EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 09.03.94 Bulletin 94/10

Application number: 90097377.7

Date of filing: 17.05.90

International application number:
PCT/IT90/00053

International publication number:
WO 90/14742 29.11.90 Gazette 90/27

INDUCTION FURNACE FOR HEATING AND TEMPERATURE HOMOGENIZATION IN HOT-ROLLING OF THIN STEEL STRIPS.

Priority: 17.05.89 IT 2053489

Date of publication of application: 05.06.91 Bulletin 91/23

Publication of the grant of the patent: 09.03.94 Bulletin 94/10

Designated Contracting States:
AT BE CH DE DK ES FR GB LI LU NL SE

References cited:
DE-A- 2 728 296
GB-A- 593 195

Proprietor: ARVEDI, Giovanni
Via Mercatello, 26
I-26100 Cremona (IT)

Inventor: ARVEDI, Giovanni
Via Mercatello, 26
I-26100 Cremona (IT)
Inventor: GOSIO, Giovanni
Via F. Cavallotti, 15
I-26100 Cremona (IT)

Representative: Adorno, Silvano et al
C/o SOCIETA' ITALIANA BREVETTI S.p.A. Via Carducci, 8
I-20123 Milano (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
The present invention relates to an induction furnace for heating and temperature homogenization in hot-rolling of thin steel strips produced by continuous casting and already subjected to a preliminary rolling step. It is generally known to use M.F. induction furnaces in steel industry. These furnaces are used, although not widely, as an alternative to the gas furnaces for heating of the slabs having a thickness of more than about 100 mm, whereas the use with strips having a thickness of less than about 30 mm is limited to a thermal treatment of the edges in order to oppose the natural cooling which, being greater than in the central zones, causes such a temperature decrease as to produce possible cracks at the strip edges. However this induction treatment of the edges is accomplished by means of C-shaped inductors which enclose, like sliding shoes, only the fringe areas of the strip during the forward movement and certainly cannot be considered true and actual induction furnaces.

On the contrary the induction furnaces for slabs comprise a row of inducing coils having a substantially toroidal shape, within which the slab is caused to move forward in sequence, between one coil and the other there being provided driven and/or idle rollers for feeding said slab. These coils have a size that in the direction of movement are in the order of about 900 mm.

On the other hand plants are provided at present for the continuous production of steel strip by the continuous casting method in order to have as final product the so-called "coil" or steel plates cut at prefixed lengths, wherein it is required that strips in an intermediate step of hot-rolling are heated with contemporaneous temperature homogenization in induction furnaces for reaching the required temperature in the final steps of rolling. In this respect reference should be made to WO 89/11363.

In this respect the adoption of know induction furnaces, already used for the slabs, cannot however give the expected results due to the fact that inconveniences would occur, being caused e.g. to the strip stumbling and possible hitting against the coils owing to its lower rigidity with respect to the slabs having a greater thickness. Furthermore the strip requires for temperature homogenization that in certain zones, possibly not always the same but such as to be localized at each time, the heating has to be stronger with a greater concentration of flux lines. As a matter of fact this is not required by the slabs, since the temperature is more homogeneous due to the greater thickness.

DE-A-2728296 discloses an induction heating device for a continuously fed forward strip-shaped material, clearly of aluminium, passing between pairs of parallel induction coils with the magnetic flux crossing the material itself in a perpendicular direction to the longitudinal forward direction.

Therefore it is an object of the present invention to provide an induction furnace for steel strips from continuous casting having a thickness of less than 30 mm, as they have been already partially hot rolled so as to heat homogeneously the strip up to the required temperature for the subsequent steps of rolling completion without facing the above-mentioned drawbacks.

The induction furnace according to the invention comprises an array of coils, each of which is embedded in a refractory material at the inside of an inductor unit, and is characterized in that each coil defines a space through which the strip can pass being supported and caused to move forward by pairs of rollers between each coil and the subsequent one, the size of each coil in the forward direction of the strip being less than 500 mm, there being also provided flux concentrating devices which are distributed in pairs on each inductor, at least at an upper or lower side with respect to the plane defined by the strip itself.

According to a preferred embodiment of the invention the flux concentrators are mounted movable in a transverse direction to the strip and preferably also perpendicularly to the strip itself for a better distribution of power in the areas where a stronger heating is required.

Movable flux concentrators are already known from DE-A-2728296, but in that case the induction field was crossing at right angles the material to be heated, in a direction perpendicular to the longitudinal forward direction, not parallel thereto as it happens according to the present invention.

