portions that are spaced at specified intervals.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an exploded perspective view of a branch junction box as a first embodiment of this invention;

Figure 2 is an enlarged perspective view showing a part of busbars of Figure 1;

Figures 3a and 3b are developed views of busbars 18a, 18b, respectively, of Figure 2;

Figure 3c is an enlarged perspective view of a part of busbars as another embodiment of this invention;

Figure 3d is a cross section taken along the line I-I of Figure 3c;

Figure 3e is an enlarged perspective view of a part of busbars as a variation of Figure 3c;

Figure 3f is a cross section taken along the line II-II of Figure 3e;

Figure 3g is an exploded perspective view of another branch junction box according to this invention;

Figures 3h through 3j are enlarged perspective views showing the process of assembling busbars 18 and an insulating plate 24' of Figure 3g;

Figures 3k through 3m are cross sections taken along the line III-III of Figure 3h, showing the assembly process;

Figures 3n through 3p are cross sections taken along the line IV-IV of Figure 3h.

Figure 4 is an exploded perspective view of a branch junction box as a second embodiment of the invention;

Figure 5 is a cross section showing an essential portion of the branch junction box of Figure 4 in an assembled state;

Figures 6 through 10 show a third embodiment of the invention;

Figure 6 is a perspective view of a branch connection busbar;

Figure 7 is an exploded perspective view of a branch junction box;

Figure 8 is an enlarged perspective view of seats as shown in Figure 7;

Figure 9 is a cross section showing an essential portion of the branch junction box in an assem-
bled state;
Figure 10 is a plan view showing the branch connection busbar A and the seats 43 of Figure 7 in an assembled state;
Figure 11 is a developed view of one embodiment of a comblike branch connection busbar according to this invention;
Figure 12 is a developed view of the comblike branch connection busbar of Figure 11, partly cut and separated;
Figure 13 is a developed view of another embodiment of a branch connection busbar according to this invention;
Figures 14 and 15 are exploded perspective views of conventional branch junction boxes; and
Figure 16 is a cross section showing the action of a pressure terminal of Figure 15.

PREFERRED EMBODIMENT OF THE INVENTION

In Figure 1, reference numeral 11 represents an upper case, on the upper surface of which are erected a plurality of connector insertion portions 12A, 12B, ... that each have an array of tab insertion holes 13 formed in their bottom walls. Denoted 14 is a lower case, in the upper surface of which a plurality of parallel busbar accommodating grooves 15 are formed at a constant pitch P. Designated 16 and 17 are engagement portions and engagement clamps, that together form a locking means for locking the upper and lower cases 11, 14 together.

Straight busbars 18 each have a plurality of branched tabs 19 erected at the upper lateral edge thereof through tab connecting portions 20. The lower edge of each straight busbar 18 is securely installed in the busbar accommodating groove 15. The branched tabs 19 pass through the tab insertion holes 13 and project into the connector insertion portions 12A, 12B, ..., to which corresponding connectors of wiring harnesses not shown are connected.

Figure 2 is an enlarged perspective view of a group of busbars 18 as shown in Figure 1. In Figure 2, the busbars are assigned reference numerals 18a, 18b, 18q, 18s, from the front toward the rear, to make them distinguishable.

The busbar 18q has T-shaped tab connecting portions 20 formed integral with its upper edge and spaced from each other at pitches corresponding to the connector mounting portions 12A, 12B, ... The T-shaped tab connecting portions 20 each consist of a rising piece 20a and tab connecting pieces 20b, extending laterally from each side of the rising piece 20a. The tab connecting pieces 20b each have a branched tab 19 projecting upwardly from the lateral ends thereof. The tab connecting pieces 20b are bent at right angles with respect to the plane of the busbar 18q, so that the two branched tabs 19 are located between the busbars 18a and 18b and face each other at positions deviated sideways from the busbar 18q. One or both of the two branched tabs 19 may be bent in the opposite direction as shown in an imaginary line (two-dot line).

Figure 3a is a developed view of the busbar 18a, tab connecting portions 20 and branched tabs 19, punched out from a single conductive metal plate. Bending the tab connecting portions 20 along the dashed line Q forms the busbar 18a with two-branched tabs 19 of Figure 2.

This busbar 18a, having the laterally symmetrical T-shaped tab connecting portions 20 constitute the basic structure of the busbars employed in the branch junction box of this invention.

