EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 21.12.94

Int. Cl.: B05B 5/16

Application number: 90122787.6

Date of filing: 29.11.90

Electrostatic coating apparatus for conductive paint.

Priority: 27.12.89 JP 336632/89

Date of publication of application:
03.07.91 Bulletin 91/27

Publication of the grant of the patent:
21.12.94 Bulletin 94/51

Designated Contracting States:
DE FR GB

References cited:
EP-A- 0 303 541
WO-A-87/05832
GB-A- 2 166 982

Proprietor: Trinity Industrial Corporation
4-1, Marunouchi 2-chome
Chiyoda-ku
Tokyo (JP)

Inventor: Matushita, Masaharu
c/o Trinity Ind. Corp.,
9,Kakimoto-cho 1-chome
Toyota-shi, Aichi (JP)
Inventor: Achiwa, Noriyuki
c/o Trinity Ind. Corp.,
9,Kakimoto-cho 1-chome
Toyota-shi, Aichi (JP)
Inventor: Watanabe, Touichi
c/o Trinity Industrial Corp.,
9-34, Yakou 5-chome
Tsurumi-ku, Yokohama-shi, Kanagawa (JP)
Inventor: Kanematsu, Masachika
c/o Trinity Ind. Corp.,
9, Kakimoto-cho 1-chome
Toyota-shi, Aichi (JP)

Representative: Patentanwälte Dipl.-Ing. W.
Dahle Dipl.-Ing. H.-J. Lippert
Frankenforster Strasse 137
D-51427 Bergisch Gladbach (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to an electrostatic coating apparatus for coating a succession of articles each with a selected color of an electroconductive paint, comprising an electrostatic coating machine applied with a high voltage, a paint supply pipeline for supplying an electroconductive paint, a reciprocal pump disposed between said electrostatic coating machine and said paint supply pipeline, said reciprocal pump having an input port and an output port and being adapted such that the electroconductive paint introduced from the input port is discharged at a predetermined flow rate from the output port and supplied in a predetermined amount to the electrostatic coating machine, and means detachably connecting said input port of said reciprocal pump with said paint supply pipeline.

An apparatus of the aforementioned kind is for instance known from WO 87/05832. This reference discloses an electrostatic coating apparatus capable of overcoming the inconvenience of providing electrical insulation counter measures over the entire paint supply system from a storage system to a consumption station, which are connected by means of a detachable connector, to eliminate the necessity of providing the electrical insulation counter measures to the storage system. The consumption station applied with a high voltage for discharging paint can be separated from a storage system by detachably connecting both of them by means of a connector. If a paint change is desired a rinsing fluid is pumped through the entire storage system and the consumption system.

It is an object of the present invention to provide an electrostatic coating apparatus for conductive paint in which the cleaning time is shortened remarkably when color changes are conducted.

The foregoing object of the present invention can be attained by the aforementioned apparatus which is characterized by

- a valve device interposed between said output port of said reciprocal pump and said electrostatic coating machine,
- a drain pipe connected to said valve device for discharging residual paint remaining in said reciprocal pump, said valve device being switchable between a painting mode in which said valve device connects said reciprocal pump with said electrostatic coating machine and a cleaning mode in which said valve device connects said reciprocal pump with said drain pipeline,
- a color change valve interposed in said paint supply pipeline upstream of said detachable connecting means,
- a supply for at least one pressurized cleaning fluid communicated to said color change valve,
- an exclusive cleaning pipeline connected to said valve device, said valve device being further operable for connecting said exclusive cleaning pipeline to said electrostatic coating machine in the cleaning mode,
- a cleaning liquid supply pipeline,
- a liquid waste pipeline and respective detachable connection means provided for detachably connecting said exclusive cleaning pipeline to said cleaning supply pipeline and said drain pipeline to said liquid waste pipeline in the cleaning mode and for disconnecting each of the pipelines in the painting mode.

The cleaning liquid supplied from the paint supply pipe is introduced from the input port into the reciprocal pump to wash out the residual paint in the reciprocal pump and is then discharged from the output port by way of the switching valve device into the drain pipe. Further, the cleaning liquid supplied from the cleaning liquid supply pipe is supplied by way of the pipe used exclusively for cleaning to the paint hose to wash out the residual paint in the paint hose and the electrostatic coating machine and is then discharged from the electrostatic coating machine.