These and additional objects, advantages and characteristics of the induction furnace according to the invention will be clear to the persons skilled in the art from the following detailed description of a preferred embodiment thereof, given by way of a non-limiting example, with reference to the annexed drawings in which:

FIGURE 1 shows a partial, diagrammatic side view of a heating element of the furnace according to the present invention; and

FIGURE 2 shows a cross-section view taken along line II-II of Fig. 1.

With reference to the drawings, Fig. 1 schematically represents a portion of the furnace according to the invention along the forward direction of strip 1, as regards only one heating element of the furnace itself, comprised of a coil 2 having a substantially rectangular cross-section with rounded edges (better seen in Fig. 2) which is embedded within an inductor 3, as it is surrounded by refractory material. As better shown in Fig. 1 the strip 1 passes through the space defined by each coil 2 (the height of which will be not less than the max-
imum strip thickness which may be expected, as it is driven by rollers 10 positioned between each heating element or coil 2 and the subsequent one. The rollers 10 can be all motorized or some of them may be idle.

Through the inductor unit 3 embedding the coil 2, this is fed on one side by means of suitable conductors 6 usually called "bus bars" by a source of given power and frequency, in particular one or more converters (not shown). Advantageously the frequency will be fixed once and for all, and possibly the feeding power will be varied according to the energy required for heating, as a function both of the strip temperature upstream of the furnace and of its thickness with a finer regulation being responsive to the temperature at the outlet of the coil. At the opposite side of the feeding connector 6 there may be provided manifolds for the delivery and discharge of the cooling water generically designated 7 in Fig. 2 and connected to the inductor unit 3.

According to the present invention there are also provided flux concentrators 4 formed of packs of magnetic sheet iron for directing the primary electromagnetic field flux so as to concentrate it in a direction substantially parallel to the forward movement of the strip. In the area of strip 1 where the concentrated flux closes its circuit an induced current is produced, having a higher intensity and thereby greater heating. The flux concentrators have been represented as forming two pairs, an upper one and a lower one. The concentrators 4 pertaining to the upper pair correspond to the concentrators 4' of the lower pair, whereby the concentrators are coupled two by two on either side of the strip 1, as they are co-axial with an axis passing throughout strip 1 and coil 2. Flux concentrators 4 and 4' will be normally positioned in the proximity of the edges of strip 1, just where a greater heating power is required.

However preferably, as shown in Fig. 2, the flux concentrating devices are designed to be movable firstly in the transverse direction both to follow the dimensional variations of the strip in width and to be positioned also in correspondence of innerer zones which may be at a lower temperature (cold spots), and possibly also in a perpendicular direction to the plane defined by strip 1 for a better positioning in the height direction in function not only of the strip thickness but also of the power to be concentrated.

As shown in the drawings, in particular in Fig. 2, the two pairs of flux concentrators 4, 4' are mounted, with each element opposite to the associated one of the other pair, to an inner nut thread on screws 9 operable from the outside by means of control handwheels 5, 5' respectively. The screws 9, 9' will have one half of their length with a thread to a direction and the other half with a thread oppositely directed, so that the movement of the two concentrators of each pair will be symmetric and self-centering at each operation of the associate handwheel. Additionally the screws 9 and 9' will be preferably mounted at their central portion to a lifting and lowering device which is also controllable by means of outer handwheels 5a, 5a'. Said handwheels may be for example fixed respectively to screws 11, 11' being perpendicular to the screws 9, 9', each of them passing through a hole at right angle to the longitudinal axis of the latter.

Of course a completely automatic control of the concentrators 4, 4' positioning may be provided, both in a transverse and in height direction. Instead of the operating handwheels, step by step motors will be used, being interlocked with a regulation and control unit adapted to process directly in real time the strip temperature, speed and thickness signals as received each time at the furnace inlet. In this way at each moment an optimal adjustment of the flux concentrators can be obtained for a better efficiency of the induction furnace according to the present invention.

EXAMPLE

For experimental purposes an induction furnace plant according to the invention was installed, having suitable longitudinal size of the coils and being provided with pairs of flux concentrators in association with each inductor. The main data of installed power number of inductors, frequency and size of the coil port in height, as well as of the results obtained with reference to the consumptions according to the strip cross-section and its feedings speed, efficiency etc. are listed in the following table also reporting the corresponding data for an induction furnace according to the prior art, namely of the type used for heating slabs, in which only the size of coils in the forward direction of the strip have been reduced without however the presence of the flux concentrators. As regards the consumptions it should be noted that they have been detected at the highest speed of the strip, for temperature increases (ΔT) of about 150°C and, at the lowest speed for ΔT of about 300°C.
TABLE

