REAR SUPPORTING DEVICE FOR SKI BOOTS.

Priority: 15.01.90 IT 8250390

Date of publication of application: 24.07.91 Bulletin 91/30

Publication of the grant of the patent: 13.04.94 Bulletin 94/15

Designated Contracting States: AT CH DE FR IT LI

References cited:
EP-A- 0 229 638
DE-A- 2 807 371
FR-A- 2 089 128

Inventor: Baggio, Giorgio
Via Lamarmora 30
I-35018 San Martino di Lupari (Padova) (IT)
Inventor: Sartor, Mariano
Via Barile 8
I-31044 Montebelluna (Treviso) (IT)
Inventor: De Bortoli, Giuseppe
Via Castellana 195
I-31044 Montebelluna (Treviso) (IT)
Inventor: Bugliesi, Luca
Via Beccaria 5
I-57025 Piombino (Livorno) (IT)

Representative: Modiano, Guido, Dr.-Ing. et al
Modiano & Associati S.r.l. Via Meravigli, 16
I-20123 Milano (IT)

Proprietor: NORDICA S.p.A
Via Piave, 33
I-31044 Montebelluna (Treviso) (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to an adjustable rear supporting device in ski boots composed of at least one quarter articulated to a shell.

It has been always an important problem, that of providing an optimal support to the back of the skier's leg in ski boots.

FR-A-1,475,938 for example, discloses a ski boot in which an attempt has been made to solve this problem, but it had the disadvantage that a variation in the rear support entailed an increase in the circumference of the upper perimetric edge of said boot with a consequent reduction in the degree of securing of the leg.

DE-A-2807371 discloses a device for the adjustment of the quarter with respect to the shell of a ski boot which has an eccentric element with a point of rotation on the shell or on the quarter.

Even this device, which allows the adjustment of the inclination of the quarter, also has a disadvantage: in fact it pushes the quarter vertically from below, and said quarter must therefore be moved forward, flexing the leg, in order to be able to actuate the device.

Without this operation, the adjustment would occur under stress, consequently requiring the skier to exert considerable efforts and possibly leading to the breakage of the device.

An improvement to the device of the above mentioned patent was provided by the same Applicant in the Italian utility model, No. 181178 filed on May 23, 1980, which discloses a device for the adjustment of the inclination of the upper quarter which comprises an abutment block which is associated with the rear part of the shell of the boot and is suitable for engaging by contact with the upper quarter to define its inclination, the peculiarity consisting of the fact that the block and the abutment can be positioned at various vertical levels on the upper quarter to vary the inclination.

However, even this solution has the disadvantage of requiring the forward inclination of the upper quarter in order to allow the activation of the device without excessive efforts.

Furthermore, although these devices provided an adjustment of the inclination of the quarter, they do not solve the problem related to the particular configuration of the calf of the skier, which is not adequately supported at the rear region of the rear quarter.

As a partial solution to this disadvantage as well, EP-A-229 638 discloses as solution wherein an upper quarter is articulated transversely at the rear end of the rear quarter of a boot and its position, and therefore its inclination with respect to the quarter, is actuated by means of an adapted lever which is pivoted to the rear quarter and interacts ratchet-like with a toothed band associated with the upper quarter.

Though undoubtedly effective, this solution has the disadvantage of being difficult to industrialize, due both to the particular configuration of the upper quarter and to the need to subsequently assembly all the components onto the boot.

The solution is therefore productively expensive.

In order to try to overcome these problems, which are thus related to constructive complications and to production costs, EP-A-342 463 shows a ski boot as defined in the preamble of the appended claim 1, in which several solutions are disclosed adapted to adjust the position of an upper quarter or, in any case, of a flap located at the rear region: even these solutions, however, are structurally not very simple and entail excessive manufacturing costs, which increase the overall cost of the boot.

The aim of the present invention is therefore to eliminate the disadvantages described above in known types by providing a device which, when applied to a ski boot, allows to achieve an optimum adaptation thereof at the region of the skier's calf, though an optimum securing of the leg inside it is maintained.

Within the scope of the above described aim, another important object is to provide a device which allows the skier to walk easily if required, by letting the legs keep an upright position, though the quarter or quarters are closed.

Another important object is to provide a device which can be activated even under stress and without therefore requiring the execution of particular preliminary operations on the part of the skier.

Still another object is to obtain a device which associates with the preceding characteristics that of allowing the activation under stress to be achieved in a rapid and simple manner on the part of the skier.

Still another important object is to obtain a device which associates with the preceding characteristics that of being structurally simple and therefore equally easy to industrialize.