The busbar 18b has a tab connecting portion similar to the one mentioned above at the center and also laterally non-symmetrical T-shaped tab connecting portions 21 and 22 on each side. Figure 3b shows a developed view of the busbar 18b and its integrally formed tab connecting portions 20, 21, 22.

The tab connecting portion 21 has its left tab connecting piece 21b extended to cross the adjacent busbar 18a until its front end reaches a point between the busbars 18a and 18a, with both branched tabs 19 projecting upwardly. On the other hand, the right tab connecting piece 21b' has the same structure as the basic busbar structure. Similarly, the tab connecting portion 22 has the left tab connecting piece 22b formed in the same construction as the tab connecting piece 21b, while the right tab connecting piece 22b' extends beyond the busbar 18a and has three branched tabs 19.

Notches 23 are formed in the busbars 18a and 18a where the tab connecting pieces 21b, 22b, 22b' cross these busbars, so as to prevent current leaks among busbars. The branched tabs 19 are of course not provided at the notches 23 in the busbars 18a, 18a.

By elongating the tab connecting pieces 21b, 22b of the tab connecting portions 21, 22 across the adjacent busbar 18b, it is possible to extract a plurality of branched tabs 19 from the same point of the busbar, if necessary, and to arrange the branched tabs 19 in desired arrays for each of the connector mounting portions 12A, 12B, ...

As is evident from Figure 2, the pitch P or interval between the busbars need only be slightly larger than the width W of the branched tab 19 (or the bent portion of the tab connecting piece 20b), allowing the busbars 18a, 18a, 18b to be arranged closer together. Even when the tab connecting piece 21b extends across the adjacent busbar 18b, the pitch P remains unchanged. Since the series of branched tabs 19 formed on each of the busbars 18a, 18a can easily be formed by punching a conductive metal plate and bending the punched-out plate, as shown in Figures 3a and 3b, it is possible to make accurate position alignment between the branched tabs 19 and the tab insertion holes 13 in each connector mounting por-
tion 12A, 12B, ...

In another embodiment shown in Figures 3c and 3d, the busbars 18 (18b, to 18b), formed of a partly tin-plated copper-zinc alloy, have folded pieces 18a, 18b - which are bent 180 degrees - formed at the notches 23 and at the tab connecting pieces 21b, 22b of the tab connecting portions 21, 22 that face the notches. In order to enhance the current leakage prevention capability.

That is, in Figure 3, the busbars 18 and the branched tabs 19 are formed by punching and thus the conductive metal is exposed at the surface S of the notches 23 and at the lower end surface S of the tab connecting pieces 21b, 22b that face the notches. The presence of water between these surfaces will form a bridge resulting in a current leakage.

The folded pieces 18a, 18b, however, make such current leakage less likely because their opposing surfaces have the tin layer plated thereover, which is a poor conductor, preventing the formation of a current path between the conductive metals even when there is water bridging the opposing folded pieces.

The 180-degree folded pieces 18a, 18b may be replaced with 90-degree folded pieces 18a', 18b' as shown in Figures 3e and 3f.

Another embodiment shown in Figures 3g to 3p has an insulating plate 24' interposed between the busbars 18 and the branched tabs 19 to prevent current leakage between the busbars. As shown in Figure 3h, the insulating plate 24' is formed, at positions corresponding to the array of branched tabs 19 of the busbars 18, with U-shaped insertion slits 24a that receive the tab connecting portions 20 of the basic structure and also with insertion slits 24b, 24c that receive the tab connecting portions 21, 22 with varying number of branched tab poles.

As shown in Figure 3i, the insulating plate 24' is placed over the busbars 18 mounted on the lower case 14 (see Figure 1) in such a way as to allow the branched tabs 19 and the tab connecting portions 20 to 22 to pass through and project from the insertion slits 24a to 24c. Then the insulating plate 24' is slid in the direction of arrow R as shown in Figure 3j.

As a result, as shown in the cross-sectional views of Figures 3k to 3m and Figures 3n to 3p, the insulating plate 24' is securely held between the busbars 18 and the tab connecting portions 20 to 22 and isolates the branched tabs 19 and the adjacent busbars 18. Since the insulating plate 24' is slid as shown, the tab connecting portions 20 to 22 and the branched tabs 19 are displaced from the insertion slits 24a to 24c. Hence, if water attaches to the branched tabs 19 projecting from the insulating plate 24', there is no possibility of the water forming a bridge between the branched tabs 19 and the adjacent busbars 18 through the tab connecting pieces 20b (21b, 22b), further enhancing the current leakage prevention effect.