<table>
<thead>
<tr>
<th></th>
<th>With concentrators according to the invention</th>
<th>Without concentrators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed power (MW)</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Frequency (kHz)</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Number of inductors</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>Inductor port (height in mm)</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>Consumptions (kWh / t (\tau-\Delta T=150°C-300°C))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 x 1050 mm (v=0.19 \text{ m/sec})</td>
<td>127</td>
<td>168</td>
</tr>
<tr>
<td>15 x 1050 mm (v=0.237 \text{ m/sec})</td>
<td>79</td>
<td>127</td>
</tr>
<tr>
<td>25 x 1330 mm (v=0.086 \text{ m/sec})</td>
<td>100</td>
<td>169</td>
</tr>
<tr>
<td>25 x 1330 mm (v=0.143 \text{ m/sec})</td>
<td>42</td>
<td>96</td>
</tr>
<tr>
<td>20 x 1330 mm (v=0.11 \text{ m/sec})</td>
<td>110</td>
<td>177</td>
</tr>
<tr>
<td>20 x 1330 mm (v=0.178 \text{ m/sec})</td>
<td>50</td>
<td>106</td>
</tr>
<tr>
<td>Efficiency of inductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 x 1330</td>
<td>80%</td>
<td>79%</td>
</tr>
<tr>
<td>15 x 1330</td>
<td>79%</td>
<td>67%</td>
</tr>
</tbody>
</table>

As it appears from the data given with the furnace plant according to the invention, not only a reduced installed power can be foreseen, but lower consumptions of energy are obtained with the same cross-section and speed of the strip, as well as better efficiencies of the inductors.

Possible additions or modifications can be made by those skilled in the art to the above described and illustrated embodiment of the induction furnace according to the present invention without departing from the scope of the invention itself. On the other hand, no limitation will be expected as to the number of coils or heating elements in succession to each other which form the furnace.

Claims

1. An induction furnace for heating steel strips (1) having a thickness lower than 30 mm and for rendering homogeneous the temperature up to a value required for the subsequent steps of hot rolling, comprising an array of coils (2) each of which is embedded in a refractory material at the inside of an inductor unit (3), characterized in that each coil (2) defines a space through which the strip (1) can pass being supported and caused to move forward by pairs of rollers (10) between each coil (2) and the subsequent one, each coil (2) in the strip forward direction having a size of less than 500 mm, there being also provided flux concentrating devices (4, 4') distributed in pairs on each inductor unit (3) at least at an upper or lower side, with respect to the plane defined by the strip (1).

2. A furnace according to claim 1, characterized in that each of said flux concentrators (4, 4') is mounted substantially co-axial with a corresponding concentrator of another pair at the opposite side of said strip (1), said flux concentrator (4, 4') being formed of packs of magnetic sheet iron.

3. A furnace according to claim 2, characterized in that said flux concentrators (4, 4') are all positioned stationary in the proximity of the side edges of strip (1).
4. A furnace according to claim 1 or 2, characterized in that said flux concentrators (4, 4°) are movable in the transverse direction to the strip (1) forward direction.

5. A furnace according to claim 4, characterized in that said flux concentrators (4, 4°) are movable also in the direction perpendicular to the plane of strip (1).

6. A furnace according to claim 4 or 5, characterized by comprising screw devices (9, 9°; 11, 11°) for the adjustment of the said flux concentrators, there being provided outer control handwheels (5, 5°; 5a, 5a°).

7. A furnace according to claims 4 or 5, characterized by comprising driving means for the automatic movement of said flux concentrators 4, 4° interlocked with a means for processing data of strip (1) speed, temperature and thickness as sensed by detecting means upstream of the furnace, as well as of the temperature at the outlet.

Patentansprüche

1. Induktionsofen zum Erwärmen von Stahlbändern (1) mit einer Dicke kleiner als 30 mm und zum Liefern einer gleichmäßigen Temperatur mit einem Wert, wie er für nachfolgende Schritte des Heißwalzens benötigt wird, die eine Anordnung von Spulen (2) aufweist, von denen jede in einem an der Innenseite einer Induktions-Einheit (3) befindlichen feuerfesten Material eingebettet ist, dadurch gekennzeichnet, daß jede Spule (2) einen Raum vorgibt, durch welchen das Band (1) verläuft, das von Walzenpaaren (10) zwischen jeweils zwei aufeinanderfolgenden Spulen (2) gehalten ist und Vorschub erfährt, daß jede Spule (2) in der Band-Vorschubrichtung eine Größe von weniger als 500 mm hat, und daß weiterhin Fluß-Konzentrationseinrichtungen (4, 4°) vorgesehen sind, die paarweise in jeder Induktions-Einheit (3) mindestens an der Ober- oder an der Unterseite einer durch das Band (1) vorgegebenen Ebene verteilt angeordnet sind.