Because the reciprocal pump and the electrostatic coating machine are cleaned individually and separately at the same time by means of two washing systems the cleaning time can be shortened remarkably.

These and other objects as well as advantageous features of the present invention will become apparent by reading the following descriptions of the preferred embodiments according to the present invention with reference to the appended drawings, wherein

Fig. 1 is a front elevational view illustrating a preferred embodiment of an electrostatic coating apparatus according to the present invention;

Fig. 2 is a cross sectional view for a reciprocal pump used in the apparatus shown in Fig. 1;

Fig. 3 schematically illustrates a still further embodiment of the electrostatic coating apparatus according to the present invention and

Figs. 4 and 5 are, respectively, a front elevational view and a plan view illustrating detailed structures for a portion of the apparatus shown in Fig. 3.

The present invention will now be described by way of its preferred embodiments with reference to the drawings.
Structure of the First Embodiment:

Fig. 1 is a front elevational view illustrating a preferred embodiment of the electrostatic coating apparatus according to the present invention and Fig. 2 is a cross sectional view for a reciprocal pump used in the apparatus.

In this first embodiment, an electrostatic coating machine 1 applied with a high DC voltage of about 80 - 120 KV is supported on an electrically insulative support 2. In adjacent with the electrostatic coating machine 1, a reciprocal pump 3 is disposed, in which an electroconductive paint such as an aqueous paint (hereinafter simply referred to as a conductive paint) is introduced from an input port 4 and discharged from an output port 5 at a predetermined flow rate.

The reciprocal pump 3 is fixed in an electrically insulative state to a bracket 6 attached to a housing for the electrostatic coating machine. The reciprocal pump 3 comprises a cylinder 7 having the output port 5 disposed to the top end and a tubular piston rod 9 having an annular piston 8 disposed at its top end and the input port 4 disposed at its rear end, with the top end of the piston rod 9 being opened in the cylinder 7.

The input port 4 has a female coupler 11 formed at its connection port for detachably connecting a paint supply pipe 10 for a conductive paint.

The output port 5 has a valve device 15 that switchingly connects the output port 5 to a paint hose 12 for supplying the conductive paint discharged from the inside of the cylinder 7 by the piston 8 of the reciprocal pump 3 to the electrostatic coating machine 1, or to a pipe 14 for draining the conductive paint remaining in the cylinder 7 to the liquid waste pipe 13 after the completion of the coating by means of cleaning air or cleaning liquid supplied from the paint supply pipe 10.

The valve device 15 is adapted such that a pipe 16 used exclusively for cleaning is connected with the paint hose 12 when the output port 5 is connected with the drain pipe 14.

Then, the drain pipe 14 and the cleaning pipe 16 are secured to the bracket 6 one above the other and in parallel with the piston rod 9 of the reciprocal pump 3. Top ends of the pipes 14 and 16 have a female coupler 17 as a connection port for detachably connecting the liquid waste pipe 13 and a female coupler 19 as a connection port for detachably connecting a cleaning liquid supply pipe 18 respectively for supplying a cleaning air at low pressure and a cleaning liquid at low pressure alternately.

Behind the cylinder 7 of the reciprocal pump 3, there are disposed a driving device 21 that transmits a reciprocal driving power to the piston rod 9 of the cylinder 7 by way of an insulative shaft 20, and a double action air cylinder 22 that advances and retracts the top end of its piston rod 23 to and from the rear end of the piston rod 9.

The piston rod 23 has a holder 25 formed at its top end for holding the end of the paint supply pipe 10 for selectively supplying an aqueous paint of each of colors or a cleaning air at a high pressure and a cleaning liquid at a high pressure from a color-change valve device 24. The holder 25 has a male coupler 26 that engages or disengages to or from the female coupler 11 disposed on the input port 4 in order to detachably connect the paint supply pipe 10 with the input port 4 of the reciprocal pump 3.