This embodiment eliminates the need to provide the notches 23 for the tab connecting pieces 20b to 22b that extend across the busbars 18. This in turn permits the overall height of the branch junction box to be reduced.

In Figures 4 and 5, the contact surface 25a of the lower case 25 is provided with three kinds of raised walls 34, 34', 34" along the busbar accommodating grooves 27. The raised wall 34 is provided at the middle of the two busbar accommodating grooves 27, 27; the second raised wall 34' is provided on each side of a hollow portion V formed in the lower case 25; and the third raised wall 34" is provided close to the outer edge of the lower case 25.

The contact surface 24a of the upper case 24 is provided with recessed walls 35, 35', 35" that engage with the corresponding raised walls 34, 34', 34".

The height of each raised wall from the contact surface 25a is set sufficiently large so that the depth of engagement between the raised walls and the recessed walls is larger than the overstroke D between the locking claw 32 and the engagement portion 33, the locking claw 32 and the engagement portion 33 forming a locking portion. The width of each raised wall 34, 34', 34" is set equal to that of each recessed wall 35, 35', 35". These raised and recessed walls are preferably sized so that they can be engaged with each other in an air tight contact condition or in a pressure contact condition.

In Figures 4 and 5, reference numerals 28 represents busbars, 29 connector insertion portions, 30 branched tabs, 31 tab insertion holes, and 32 and 34 engagement claws and engagement portions, both forming a locking means.

With this construction, even when water seeps into the branch junction box, the adjacent busbars 28 are isolated from each other by the engagement between the raised walls 34 or 34' and the recessed walls 35 or 35', so that current leakage among the busbars can be prevented.

The raised wall 34 (34', 34'') and the recessed wall 35 (35', 35'') have the effect of increasing the distance that the water must move in seeping from one busbar accommodating groove 27 to another, thereby delaying and preventing the ingress of water.

While in the above example, the raised walls are provided to the lower case 25 and the corresponding recessed walls to the upper case 24, it is possible to reverse or even mix them.

In the branch junction boxes that accommodate lateral busbars as internal circuit components, the above construction reliably prevents current leakage between busbars.

In the branch junction box shown in Figure 4, when one wants to increase the number of internal circuits and enhance the joint capacity, the length l of the case or its width w should be increased. However, the limited space in the automobiles restricts
the lateral dimension of the junction box.

A possible solution to this problem may be to form the rising pieces 37a of the tab connecting portions 37 on both the upper and lower edges of the busbar 36 alternately, as shown in Figure 6 in which the branched tabs 38 are shown provided on each side of the busbar 36 to form a branch connection busbar A. In this case, however, a wiring board of Figure 1 (the lower case 14 with busbar accommodating grooves 15) to accommodate the busbars 18 cannot be used, giving rise to another problem of fixing the branched tabs 38.

The branch junction box shown in Figures 7 to 10 has been realized to overcome the above drawback.

In Figures 7 and 8, designated A and A' are branch connection busbars; denoted B and B' are an upper case and a lower case, respectively, both formed of synthetic resin.

The branch connection busbar A' has the same basic construction as that of the branch connection busbar A. What the branch connection busbar A' differs from the latter busbar is that the upper tab connecting portion 37, has its tab connecting pieces 37b, 37b extended to cross the adjacent busbars 36 to form a five-pole branched tab 38.

A plurality of branch connection busbars A, A' are arranged as follows and accommodated in the cases B, B'. The busbars 36 are parallelly arranged at certain pitches and upper and lower groups of the branched tabs 38 are arrayed in the directions of arrows R, R' perpendicular to the busbars 36.

The upper case B and the lower case B' are provided on their outer surfaces with two connector insertion portions 41, respectively, at positions that correspond to the upper and lower groups of branched tabs 38 of the branch connection busbars A, A' so that the upper connector insertion portions and the lower connector insertion portions are staggered from each other. The connector insertion portions each have an array of tab insertion holes 39 formed therein.

