EUROPÄISCHE PATENTSCHRIFT

Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
17.01.1996 Patentblatt 1996/03

Anmeldenummer: 90121348.8
Anmeldetag: 08.11.1990

Cumarinderivate, Verfahren zu ihrer Herstellung, ihre Verwendung und Thiazolyl-essigsäuredervate als Zwischenprodukte

Cumarin derivatives, process for their preparation, their use and thiazolylacetic acid derivatives as intermediate

Dérivés de coumarine, leur procédé de préparation, leur utilisation et dérivés d’acide thiazolylacétique comme intermédiaires

Benannte Vertragsstaaten:
DE FR GB

Priorität: 21.11.1989 DE 3938598
23.08.1990 DE 4026613

Veröffentlichungstag der Anmeldung:
29.05.1991 Patentblatt 1991/22

Patentinhaber: BAYER AG
D-51368 Leverkusen (DE)

Erfinder:
Kuckert, Eberhard, Dr.
West Haven, CT 06516 (US)

Beck, Gunther, Dr.
W-5090 Leverkusen 1 (DE)

Seng, Florin, Dr.
W-5060 Bergisch Gladbach 2 (DE)

Löbberding, Antonius, Dr.
W-5600 Wuppertal 1 (DE)

CHEMICAL ABSTRACTS, vol. 77, no. 6, 7.
August 1972, Seite 107, Nr. 36362y, Columbus,
Ohio, US; H. UMEMOTO et al.: "Fluorescent
whitening agents for synthetic fibers. XIX.
Fluorescence of 3-[(4'-aminophenyl)-7-aminocoumarins",&
NIPPON KAKAKU KAISHI, 1972, (3), 644-9

Chemie Zwei, 1976, 30(2), Seiten 186-187

Journal für Praktische Chemie,
1982,324(1),Seiten 21- 28

Die Erfindung betrifft Cumarinderivate der Formel (I),

in der

R\(^1\) Wasserstoff oder Cyano bedeutet.

R\(^2\) für Phenyl oder für in 2-, 4- oder 5-Stellung gebundenes Thiazolyl steht, wobei Phenyl durch Cyano, Amino, -NH-C\(_7\)-C\(_4\)-Alkyl, -C\(_7\)-C\(_4\)-Alkyl-NH\(_2\), -C\(_7\)-C\(_4\)-Alkyl-NH-C\(_7\)-C\(_4\)-Alkyl, Carboxyl, C\(_7\)-C\(_4\)-Alkoxy-carbonyl, C\(_7\)-C\(_4\)-Alkyl-carboxyloxy, Hydroxy, C\(_7\)-C\(_4\)-Alkylamino-carbonyl oder C\(_7\)-C\(_4\)-Alkoxy-carbonyl-amino substituiert ist und zusätzlich durch C\(_7\)-C\(_4\)-Alkyl, Fluor, Chlor oder Brom substituiert sein kann, und wobei Thiazolyl ein- oder zweifach durch Chlor, Cyano, Carboxyl oder C\(_7\)-C\(_4\)-Alkoxy-carbonyl substituiert ist, wobei bei zweifacher Substitution die beiden Substituenten verschieden sein können und wobei die 4- und die 5-Stellung gemeinsam einen ankondensierten Benzolring tragen können, der durch Carboxyl, Amino oder Hydroxy substituiert sein kann.

R\(^3\) Wasserstoff, C\(_7\)-C\(_4\)-Alkyl oder C\(_7\)-C\(_4\)-Alkoxy-carbonyl-C\(_7\)-C\(_4\)-alkyl bedeutet und

R\(^4\) für C\(_7\)-C\(_4\)-Alkyl oder Phenylsulfonyle steht, wobei C\(_7\)-C\(_4\)-Alkyl durch Hydroxy, Amino, Carboxyl oder C\(_7\)-C\(_4\)-Alkoxy-carbonyl substituiert sein kann und Phenyl ein- oder zweifach durch Chlor, Brom oder C\(_7\)-C\(_4\)-Alkyl substituiert sein kann,

wobei weiterhin R\(^3\) und R\(^4\) gemeinsam mit dem N-Atom, das sie substituieren, einen Morpholinring oder einen Piperazinring, den einen oder zwei Substituenten aus der Gruppe Methyl, Ethyl und Phenyl tragen kann, bedeuten können und

wobei weiterhin einer der Reste R\(^2\), R\(^3\) und R\(^4\) eine primäre oder sekundäre Aminogruppe, die Hydroxygruppe, die Carboxylgruppe, Cyano, Acylamino Phenylsulfonylamino oder die C\(_7\)-C\(_4\)-Alkoxy-carbonylgruppe trägt, wobei Cyano oder die C\(_7\)-C\(_4\)-Alkoxy-carbonylgruppe durch Verseifung in die Carboxylgruppe, ebenfalls durch Verseifung die Acylamino- oder Phenylsulfonylaminogruppe in eine Aminogruppe und die Cyanogruppe durch Hydrierung in eine primäre Aminogruppe überführt werden kann.