Air cylinders 27 and 28 each of an identical type are disposed in parallel with the air cylinder 22 for advancing and retracting the top ends of their piston rods 29 and 30 to and from the female coupler 17 as a connection port on the side of the drain pipe 14 and the female coupler 19 as the connection port on the side of the exclusive cleaning pipe 16 respectively.

The air cylinder 27 has a holder 31 disposed to its piston rod 29 for holding the end of the liquid waste pipe 13. A male coupler 32 is disposed to the holder 31 for engaging and disengaging the liquid waste pipe 13 to and from the drain pipe 14.

The air cylinder 28 has a holder 33 disposed to its piston rod 30 for holding the end of the cleaning liquid supply pipe 18. A male coupler 34 is disposed to the holder 33 for engaging and disengaging the cleaning liquid supply pipe 18 to and from the exclusive cleaning pipe 16. Operation of the First Embodiment

The operation of the apparatus in this embodiment having thus been constituted will be explained below.

Before starting an electrostatic coating operation, the driving device 21 is at first actuated to extend the piston rod 9 toward the rear side of the cylinder 7 in the reciprocal pump 3. Then, the air cylinder 22 is actuated to extend the piston rod 23 toward the piston rod 9 and engage the male coupler 26 disposed at the top end of the piston rod 23 with the female coupler 11 disposed at the rear end of the piston rod 9, to thereby connect the paint supply pipe 10 to the input port 4 of the reciprocal pump 3.

Then, an aqueous paint of a desired color is selected by the operation of the color-change valve device 24, and the aqueous paint thus selected is introduced from the paint supply pipe 10 through the inlet port 4 into the cylinder 7 of the reciprocal pump 3.

When a predetermined amount of the aqueous paint is charged in the cylinder 7, the air cylinder
22 is actuated again to contract the piston rod 23 in the direction aparting from the piston rod 9 of the cylinder 7, thereby detaching the male coupler 26 of the piston rod 23 from the female coupler 11 on the side of the input port 4.

The female coupler 11 has a structure like that of a check valve, i.e., opening the connection port on the side of the input port 4 when it engages the male coupler 26, while closing the connection port when it disengages from the male coupler 26. After detaching the paint supply pipe 10 from the reciprocal pump 3, a predetermined high voltage is applied to the electrostatic coating machine 1 and, at the same time, the driving device 21 is actuated to contract the piston rod 9 of the cylinder 7 and drive the aqueous paint charged in the cylinder 7 out of the output port 5 by the piston 8 disposed at the top end of the piston rod 9 and supply it through the paint hose 12 to the electrostatic coating machine 1, thereby starting the electrostatic coating.

In this state, since the electrostatic coating machine 1 is separated and electrically insulated from the paint supply systems including the paint supply pipe 10, the liquid waste pipe 13 and the cleaning liquid supply pipe 18, there is no worry at all that the high voltage applied to the electrostatic coating machine 1 should cause current leakage to the latter.

Accordingly, troublesome installation of electrical insulation means to all of the paint supply systems in a multi-colored electrostatic coating apparatus for supplying aqueous paints of respective colors is no more required.

When the electrostatic coating has been completed after discharging the aqueous paint from the inside of the cylinder 7, application of the high voltage to the electrostatic coating machine 1 is interrupted and the driving device 21 is actuated to extend the piston rod 9 of the cylinder 7 rearwardly. At the same time, the air cylinder 22 is actuated to extend the piston rod 23, and the female coupler 11 disposed to the rear end of the piston rod 9 is engaged with the male coupler 26 disposed at the top end of the piston rod 23 to connect the paint supply pipe 10 again to the input port 4 of the reciprocal pump 3.

In a case of successively coating the aqueous paint of a color identical with that in the preceding coating process, the aqueous paint of that color is again supplied from the color-change valve device 24.

In other case of coating an aqueous paint of a color different from that in the preceding coating process, the output port 5 of the reciprocal pump 3 is connected switchingly from the side of the paint hose 12 to the side of the drain pipe 14 by the operation of the valve device 15 and, at the same time, the paint hose 12 is connected switchingly to the exclusive cleaning pipe 16.