A bottom wall 42 of the lower case B' is provided with a plurality of projecting seats 43 for the upper tab connecting portions 37 of the branch connection busbars A, A', the seats 43 being arrayed in the direction of arrow R. The upper end surface of each seat 43 is cut with grooves 44 on each side, into which the tab connecting pieces 37b of the tab connecting portion 37 are inserted.

As shown enlarged in Figure 8, the seats 43 are each formed into a column and are arranged to provide a gap S therebetween to allow the busbar 36 to be inserted. The upper opening end of the insertion grooves 44 is provided with a tapered portion 44a as an insertion guide.

A ceiling wall 42' of the upper case B is provided at its inner surface with a plurality of projecting seats 43' for the lower tab connecting portions 37 of the branch connection busbars A, A', as shown in Figure 9. The seats 43' have the same dimensions as the aforementioned seats 43 but, in this embodiment, are not provided with the insertion grooves 44.

Denoted 45 and 46 are engagement claws that form a locking means for the upper and lower cases B, B'.

The assembly of the branched junction box is carried out in the following procedure.

As shown in Figure 9, the lower branched tabs 38 of the branch connection busbar A are inserted through the tab insertion holes 39 in the lower case B' into the connector insertion portion 41'.

Since the seats 43 of the lower case B' have the insertion grooves 44 cut in the upper surface on each side, the tab connecting pieces 37b of the upper tab connecting portions 37 are guided along the tapered portions 44a into the insertion grooves 44 where they are securely held. As a result, the upper group of branched tabs 38 of the branch connection busbar A are positioned, aligning themselves with the tab insertion holes 39 in the upper case B.

Then, the upper case B is mounted on the lower case B' and locked together by the locking means 45, 46. Now, the lower tab connecting portions 37 of the branch connection busbar A are clamped and securely held between the lower case B' and the seats 43' of the upper case B, and the upper tab connecting portions 37 are also firmly held between the upper case B and the seats 43 (insertion grooves 44) of the lower case B'.

The branch connection busbar A' with five-pole branched tabs 7 is also held in the same way as the branch connection busbar A. In this branch connection busbar A', however, the tab connecting portion 37, has its tab connecting pieces 37b and 37b extended on each side positioned and held by three seats 43 and by two seats 43, respectively. Thus, the number of poles of the branched tabs 38 in one tab connecting portion 37 can be increased or reduced to a desired number.

While in the above embodiment the insertion grooves 44 are provided only to the seats 43 of the lower case B', it is also possible to eliminate the insertion grooves from the lower case seats 43 or provide them to the seats 43' of the upper case B, too.

As mentioned above, the branch connection busbars each consist of a busbar strip and a plurality of branched tabs which are formed on the upper and lower lateral edges of the busbar in such a way that the upper and lower branched tabs are staggered. The upper and lower cases that accommodate these branch connection busbars are provided at the outer surfaces with connector insertion portions at positions that correspond to the groups of branched tabs. This construction not only makes the branch junction box compact but also allows an increased number of internal circuits to be formed in the junction box.
Moreover, since the tab connecting portions of the branch connection busbars are firmly clamped and held between one case and the seats of another case, no trouble will occur such as the branched tabs becoming loose or dislodged. Particularly when the seats are formed with the insertion grooves for positioning the tab connecting portions, the branched tabs can be aligned with improved accuracy and the assembly work efficiency of the branch junction box can also be enhanced.

In Figures 3a and 3b, the busbar 18, has a series of identical two-pole tabs 27, each of which consists of two tabs 19 projecting one on each side of the tab connecting portions 20 that are spaced at predetermined pitches. On the other hand, the busbar 18, has a more complex structure in which there are, from left to right, a three-pole tab 37, a two-pole tab 27 and a five-pole tab 57 although the tab connecting portions 20, 21, 22 are spaced at the same pitches as in the first busbar 18.

The above-mentioned branch connection busbars 18, 18a ... have different branch patterns with differing shapes and numbers of branched tab poles and thus require their own special dies for punching.

This not only increases the cost of dies and therefore the manufacturing cost but also requires preparing a new die when there is any change in the pattern.

This problem can be solved by the use of a comb-shaped connection busbar C as shown in Figure 11. The branch connection busbar C consists of a base strip 47 and a series of branched tabs 49 arranged like a comb integrally connected to one side of the base strip 47 through perforated portions 48, which are spaced from each other at specified pitches.