Not least object is to obtain a device which has low production costs.

The above described aim and objects, as well as others which will become apparent hereinafter, are achieved by a rear supporting device for ski boots as characterized in the appended claim 1.

Further characteristics and advantages of the invention will become apparent from the dependent claims and from the detailed description of some particular but not exclusive embodiments, illustrated only by way of non-limitative example in the accompanying drawings, wherein:

figure 1 is a side partial view of a ski boot according to the invention;
figure 2 is a rear perspective partial view of the ski boot of figure 1 wherein the lever is uncoupled from the quarter;
figure 3 is a rear perspective partial view of a ski
boot according to a second aspect of the invention;

figure 4 is a side partial view of a ski boot according to a third aspect of the invention;

figure 5 is a side section view of a detail of the ski boot of figure 4;

figure 6 is a schematic perspective view of the component parts of the device of the ski boot of figures 4 and 5;

figure 7 is a partial rear perspective view of a ski boot according to a fourth aspect of the invention;

figure 8 is a rear section view of a detail of the boot of figure 7;

figures 9 and 10 are side section views of respectively two different embodiments of the lever of the ski boot of figures 7 and 8.

With reference to figures 1-3, the reference numeral 1 indicates a ski boot composed of a shell 2 with which at least one quarter 3 is articulated.

Said quarter has, at the rear region 4 adjacent to its own upper perimetric edge 5, a recess 6 which acts as seat for a flap 7.

Said flap is movable with a quarter 3 or with the shell 2, for example by means of a temporary-permanent snug fitting or pivoting thereto, or obtained by molding from the shell itself.

The adjustable rear support device comprises an eccentric lever 8 which is pivotable to at least one pair of wings 9a and 9b which protrude laterally to the quarter 3, at the recess 6.

Said wings 9a and 9b laterally embrace the flap 7, and adapted holes 10a and 10b are provided at their free end for the pivoting of the eccentric lever 8 for example by means of a pivot 11.

As an alternative, illustrated in figure 3, the eccentric lever 8 can be connected to the quarter 3 by means of a traction element, such as for example a cable 12, which is laterally associated with the quarter 3 at its ends; preferably but not necessarily, the cable 12 is guided by the wings 9a and 9b.

Advantageously, the eccentric element of the lever 8 is accommodated at an adapted seat 13 defined in the rear region of the flap 7 which is adjacent to the wings 9a and 9b.

The use of the device is therefore as follows: when the lever is closed, a certain inclination with respect to the longitudinal axis of the quarter 3, preferably usable while skiing, is imparted to the flap 7 whereas, when the lever is open, the flap 7 is allowed to move backward or assume a different inclination with respect to the axis of the quarter 3 so as to allow walking or an adaptation to the anatomical configuration of the skier’s calf.

When walking, the opening of the lever can for example allow the skier to keep the legs in an upright position, though the quarter or quarters of the boot are closed, thus avoiding tedious opening/closure operations, as well as possible slippages of the boot off the foot or the penetration of snow or mud inside the boot.

The fact is stressed that the actuation of the eccentric lever 8 imposes a movement to the flap on the basis of a force which is imparted transversely to said flap, thus allowing to achieve an adjustment of its position even under stress.

In the previously described known art, instead, it was possible to impart to an upper quarter a movement along its own longitudinal axis which was difficult to perform under stress.

The device is furthermore structurally very simple as well as easy and rapid to industrialize and therefore economical.

It has thus been observed that the invention has achieved the intended aim and objects, an adjustable rear supporting device having been obtained which is extremely simplified from the constructive point of view and from the point of view of use, allowing the adaptation of the quarter to the various anatomical dimensions of the skier’s calf or allowing the skier to walk easily though the quarter or quarters are closed.

The adjustment of the device can furthermore be obtained even under stress, the skier being able to easily actuate the eccentric lever 8 both for opening and for closure.

Finally, its constructive simplicity allows to achieve the execution of the device with very modest costs.

The ski boot according to the invention is naturally susceptible to numerous modifications and variations, all of which are within the scope of the same inventive concept.

Figures 4-6, for example, illustrate a ski boot 101, of which only the quarter 103 is visible in figure 4, having a rear support device according to a second aspect of the invention. As in the previously described embodiment, a flap 107 is arranged at a recess 106 provided in the quarter 103.

An eccentric lever 108 is pivotated to the quarter 103 and acts on the flap 107 substantially as previously described. According to this second embodiment, a hollow knob 114 is rotatably associated with the quarter 103 and comprises an inner threading 115 engaging a nut 116.