2. Induktionsofen nach Anspruch 1, dadurch gekennzeichnet, daß jeder der Fluß-Konzentratoren (4, 4°) im wesentlichen koaxial zu einem entsprechenden Konzentratoren eines anderen Paare auf der gegenüberliegenden Seite des Bandes (1) angeordnet ist, und daß jeder Fluß-Konzentrator (4, 4°) aus einem Paket von magnetischen Eisenblechen besteht.

3. Induktionsofen nach Anspruch 2, dadurch gekennzeichnet, daß die Fluß-Konzentratoren (4, 4°) sämtlich stationär in der Umgebung der Seitenkanten des Bandes (1) angeordnet sind.

4. Induktionsofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fluß-Konzentratoren (4, 4°) in einer Richtung quer zur Vorschubrichtung des Bandes (1) beweglich angeordnet sind.

5. Induktionsofen nach Anspruch 4, dadurch gekennzeichnet, daß die Fluß-Konzentratoren (4, 4°) zusätzlich in einer Richtung senkrecht zur Ebene des Bandes (1) bewegbar sind.

6. Induktionsofen nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß Spindeleneinrichtungen (9, 9°; 11, 11°) mit äußeren Handrädern (5, 5°; 5a, 5a°) zum Verstellen der Fluß-Konzentratoren (4, 4°) vorgesehen sind.

7. Induktionsofen nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß Antriebsmittel für die selbsttätige Bewegung der Fluß-Konzentratoren (4, 4°) vorgesehen sind, die mit Prozessoren verknüpft sind, in denen Daten der Geschwindigkeit, Temperatur und Dicke des Bandes, wie sie von Fühlnern stromauf des Ofens erfaßt werden, sowie Daten der Bandtemperatur am Ofenausgang verarbeitet werden.

Revendications

1. Four à induction pour chauffer des feuillards d’acier (1) ayant une épaisseur inférieure à 30 mm, et pour rendre homogène la température jusqu’à une valeur requise pour les étapes suivantes du laminage à chaud, comprenant un ensemble d’enroulements (2) dont chacun est enrobé d’un matériau réfractaire à l’intérieur d’un inducteur (3), caractérisé en ce que chaque enroulement (2) définit un espace dans lequel peut passer le feuillard (1) en étant soutenu et amené à se déplacer vers l’avant par des paires de rouleaux (10) entre chaque enroulement (2) et le suivant, chaque enroulement (2) dans le sens d’avance du feuillard.
ayant une taille inférieure à 500 mm, tandis qu’il est également prévu des dispositifs de concentration de flux (4, 4’), répartis par paires sur chaque inducteur (3), au moins sur le côté supérieur et sur le côté inférieur, par rapport au plan défini par le feuillard (1).

2. Four selon la revendication 1, caractérisé en ce que chacun desdits concentrateurs de flux (4, 4’) est monté sensiblement coaxial par rapport à un concentrateur correspondant d’une autre paire du côté opposé dudit feuillard (1), lesdits concentrateurs (4, 4’) étant constitués par des empilages de feuilles de fer magnétique.

3. Four selon la revendication 2, caractérisé en ce que lesdits concentrateurs de flux (4, 4’) sont tous placés fixes à proximité des bords latéraux du feuillard (1).

4. Four selon la revendication 1 ou 2, caractérisé en ce que lesdits concentrateurs de flux (4, 4’) sont montés mobiles transversalement par rapport à la direction de déplacement en avant du feuillard (1).

5. Four selon la revendication 4, caractérisé en ce que lesdits concentrateurs de flux (4, 4’) sont également mobiles perpendiculairement par rapport au plan du feuillard (1).

6. Four selon la revendication 4 ou 5, caractérisé en ce qu’il comprend des dispositifs à vis (9, 9’ ; 11, 11’) pour le réglage desdits concentrateurs de flux, lesdits dispositifs à vis étant pourvus de volants extérieurs de commande (5, 5’ ; 5a, 5a’).

7. Four selon les revendications 4 ou 5, caractérisé en ce qu’il comprend des moyens de commande pour le déplacement automatique desdits concentrateurs de flux (4, 4’), reliés à un moyen pour le traitement de données concernant la vitesse du feuillard (1), sa température et son épaisseur, telles que mesurées par un détecteur en amont du four, ainsi que des données concernant la température à la sortie.