Rising pieces 48a provided on each side of each perforated portion 48 correspond to the rising pieces 20a of the tab connecting portions 20 in Figure 3. A lateral strip 48b provided at the top of the perforated portions 48 corresponds to the tab connecting pieces 20b connected in line.

This branch connection busbar C can be formed by punching a conductive metal plate made of such materials as brass, beryllium and copper with a single die.

With this branch connection busbar C, a busbar which has the same construction as the busbar 18, of Figure 3b can be manufactured by partially cutting off those branched tabs 49 shaded as S1 in Figure 12, those rising pieces 48a and/or lateral strip 48b of the perforated portions 48 shaded as S2, and those portions of the base strip 47 shaded as S3.

Appropriately selecting the cutting positions on the base strip 47, perforated portions 48 and branched tabs 49 forms a busbar with any desired branch pattern. The punching operation can be carried out with a single die, substantially reducing the manufacturing cost.

Figure 13 shows another example of branch connection busbar C' with laterally elongate perforated portions 48', which are formed by removing every other rising piece 48a of the perforated portions 48 in Figure 11.

In this way, the pitches of the perforated portions 48 or 48' and of the branched tabs 49 as well as other dimensions can be determined arbitrarily.

With the perforated portions 48' formed laterally elongate as shown in Figure 13, it is possible to reduce the number of cut-off positions and cutting operations in making the branch connection busbar.

As mentioned above, it is possible to form a number of branch connection busbars with various branch patterns from the comb-shaped branch connection busbars with one and the same branch pattern, reducing the cost of die and therefore the cost of manufacture. The comb-shaped branch connection busbar also permits an easy and swift change to be made in the branch pattern.

Claims

1. A branch junction box comprising a casing (11, 14), connector insertion means (12A, 12B,...) formed in said casing, busbar accommodating means (15) provided in said casing and a plurality of busbars (18) supported in parallel relation to each other within said casing by the busbar accommodating means, said plurality of busbars each having a base and a plurality of branched tabs extending perpendicularly to said base, characterized in that said casing includes an upper case (11) and a lower case (14) adapted to mate with each other, the base of each busbar (18) has a first lateral edge and a second lateral edge, at least one of said first and second lateral edges having branched tabs (19) projected therefrom through tab connecting portions (20), said tab connecting portions each including a rising piece (20a) and a tab connecting piece (20b) on one or both sides of the rising piece, said tabs being bent at right angles to the base of each busbar to extend laterally, selected members of said tab connecting pieces (20b) being extended to cross adjacent busbars, said branched tabs (19) extending into the mating case.

2. A branch junction box as claimed in claim 1, characterized in that said busbar accommodating means includes a plurality of grooves (15) formed in the lower case (14) in parallel relation to each other, said first lateral edge being received in one of said plurality of grooves (15), only said second lateral edge having said branched tabs (19), said connector inserting portions (12A, 12B, 12C) be-
ing positioned in correspondence to the branch-
ed tabs (19).

3. A branch junction box as claimed in claim 1 or 2, characterized in that said adjacent busbars (18) being formed with notches (23) at portions facing the extended portions (21b, 22c) of the tab connecting pieces (20b).

4. A branch junction box as claimed in claim 3, characterized in that the notches (23) and the tab connecting pieces facing the notches are each provided with a folded piece (18a, 18b).

5. A branch junction box as claimed in claim 2, characterized in that there is further provided an insulating plate (24') formed with a plurality of insertion slits (24a, 24b, 24c) at positions corresponding to the tab connecting portions (20a, 20b, 20c), said branch tabs (19) and said tab connecting portions (20a, 20b, 20c) being passed through and projected from said insertion slits of the insulating plate before said insulating plate is slid laterally relative to the branched tabs until it is securely held between the busbars and the tab connecting portions.

6. A branch junction box as claimed in claim 2, characterized in that said plurality of grooves (27) are formed in opposing both contact surfaces of the upper and lower cases (24, 25), said both contact surfaces of the upper and lower cases (24, 25) being provided with a plurality of raised walls (34, 34', 34") and recessed walls (35, 35', 35") between and along said plurality of grooves (27) so that the raised walls formed on one case and the recessed walls formed on the other engage each other.

7. A branch junction box as claimed in claim 6, characterized in that the depth of engagement between the raised wall and the recessed wall is set larger than an overstroke of a lock portion between the upper and lower cases (11, 14).