The nut 116 is associated with the end of a cable 112 which is eccentrically guided in the lever 108 so that by operating the lever 108, the cable 112 is tensioned or released. As it is apparent, by turning the knob 114 the nut 116 is axially displaced, because it cannot rotate, thereby adjusting the working length of the cable 112.

Figures 7-9 show a further embodiment of the invention wherein a lever 208 is pivotated to the quarter 203 and acts on a flap (not illustrated) as previously described. The lever 208 comprises a knob 214 for adjusting the working length of at least one cable 212. In this case too the knob 214 is hollow and comprises
an inner toothing 215 engaging an inner gear wheel 216. The gear wheel 216 is hollow too and comprises two opposite threadings 217 engaging respective nuts 218. Each nut 218 is associated with a respective end of one of two cables 212. As it is apparent, by rotating the knob 214, the nuts 218 are brought together or spaced apart, thereby adjusting the length of the cable (or cables) 212.

Figure 10 shows a lever 308 in a ski boot according to a further aspect of the invention, wherein a knob 314 is arranged in the lever 308 and has an outer toothing 315 engaging an outer gear wheel 316. The gear wheel 316 is hollow and engages one or two bolts 318 for adjusting the working length of one or two cables (not illustrated) as previously described. The knob 314 has an outer portion (not illustrated in the drawings) in order to be actuated by the user.

The device can thus be also applied to ski boots composed of a front quarter and of a rear quarter. The wings 9a and 9b can furthermore be obtained directly at the quarter or applied thereon.

The dimensions and the materials which constitute the individual components of the device may naturally be the most appropriate according to the specific requirements.

Where technical features mentioned in any claim are followed by reference signs, those reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly, such reference signs do not have any limiting effect on the scope of each element identified by way of example by such reference signs.

Claims

1. Rear supporting device in ski boots composed of at least one quarter (3,103,203) articulated to a shell, said quarter having, at the rear region (4) adjacent to the upper perimetric edge (5), a recess (6) which acts as seat for a flap (7,107) being movable between different inclinations, wherein said supporting device comprises a pivoted lever operatively associated with said at least one quarter and with said flap for adjusting the inclination of said flap with respect to the at least one quarter, characterized in that said lever for adjusting the inclination of said flap is an eccentric lever (8,108,208,308) pivotally connected to said at least one quarter and having an eccentric element which, in a closed position of the lever, forces the flap into an inclined position with respect to the longitudinal axis of said quarter from which position the flap is allowed to move backward if the lever is open.

2. Device according to claim 1, characterized in that said eccentric lever is pivoted at at least one pair of wings (9a,9b) protruding at lateral portions of said at least one quarter at the recess (6) and embracing the flap (7).

3. Device according to claim 2, characterized in that said eccentric lever (8,108,208,308) is pivoted to said at least one pair of wings (9a,9b) by means of at least one traction element (12,112,212) associated at lateral portions of said at least one quarter.

4. Device according to claim 1, characterized in that the end of said eccentric lever (8) which is pivoted to said at least one pair of wings (9a,9b) is located at an adapted seat (13) defined on the facing rear surface of said flap (7).

5. Device according to claim 1, characterized in that it comprises a knob (114,214,314) associated with at least one cable (112,212) and adapted to adjust the working length of said cable, said cable being adapted to connect said at least one quarter with said eccentric lever.

6. Device according to claim 5, characterized in that said knob (114) is rotatably associated with said quarter (103) and is hollow, said knob having an inner threading (115) engaging a nut (116), said nut being associated with an end of said cable (112), said nut being adapted to slide within said knob upon a rotation of said knob.

7. Device according to claim 5, characterized in that said knob (214,314) is associated with said lever (208,308) and has a toothing (215,315) engaging a gear wheel (216,316), said gear wheel being hollow and having at least one inner threading (217) engaging at least one nut (218,318), said at least one nut being connected to said at least one cable.

Patentansprüche

1. Rückwärtige Stützvorrichtung in Skistiefeln, bestehend aus wenigstens einem Schaftteil (3, 103, 203), der mit einer Schale schwenkbeweglich verbunden ist, wobei der Schaftteil im Rückwärtigen Bereich (4), angrenzend an die obere Umfangskante (5), eine Aussparung (8) aufweist, die als Sitz für eine Lasche (7, 107) dient, die zwischen zwei unterschiedlichen Neigungswinkeln beweglich ist, wobei die Stützvorrichtung einen schwenkbeweglich befestigten Hebel umfaßt, der in Funktionsverbindung mit dem genannten Schaftteil sowie der Lasche steht, um auf diese Weise die Neigung der Lasche gegenüber dem genannten Schaftteil einzustellen, dadurch ge-

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Exzenterhebel an wenigstens einem Paar von Flügeln (9a, 9b) drehbeweglich befestigt ist, die seitlich gegenüber dem genannten Schaftteil an der Aussparung (6) vorstehen und die Lasche (7) umgreifen.