Further, the air cylinders 27 and 28 are actuated to extend the respective piston rods 20 and 30 and engage the male couplers 32 and 34 formed to the top ends thereof with the female coupler 17 on the side of the drain pipe 14 and the female coupler 19 on the side of the excluding cleaning pipe 16 respectively, thereby connecting the liquid waste pipe 13 with the drain pipe 14 and connecting the cleaning liquid supply pipe 18 with the exclusive cleaning pipe 16.

In this state, a cleaning air at a high pressure and a cleaning liquid at a high pressure are supplied alternately from the color-change valve device 24 through the paint supply pipe 10 to instantaneously drain the aqueous paint remaining in the cylinder 7 of the reciprocal pump 3 from the drain pipe 14 through the liquid waste pipe 13 to the liquid waste reservoir 35, to clean the inside of the paint supply pipe 10 and the inside of the cylinder 7. At the same time, the aqueous paint remaining in the paint hose 12 or the electrostatic coating machine 1 is discharged from the coating machine 1 by the cleaning air at a low pressure and a cleaning liquid at a low pressure alternately supplied from the cleaning liquid supply pipe 18 through the exclusive cleaning pipe 16, to clean the inside of them.

In this way, the paint remaining in the cylinder 7 of the reciprocal pump 3 of a large volume is removed by cleaning with the cleaning air and the cleaning liquid each supplied at a high pressure, while the paint remaining in the electrostatic coating machine 1 of a relatively small volume is removed by cleaning with the cleaning air and the cleaning liquid each supplied at a low pressure. Accordingly, the cleaning time can be shortened remarkably and color-change of paint can be conducted rapidly. In addition, vigorous scattering of the paint removed from the inside of the electrostatic coating machine 1 which would otherwise occur and contaminate surroundings of the electrostatic coating machine 1 can be eliminated.

Structure of the Second Embodiment:

Fig. 3 is a flow sheet illustrating a further embodiment of the electrostatic coating apparatus according to the present invention and Figs. 4 and 5 are, respectively, a front elevational view and a plan view illustrating a detailed constitution for each of them.

In the second embodiment, an electrostatic coating machine 1 is connected by way of a paint hose 12 with a manifold 51 of a color-change valve device 50 having a plurality of color-change valves CCV1 - CCV5.
Tubular insulative supports 52a - 52c are arranged in parallel with the insulative support 2 for the electrostatic coating machine 1, each of the cylinders 7 for the reciprocal pumps 3a - 3c is attached to each of the ends of the supports, each of insulative shafts 53 as a piston rod for each of the cylinders 7 is inserted through the inside of each support and each of hydraulic cylinders 54a - 54c for reciprocating each of the insulative shafts 53 is attached to the rear end of each shaft. Approximate switches 55 and 56 are disposed for outputting start/stop signals for each of the hydraulic cylinders 54a - 54c.

Further, air valves 57a - 57c which are turned on and off by air signals are attached to the top end of the insulative supports 52a - 52c respectively. Each of the valves is connected at its exit to the input port 4 for each of the cylinders 7 for the reciprocal pumps 3a - 3c and has a female coupler 58 disposed at its inlet as a connection port on the side of the input port 4.

The output port 5 for each of the cylinders 7 of the reciprocal pumps 3a - 3c is connected to each of the color-change valves CCV1 - CCV2 of the color-change valve device 50 disposed in an electrically insulated state.

An air valve 57d which is turned on and off by air signals is attached at the top end of the insulative support 52c in adjacent with the air valve 57c. The valve 57d is connected at its exit by way of an exclusive cleaning pipe 59 to the color-change valve CCV3 and has a female coupler disposed at its inlet as a connection port on the side of the exclusive cleaning pipe 59.

Double-action type cylinders 61a - 61d are disposed at the rear ends of the insulative supports 52a - 52c respectively and air valves 63a - 63d which are turned on and off by air signals are disposed to the top ends of the piston rods 62 respectively. Each of the air valves 63a - 63c is connected at its inlet with each of paint supply pipes 10a - 10c for supplying conductive paint of respective colors and has a male coupler 64 connected at its exit, to be detachably connected to a female coupler 58 as a connection port on the side of the input port 4 for each of the reciprocal pumps 3a - 3c.