8. A branch junction box as claimed in claim 1, characterized in that said tab connecting portions (37) are provided on both first and second lateral edges of each busbars (36) in staggered relation, said branched tabs (38) being grouped in a plurality of pairs, the branched tabs in each pair being connected to the base of each busbar (A, A') by way of said tab connecting portions (37), a plurality of seats (43) provided to the inner surfaces of the upper and lower cases at positions corresponding to the tab connecting portions (37), said connector insertion means including connector insertion portions (41, 41') formed on the upper and lower cases in staggered relationship in correspondence to the tab connecting portions (37) on both lateral edges of the busbars.

9. A branch junction box as claimed in claim 8, characterized in that said seats of at least one of the upper and lower cases are formed with insertion grooves (44 into which the tab connecting portions (37) are inserted.

10. A comb-shaped branch connection busbar blank, characterized in that there are provided a laterally extending base strip (47); a plurality of parallel branched tabs (49) projecting perpendicularly from at least one side of the base strip at predetermined pitches; and a plurality of perforated portions (48) formed in said laterally extending base strip in correspondence with said plurality of parallel branched tabs such that a desired design of busbar can be punched out.

Patentansprüche

1. Abzweigverbindergehäuse mit einem Gehäuse (11,14), Verbindereinführungsrichtung (12A, 12B,...) die in dem Gehäuse ausgebildet sind, ei-
er Sammelschienen-Unterbringungseinführung (15), die in dem Gehäuse vorgesehen ist und ei-
er Mehrzahl von Sammelschienen (18), die parallel zueinander in dem Gehäuse durch die Sammelschienen-Unterbringungseinführung gelagert sind, wobei eine jede Sammelschiene ein Basis und eine Mehrzahl von Abzweigungs-
zungen aufweist, die sich senkrecht zur Basis erstrecken, dadurch gekennzeichnet,

dadurch gekennzeichnet,

dass das Gehäuse einen oberen Kasten (11) und einen unteren Kasten (14) umfaßt, die geeignet sind, aufeinanderzupassen, wobei die Basis ei-
er jeden Sammelschiene (18) einen ersten Sei-
tenrand und einen zweiten Seitenrand aufweist, wobei wenigstens einer der ersten und zweiten Seitenränder verbundene Zungen (19) aufweist, die sich durch Zungenverbindungsabschnitte (20) erstrecken, wobei die Zungenverbindungs-
abschnitte jeweils ein aufsteigendes Teil (20a) und ein Zungenverbindungsteil (20b) an einer oder an beiden Seiten des aufsteigenden Teils umfassen, wobei die Zungen um rechte Winkel zur Basis einer jeden Sammelschiene gebogen sind, um sich seitlich zu erstrecken, wobei aus-
gewählte Teile der Zungenverbindungstelle (20b) sich so erstrecken, daß sie benachbarte Sam-

melschienen kreuzen, wobei die Abzweigungs-
zungen (19) sich in den passenden Kasten er-
strecken.

2. Abzweigverbindergehäuse nach Anspruch 1, **dadurch gekennzeichnet**, daß die Sammelschienen-Unterbringungseinrichtung eine Mehrzahl von Nuten oder Kerben (15) aufweist, die in dem unteren Kasten (14) parallel zueinander ausgebildet sind, wobei der erste Seitenrand in einer der Mehrzahl der Nuten (15) aufgenommen ist, wobei nur der zweite Seitenrand die Abzeichnungszeichen (19) aufweist, wobei die Verbindereinführabschnitte (12A,12B,12C) in Übereinstimmung mit den Abzeichnungszeichen (19) positioniert sind.

3. Abzweigverbindergehäuse nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, daß benachbarte Sammelschienen (18) mit Kerben oder Rasten (23) in Bereichen versehen sind, die den verlängerten Bereichen (21b,22c) der Zungenverbindungsteile (20b) gegenüberliegen.

4. Abzweigverbindergehäuse nach Anspruch 3, **dadurch gekennzeichnet**, daß die Kerben (23) und die Zungenverbindungsteile, die dem Kern gegenüberliegen, jeweils mit einem gefalteten Teil (18a,18b) versehen sind.