3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Exzenterhebel (8, 108, 208, 308) an dem genannten Paar von Flügeln (9a, 9b) über wenigstens ein Zugelement (12, 112, 212) drehbeweglich befestigt ist, das an seitlichen Bereichen des genannten Schaftteiles befestigt ist.

4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Ende des Exzenterhebels (8), das an dem genannten Paar von Flügeln (9a, 9b) drehbeweglich befestigt ist, an einem geeigneten Sitz (13) angeordnet ist, der auf der gegenüberliegenden, rückwärtigen Oberfläche der Lasche (7) ausgebildet ist.

5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie einen Knopf (114, 214, 314) enthält, der mit wenigstens einem Kabel (112, 212) verbunden ist und die Arbeitslänge des Kabels einstellen kann, wobei das Kabel dem genannten Schaftteil mit dem Exzenterhebel verbindet.


7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Knopf (214, 314) mit dem Hebel (208, 308) verbunden ist und eine Verzahnung (215, 315) aufweist, die mit einem Getrieberad (216, 316) in Eingriff steht, wobei das Getrieberad hohl ausgebildet ist und wenigstens ein Innengewinde (217) aufweist, das mit wenigstens einer Gewindestraube (218, 318) in Eingriff steht, wobei die genannte Gewindestraube mit dem genannten Kabel verbunden ist.

**Revendications**

1. Dispositif de support arrière dans des chaussures de ski, comprenant au moins un quartier (3, 103, 203) articulé à une coquille, ledit quartier ayant, à la partie arrière (4) adjacente au bord périmétrique supérieur (5), un renforcement (6) qui agit comme un siège pour une patte (7, 107) mobile entre différentes inclinaisons, ledit dispositif de support comprenant un levier articulé associé de manière opérationnelle avec le ou lesdits quartiers et avec ladite patte pour régler l'inclinaison de ladite patte par rapport au ou auxdits quartiers (s), caractérisé en ce que ledit levier pour régler l'inclinaison dudit volet est un levier excentrique (8, 108, 208, 308) connecté de manière pivotante au ou auxdits quartier(s) et possédant un élément excentrique qui, dans une position fermée du levier, force la patte dans une position inclinée par rapport à l'axe longitudinal dudit quartier, position depuis laquelle la patte peut se déplacer vers l'arrière si le levier est ouvert.

2. Dispositif selon la revendication 1, caractérisé en ce que ledit levier excentrique pivote sur au moins une paire d'ailes (9a, 9b) qui font saillie à des parties latérales du ou desdits quartier(s) au niveau du renforcement (6) et recouvrent la patte (7).

3. Dispositif selon la revendication 2, caractérisé en ce que ledit levier excentrique (8, 108, 208, 308) pivote sur la ou lesdites paire(s) d'ailes (9a, 9b) à l'aide d'au moins un élément (12, 112, 212) de traction associé à des parties latérales du ou desdits quartier(s).

4. Dispositif selon la revendication 1, caractérisé en ce que l'extrémité dudit levier excentrique (8), qui pivote sur la ou lesdites paire(s) d'ailes (9a, 9b), est située sur un siège adapté (13), défini sur la surface arrière frontale de ladite patte (7).

5. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend un bouton (114, 214, 314) associé avec au moins un câble (112, 212), et adapté pour ajuster la longueur de travail dudit câble, ledit câble étant adapté pour connecter le ou lesdits quartier(s) avec ledit levier excentrique.

6. Dispositif selon la revendication 5, caractérisé en ce que ledit bouton (114) est associé de façon à pouvoir tourner avec ledit quartier (103), et est creux, ledit bouton ayant un filetage intérieur.
7. Dispositif selon la revendication 5, caractérisé en ce que ledit bouton (214, 314) est associé avec ledit levier (208, 308) et à une denture (215, 315) en prise avec une roue dentée (216, 316), ladite roue dentée étant creuse et ayant au moins un filetage intérieur (217) en prise avec au moins un écrou (216, 318), le ou lesdits écrou(s) étant connecté(s) au ou auxd(it) câble(s).