Further, the air valve 63d has a cleaning liquid supply pipe 65 connected at its inlet for supplying a cleaning liquid and a male coupler 64’ connected at its exit, to be detachably connected with a female coupler 60 as a connection port on the side of the exclusive cleaning pipe 59.

A cleaning air supply pipe 66 is directly connected with the color-change valve CCV3.

Switching valves 67a - 67c are disposed for supplying a hydraulic fluid or oil to a hydraulically operated cylinders 54a - 54c and so adapted that they send a hydraulic fluid in a hydraulic fluid reservoir 71 to each of the hydraulic cylinders 54a - 54c through each pair of pipes 72 and 73, as well as return the hydraulic fluid discharged from each of the hydraulic cylinders 54a - 54c to the inside of the hydraulic fluid reservoir 71. In this case, the hydraulic fluid is cyclically supplied at a predetermined flow rate by a gear pump 68, regulators 69 and 70 in accordance with the amount of a paint discharged from the electrostatic coating machine 1.

Further, there are also provided air valves 74a - 74d for supplying a driving air to the air cylinders 61a - 61d, and air valves 75a - 75m that output air signals A - C for switching the switching valves 67a - 67c and air signals D - M for turning on and off the air valves 57a - 57d, and 63a - 63d and the color-change valves CCV1 - CCV3.

Operation of the Second Embodiment:

At first, a driving air is supplied from the air valve 74a to the air cylinder 61a for extending the piston rod 62 of the cylinder and the male coupler 64 attached to the top end of the piston rod 62 is engaged with the female coupler 58 on the side of the input port 4 of the reciprocal pump 3a.

In a case of coating a conductive paint supplied from the paint supply pipe 10a, an air signal D is outputted from the air valve 75d to the air valves 57a and 63a for turning both of the air valves 57a and 63a to on, thereby connecting the input port 4 of the reciprocal pump 3a with the paint supply pipe 10a.

Then, an air signal A is outputted from the air valve 75a to the switching valve 67a for switching the valve 67a such that the hydraulic fluid in the hydraulic fluid reservoir 71 is sent through the pipe 73 to the hydraulic fluid cylinder 54a.

Thus, the cylinder of the reciprocal pump 3a connected through the insulative shaft 53 to the hydraulic cylinder 54a is interlocked to suck and introduce the conductive paint to the inside of the cylinder 7.

In this case, conductive paints each of different color are also introduced previously from the paint supply pipes 10b and 10c in the same way into the cylinders 7 for other reciprocal pumps 3b and 3c respectively.

Then, when a predetermined amount of the paint just sufficient for the coating is charged in the cylinder 7 of the reciprocal pump 3a, the approximate switch 55 is actuated, and the switch signal causes the air signal A to output from the air valve 75a to the air valve 67a for switching the valve 67a to interrupt driving for the cylinder 7. At the same time, the air signal D is outputted from the air valve 75d for turning the air valves 57a and 63a to off.
Further, a driving air is supplied from the air valve 74a to the air cylinder 61a for contracting its piston rod 62.

This disengages the paint supply pipe 10a from the input port 4 of the reciprocal pump 3a again and the pipe is electrically insulated from the reciprocal pump 3a.

Further, the cylinder 7 of the reciprocal pump 3a is also electrically insulated from the hydraulic cylinder 54a by means of the insulative support 52a and the insulative shaft 53 inserted to the inside thereof.

In this state, a high voltage is applied to the electrostatic coating machine 1, an air signal A is outputted from the air valve 75a to the switching valve 67a for switching the valve 67a such that the hydraulic fluid in the hydraulic fluid reservoir 71 is sent through the pipe 72 to the hydraulic cylinder 54a. At the same time, an air signal H is outputted from the air valve 75h for turning the color change valve CCV1 to on, thereby discharging the conductive paint introduced into the cylinder 7 of the reciprocal pump 3a from the output port 5 by the power of the hydraulic cylinder 54a and supplying the paint at a constant flow rate to the electrostatic coating machine 1. Thus, there is no worry that the high voltage applied to the electrostatic coating machine 1 should caused current leakage to the paint supply systems such as the paint supply pipe 10a and troublesome installation of electric insulation means is no more required.