5. Abzweigverbindergehäuse nach Anspruch 2, **dadurch gekennzeichnet**, daß weiterhin eine Isolierplatte (24') vorgesehen ist, die mit einer Mehrzahl von Einführungsslitzen (24a,24b,24c) an Positionen versehen ist, die den Zungenverbindungsabschnitten (20a,20b,20c) entsprechen, wobei die Abzeichnungszeichen (19) und die Zungenverbindungsslitze (20a,20b,20c) durch die Einführungsslitze der Isolierplatte hindurchgeführt sind und von diesen vorspringen, bevor die Isolierplatte seitlich bezogen auf die Abzeichnungszeichen verschoben wird, bis sie sich zwischen den Sammelschienen und den Zungenverbundungsabschnitten gehalten ist.

7. Abzweigverbindergehäuse nach Anspruch 6, **dadurch gekennzeichnet**, daß die Eingriffsstiefe zwischen der aufsteigenden Wand und der zurückversetzten Wand größer gesetzt wird als ein Überreichungsbereich eines Verriegelungsbereichs zwischen dem oberen und unteren Kasten (11,14).

8. Abzweigverbindergehäuse nach Anspruch 1, **dadurch gekennzeichnet**, daß die Zungenverbinderungsbereiche (36) sowohl am ersten als auch am zweiten Seitenrand einer jeden Sammelschiene (36) versetzt zueinander angeordnet sind, wobei die Abzeichnungszeichen (38) in einer Mehrzahl von Paaren gruppiert sind, wobei die Abzeichnungszeichen in einem jeden Paar mit der Basis einer jeden Sammelschiene (A,A') mittels der Zungenverbindungsslitze (37) verbunden sind, wobei eine Mehrzahl von Sitzen (43) an den inneren Oberflächen des oberen und unteren Kastens bei Positionen vorgesehen sind, die den Zungenverbindungsslitzen (37) entsprechen, wobei die Verbindungseinführungsseinrichtungen Verbindungseinführungsslitze (41,41') umfassen, die an dem oberen und dem unteren Kasten in einer versetzten Anordnung entsprechend den Zungenverbundungsabschnitten (37) an beiden Seitenrändern der Sammelschienen ausgebildet sind.

9. Abzweigverbindergehäuse nach Anspruch 8, **dadurch gekennzeichnet**, daß die Sitze wenigstens des unteren oder oberen Kastens mit Einführungsnuten (44) versehen sind, in die die Zungenverbundungsabschnitte (37) eingeführt sind.

10. Kammförmiges Abzweigverbinder-Sammelschiene-Steckteil, **dadurch gekennzeichnet**, daß vorgesehen ist: ein sich längererstreckender Basisstreifen (47); eine Mehrzahl von parallelen Abzeichnungszeichen (49), die sich senkrecht von wenigstens einer Seite des Basisträgers mit vorbestimmten Abständen erstrecken; und eine Mehrzahl von perforierten Abschnitten (48), die in dem sich längererstreckenden Basisträfern entsprechend der Mehrzahl der parallelen Abzeichnungszeichen derart erstrecken, daß eine gewünschte Struktur der Sammelschiene ausgestanzt werden kann.

Revendications

1. Bolte de jonction comprenant un boulterrain (11, 14), un moyen d’insertion de connecteur (12A, 12B, ...) formé dans ledit boulterrain, un moyen de logement de barre omnibus (15) disposé dans ledit
boîtier et une pluralité de barres omnibus (18) maintenues parallèlement les unes aux autres dans ledit boîtier par le moyen de logement de barre omnibus, chaque barre omnibus de ladite pluralité ayant chacune une base et une pluralité de fiches connectées s'étendant perpendiculairement à ladite base,

caractérisée en ce que ledit boîtier comprend une cassette supérieure (11) et une cassette inférieure (14) conçues pour s'accompagner ensemble, la base de chaque barre omnibus (18) a un premier bord latéral et un second bord latéral, au moins un des premier et second bords latéraux ayant des fiches connectées (19) faisant saillie à travers les parties de connexion de fiche (20), ledits tronçons de connexion de fiche comprenant chacun une partie montante (20a) et une partie de connexion de fiche (20b) sur un ou sur les deux côtés de la partie montante, lesdites fiches étant pliées à angle droit par rapport à la base de chaque barre omnibus pour s'étendre latéralement, des éléments sélectionnés desdites parties de connexion de fiche (20b) étant prolongés pour croiser des barres omnibus adjacentes, lesdites fiches connectées (19) s'étendant dans la cassette d'accompagnement.