Subsequently, when the coating with the paint supplied from the paint supply pipe 10a has been completed, the color-change valve CCV1 is turned off by the air signal H from the air valve 75n and the color-change valve CCV2 is turned on by an air signal M from the air valve 75m to drive the paint remaining in the manifold 51 of the color-change valve device 50, the paint hose 12 and the electrostatic coating machine 1 out of the coating machine 1 by a pressurized air supplied through the cleaning air supply pipe 66. Then, the application of the high voltage to the coating machine 1 is interrupted.

Then, an air signal G is outputted from the air valve 75g to the air valves 57d and 63d for turning both of the valves to on, and a driving air is supplied from the air valve 74d to the air cylinder 61d for extending the piston rod 62 of the air cylinder 61d, to engage the male coupler 64 disposed at the top end of the piston rod 62 with the female coupler 60 and connect the cleaning liquid supply pipe 65 with the exclusive cleaning pipe 59.

Next, the color-change valve CCV2 is turned on by the air signal L from the air valve 75l and the inside of the manifold 51, the inside of the paint hose 21 and the inside of the electrostatic coating machine 1 are cleaned with the cleaning liquid supplied from the cleaning liquid supply pipe 65 through the exclusive cleaning line 59. Subsequently, pressurized air is again supplied from the cleaning air supply pipe 66 to drive out the cleaning liquid remaining in the path from the inside of the manifold 51 to the inside of the electrostatic coating machine 1.

After the cleaning has been completed by repeating the above-mentioned procedures for several times, an air signal G is outputted from the air valve 75g for turning the air valves 57d and 63d to off, and a driving air is supplied from the air valve 74d to the air cylinder 61d for contracting the piston rod 62 thereof, by which the cleaning liquid supply pipe 65 is disengaged from the exclusive cleaning pipe 59 to electrically insulate both of them from each other.

Accordingly, when the high voltage is applied again to the electrostatic coating machine 1 for starting the coating after the cleaning has been completed, there is no worry that the high voltage should cause current leakage to the cleaning liquid supply systems including the cleaning liquid supply pipe 65 and the like.

In this embodiment, if the cleaning air supply pipe 66 is made of electrically insulative material, there is no worry for the current leakage due to the high voltage even if it is directly connected with the color-change valve device 50.

Further, since there is no more required to clean the inside for each of the cylinders 7 in the reciprocal pumps 3a- 3c upon color-change, the time required for color-change can be shortened remarkably by the remarkable shortening for the cleaning time.

Although each of the cylinders 7 for the reciprocal pumps 3a - 3c for supplying the conductive paint at a predetermined amount to the electrostatic coating machine 1 is driven by each of the hydraulic cylinders 54a - 54c in this embodiment, the cylinder may be driven also by an air motor or the like by adapting the insulative shaft 53 as the piston rod for the cylinder 7 such that the shaft is moved by a screw-feed mechanism that converts the rotational movement into a linear reciprocal movement.

Further, the reciprocal pumps 3a - 3c are not limited only to the hydraulic cylinders but they may be constituted, for example, as diaphragm pumps.

As has been described above according to the present invention, troublesome installation of insulating means to the paint supply systems is no more necessary even when an electroconductive paint such as an aqueous paint is used in electrostatic coating machine applied with a high voltage.

Furthermore, since the multi-color electrostatic coating apparatus according to the present invention is adapted such that installation of insulation
means can be saved not only for the paint supply systems for paints of respective colors but also for the cleaning liquid supply system and also such that the cleaning time upon color-changeable can be shortened remarkably, it is possible to positively promote the change of coating material for electrostatic coating from insulative resin paints requiring a great amount of deleterious organic solvents to aqueous paints free from public pollution, which can provide high usefulness in view of the environmental protection.

Claims

1. An electrostatic coating apparatus for coating a succession of articles each with a selected color of an electroconductive paint, comprising an electrostatic coating machine (1) applied with high voltage, a paint supply pipeline (10) for supplying an electroconductive paint, a reciprocal pump (3) disposed between said electrostatic coating machine (1) and said paint supply pipeline (10), said reciprocal pump (3) having an input port (4) and an output port (5) and being adapted such that the electroconductive paint introduced from the input port (4) is discharged at a predetermined flow rate from the output port (5) and supplied in a predetermined amount to the electrostatic coating machine (1), and means (11, 22, 26) detachably connecting said input port (4) of said reciprocal pump (3) with said paint supply pipeline (10), characterized by

 a valve device (15) interposed between said output port (5) of said reciprocal pump (3) and said electrostatic coating machine (1),
 a drain pipeline (14) connected to said valve device (15) for discharging residual paint remaining in said reciprocal pump (3), said valve device (15) being switchable between a painting mode in which said valve device (15) connects said reciprocal pump (3) with said electrostatic coating machine (1) and a cleaning mode in which said valve device (15) connects said reciprocal pump (3) with said drain pipeline,
 a color change valve (24) interposed in said paint supply pipeline (10) upstream of said detachable connecting means (11, 22, 26),
 a supply for at least one pressurized cleaning fluid communicated to said color change valve (24),
 an exclusive cleaning pipeline (16) connected to said valve device (15), said valve device (15) being further operable for connecting said exclusive cleaning pipeline (16) to said electrostatic coating machine (1) in the cleaning mode,
 a cleaning liquid supply pipeline (18),
 a liquid waste pipeline (13) and respective detachable connection means (19, 28, 34; 17, 27, 32) provided for detachably connecting said exclusive cleaning pipeline (16) to said cleaning liquid pipeline (18) and said drain pipeline (14) to said liquid waste pipeline (13) in the cleaning mode and for disconnecting each of the pipelines (13, 14, 16, 18) in the painting mode.

Patentansprüche

1. Eine elektrostatische Beschichtungsvorrichtung zur Beschichtung verschiedener Gegenstände mit unterschiedlichen leitfähigen Farben, bestehend aus:

 - einer Beschichtungsmaschine (1), die mit Hochspannung versorgt wird,
 - einer Farbenversorgungsleitung (10) zur Versorgung mit leitfähiger Farbe,
 - einer Kolbenpumpe (3), die zwischen der elektrostatischen Beschichtungsmaschine (1) und der Farbenversorgungsleitung (10) angeordnet ist, wobei diese Kolbenpumpe (3) einen Einlaß (4) und einen Auslaß (5) aufweist und so ausgebildet ist, daß die leitfähige Farbe, die über den Einlaß (4) eingeführt wird, in einer vorbestimmten Flussrate aus dem Auslaß (5) verteilt wird und die elektrostatische Beschichtungsmaschine (1) mit einer vorbestimmten Menge versorgt,
 - und Vorrichtungen (11, 22, 26), die lösbar den Einlaß (4) der Kolbenpumpe (3) mit der Farbenversorgungsleitung (10) verbinden,

 dadurch gekennzeichnet, daß

 - eine Ventilvorrichtung (15) zwischen dem Auslaß (5) der Kolbenpumpe (3) und der elektrostatischen Beschichtungsmaschine (1) angeordnet ist,
 - eine Entwässerungsleitung (14) mit der Ventilvorrichtung (15) zur Entsauberung überschüssiger Farbe aus der Kolbenpumpe (3) verbunden ist, wobei die Ventilvorrichtung (15) zwischen einem Färbebetrieb, in welchem die Ventilvorrichtung (15) die Kolbenpumpe (3) mit der elektrostatischen Beschichtungsmaschine (1) verbindet und einem Reinigungsbetrieb, in welchem die Ventilvorrichtung (15) die Kolbenpumpe (3) mit der Entwässerungsleitung (14) verbunden schaltbar ist,
 - einem Färbewechselventil (24), welches oberstromseitig zu den lösbaren Verbindungsmitteln (11, 22, 26) in der Farbver-
sorgungsleitung (10) angeordnet ist,
- einer Versorgung mit zumindest einer unter Druck gesetzten Reinigungsfüssig-
keit, die mit dem Farbwechselventil (24) in Verbindung steht,
- einer alleinigen Reinigungsleitung (16), die mit der Ventilvorrichtung (15) verbun-
den ist, wobei die Ventilvorrichtung (15) ferner dazu dient, diese alleinige Reini-
gungsleitung (16) mit der elektrostati-
schen Beschichtungsmaschine (1) im
Reinigungsbetrieb zu verbinden,
- einer Reinigungsfüssigkeitsversorgungs-
leitung (18),
- einer Abwasserleitung (13) und
- dazugehörigen lösbaren Verbindungsmit-
teln (19, 28, 34; 17, 27, 32), die zur
lösbaren Verbindung der alleinigen Reini-
gungsleitung (16) mit der Reinigungsver-
orgungsleitung (18), zur Verbindung der
Entwässerungsleitung (14) mit der Ab-
wasserleitung (13) im Reinigungsbetrieb
und zur Unterbrechung jeder der Leitun-
gen (13, 14, 16, 18) im Färbebetrieb die-
nen.