2. Boîte de jonction selon la revendication 1, caractérisée en ce que ledit moyen de logement de barre omnibus comprend une pluralité de rainures (15) formées dans la cassette inférieure (14) parallèlement les unes aux autres, le premier bord latéral étant logé dans l'une de ladite pluralité de rainures (15), seul ledit second bord latéral ayant des fiches connectées (19), ledits tronçons d'insertion de connecteur (12A, 12B, 12C) étant positionnés en correspondance avec les fiches connectées (19).

3. Boîte de jonction selon la revendication 1 ou 2, caractérisée en ce que lesdites barres omnibus adjacentes (18) sont formées avec des encoches (23) sur les tronçons faisant face aux tronçons prolongés (21b, 22c) des parties de connexion de fiche (20b).

4. Boîte de jonction selon la revendication 3, caractérisée en ce que les encoches (23) et les parties de connexion de fiche faisant face aux encoches sont chacune munies d'une partie repliée (18a, 18b).

5. Boîte de jonction selon la revendication 2, caractérisée en ce qu'il est de plus prévu une plaque d'isolation (24') formée avec une pluralité de fentes d'insertion (24a, 24b, 24c) à des positions correspondant aux tronçons de connexion de fiche (20a, 20b, 20c), lesdites fiches connectées (19) et lesdits tronçons de connexion de fiche (20a, 20b, 20c) étant passés à travers et faisant saillie à partir desdites fentes d'insertion de la plaque d'isolation avant que ladite plaque d'isolation soit glissée latéralement par rapport aux fiches connectées, jusqu'à ce qu'elle soit tenue fermement entre les barres omnibus et les tronçons de connexion de fiche.

6. Boîte de jonction selon la revendication 2, caractérisée en ce que ladite pluralité de rainures (27) est formée en opposition avec les deux surfaces de contact des cassettes supérieure et inférieure (24, 25), les deux dites surfaces de contact des cassettes supérieure et inférieure (24, 25) étant munies d'une pluralité de parois dressées vers le haut (34, 34', 34") et de parois évidées (35, 35', 35") entre et le long de ladite pluralité de rainures (27) de telle façon que les parois dressées vers le haut formées sur une cassette et les parois évidées formées sur l'autre viennent en prise l'une avec l'autre.

7. Boîte de jonction selon la revendication 6, caractérisée en ce que la profondeur de la prise entre la paroi dressée vers le haut et la paroi évidée est définie plus grande que le dépassement d'un tronçon de verrouillage entre les cassettes supérieure et inférieure (11, 14).

8. Boîtier de jonction selon la revendication 1, caractérisée en ce que lesdits tronçons de connexion de fiche (37) sont disposés en quinconce sur les deux premier et second bords latéraux de chaque barre omnibus (36), lesdites fiches connectées (38) étant groupées en une pluralité de paires, les fiches connectées de chaque paire étant reliées à la base de chaque barre omnibus (A, A') au moyen desdits tronçons de connexion de fiche (37), une pluralité de surfaces d'appui (43) étant disposées sur les surfaces intérieures des cassettes supérieure et inférieure à des positions correspondant aux tronçons de connexion de fiche (37), ledit moyen d'insertion de connecteur comprenant des tronçons d'insertion de connecteur (41, 41') formés en quinconce sur les cassettes supérieure et inférieure en correspondance avec les tronçons de connexion de fiche (37) sur les deux bords des barres omnibus.

9. Boîte de jonction selon la revendication 8, caractérisée en ce que lesdites surfaces d'appui d'au moins l'une des cassettes supérieure et inférieure sont formées avec des rainures d'insertion (44) dans lesquelles les tronçons de connexion de fiche (37) sont insérés.
10. Flanc de barre omnibus de connexion en forme de peigne, caractérisé en ce que sont prévues une bande de base s’étendant latéralement (47) : une pluralité de fiches connectées parallèles (49) faisant saillie perpendiculairement depuis au moins un côté de la bande de base avec des pas prédéterminés ; et une pluralité de tronçons perforés (48) formés sur ladite bande de base s’étendant latéralement en correspondance avec ladite pluralité de fiches connectées en parallèle de telle façon qu’un profil souhaité de barre omnibus puisse être découpé.