Revendications

1. Appareil à revêtement électrostatique destiné à
revêtir une suite d'articles, chacun à l'aide
d'une couleur choisie de peinture électro-
conductrice, comportant une machine (1) à
revêtement électrostatique alimentée en haute
tension, une tuyauterie (10) d'alimentation de
peinture destinée à fournir une peinture électro-
conductrice, une pompe à piston (3) agen-
cée entre ladite machine (1) à revêtement
electrostatique et ladite tuyauterie (10) d'al-
imentation de peinture, ladite pompe à piston
(3) ayant un orifice d'entrée (4) et un orifice de
sortie (5) et étant adapté de sorte que la
peinture électro-conductrice introduite à partir
de l'orifice d'entrée (4) est délivrée à une
vitesse d'écoulement prédéterminée à partir
de l'orifice de sortie (5) et envoyée selon une
quantité prédéterminée à la machine (1) à re-
vêtement électrostatique, et des moyens (11,
22, 26) reliant de manière séparable ledit orific-
ce d'entrée (4) de ladite pompe à piston (3) à
ladite tuyauterie (10) d'alimentation de peintu-
re, caractérisé en ce qu'il comporte
un dispositif (15) formant vanne interposée
entre ledit orifice de sortie (5) de ladite pompe
à piston (3) et ladite machine (1) à revêtement
electrostatique,
une tuyauterie d'écoulement (14) reliée au-
dit dispositif (15) formant vanne pour délivrer la
peinture résiduelle restant dans ladite pompe à
piston (3), ledit dispositif (15) formant vanne
pouvant être commuté entre un mode de pein-
ture dans lequel ledit dispositif (15) formant
vanne relie ladite pompe à piston (3) à ladite
machine (1) à revêtement électrostatique et un
mode de nettoyage dans lequel ledit dispositif
(15) formant vanne relie ladite pompe à piston
(3) à ladite tuyauterie d'écoulement,
une vanne (24) de changement de couleur
interposée dans ladite tuyauterie (10) d'alimen-
tation de peinture en amont desdits moyens
(11, 22, 26) de connexion séparable,
une alimentation pour au moins un fluide
de nettoyage sous pression envoyé vers ladite
vanne (24) de changement de couleur,
une tuyauterie (16) de nettoyage exclusi-
vement, reliée audit dispositif (15) formant van-
ne, ledit dispositif (15) formant vanne pouvant
en outre être actionné pour relier ladite tuyau-
terie (16) de nettoyage exclusivement à ladite
machine (1) à revêtement électrostatique dans
le mode de nettoyage,
une tuyauterie (18) d'alimentation de liqui-
de de nettoyage,
une tuyauterie (13) de rejet liquide et
des moyens respectifs de connexion sépa-
rede (19, 28, 34; 17, 27, 32) agencés pour
relier de manière séparable ladite tuyauterie de
nettoyage exclusivement (16) à ladite tuyauterie
(18) d'alimentation de liquide de nettoyage et
ladite tuyauterie d'écoulement (14) à ladite
tuyauterie (13) de rejet liquide dans le mode
de nettoyage et pour séparer chacune des
tuyauteries (13, 14, 16, 18) dans le mode de
peinture.