Die Erfindung betrifft bevorzugt Cumarinderivate der Formel (IX),

in der

R\(^1\) Wasserstoff oder Cyano bedeutet,

R\(^{12}\) für Phenyl oder für in 2-, 4- oder 5-Stellung gebundenes Thiazolyl steht, wobei Phenyl durch Carboxyl, C\(_7\)-C\(_4\)-Alkyl-carboxyloxy, Amino, -NH-C\(_7\)-C\(_4\)-Alkyl, -C\(_7\)-C\(_4\)-Alkyl-NH\(_2\), C\(_7\)-C\(_4\)-Alkyl, Cyano, Fluor, Chlor oder Brom substituiert sein kann und wobei Thiazolyl durch Chlor, Cyano oder Carboxyl oder einen in 4- und 5-Stellung ankondensierten Benzolring, der seinerseits Carboxyl oder Amino tragen kann, substituiert sein kann.
R\(^{13}\) Wasserstoff, Methyl oder Ethyl bedeutet und

für -C\(_1\)C\(_2\)-Alkyl-OH, -C\(_1\)C\(_4\)-Alkyl-NH\(_2\) oder C\(_1\)-C\(_4\)-Alkyl-COOH steht,

wobei weiterhin R\(^{13}\) und R\(^{14}\) gemeinsam mit dem N-Atom, das sie substituieren, einen Morphinring oder einen Pipedrazinring, der durch Methyl, Phenyl oder Methyl und Phenyl substituiert sein kann, bedeuten können.

Die Erfindung betrifft besonders bevorzugt Cumarinderivate der Formel

![Diagram](XI)

in der

R\(^{1}\), R\(^{13}\) und R\(^{14}\) den oben genannten Bedeutungsumfang haben und

für Phenyl oder für in 2-Stellung gebundenes Thiazolyl steht, wobei Phenyl durch para-Carboxyl, para-Amino, para-NH-C\(_1\)-C\(_2\)-Alkyl, para-CH\(_2\)-NH\(_2\) Cyan, Methyl oder Ethyl substituiert sein kann und wobei Thiazolyl durch Chlor, Cyano oder Carboxyl oder einen in 4- und 5-Stellung an kondensierten Benzolring, der seinerseits Carboxyl oder Amino tragen kann, substituiert sein kann.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung von Cumarinderivaten der Formel

![Diagram](I)

in der

R\(^{1}\) Wasserstoff oder Cyano bedeutet.

R\(^{2}\) für Phenyl oder für in 2-, 4- oder 5-Stellung gebundenes Thiazolyl steht, wobei Phenyl durch Cyano, Amino, -NH-C\(_1\)-C\(_4\)-Alkyl, -C\(_1\)-C\(_4\)-Alkyl-NH\(_2\), -C\(_1\)-C\(_4\)-Alkyl-NH-C\(_1\)-C\(_2\)-Alkyl, Carboxyl, C\(_1\)-C\(_4\)-Alkyl-carboxyloxy, Hydroxy, C\(_1\)-C\(_4\)-Alkylamino-carbonyl oder C\(_1\)-C\(_4\)-Alkylcarbonyl-amin substituiert ist und zusätzlich durch C\(_1\)-C\(_4\)-Alkyl, Fluor, Chlor oder Brom substituiert sein kann, und wobei Thiazolyl ein- oder zweifach durch Chlor, Cyano, Carboxyl oder C\(_1\)-C\(_2\)-Alkoxycarbonyl substituiert ist, wobei in zweifacher Substitution die beiden Substituenten verschieden sein können und wobei die 4- und die 5-Stellung gemeinsam einen an kondensierten Benzolring tragen können, der durch Carboxyl, Amino oder Hydroxy substituiert sein kann,

R\(^{3}\) Wasserstoff, C\(_1\)-C\(_4\)-Alkyl oder C\(_1\)-C\(_4\)-Alkoxycarbonyl-C\(_1\)-C\(_4\)-alkyl bedeutet und

R\(^{4}\) für C\(_1\)-C\(_2\)-Alkyl oder Phenylsulfonyl steht, wobei C\(_1\)-C\(_4\)-Alkyl durch Hydroxy, Amino, Carboxyl oder C\(_1\)-C\(_2\)-Alkoxy-carbonyl substituiert sein kann und Phenyl ein- oder zweifach durch Chlor, Brom oder C\(_1\)-C\(_2\)-Alkyl substituiert sein kann, wobei weiterhin R\(^{3}\) und R\(^{4}\) gemeinsam mit dem N-Atom, das sie substituieren, einen Morphinring oder einen Pipedrazinring, der einen oder zwei Substituenten aus der Gruppe Methyl, Ethyl und Phenyl tragen kann, bedeuten können und

wobei weiterhin einer der Reste R\(^{2}\), R\(^{3}\) und R\(^{4}\) eine primäre oder sekundäre Aminogruppe, die Hydroxylgruppe, die Carboxylgruppe oder die C\(_1\)-C\(_2\)-Alkoxy-carbonylgruppe trägt oder durch Verseifung von Cyano oder C\(_1\)-C\(_4\)-Alkoxy-carbonyl in die Carboxylgruppe, durch Verseifung von Acylamino oder Phenylsulfonyleamino in eine Aminogruppe oder
durch Hydrierung von Cyano in eine primäre Aminogruppe übergeführt werden kann,
das dadurch gekennzeichnet ist, daß man

a) ein m-Aminophenol und ein Formylessigsäurederivat der Formeln

\[
\text{(II) und (III),}
\]

worin

\(R^2, R^3\) und \(R^4\) den obigen Bedeutungsumfang haben und

\(R^5\)

Cyano, C\(_1\)-C\(_4\)-Alkoxycarbonyl oder Carboxyl bedeutet,

miteinander umgesetzt oder

b) einen Salicyldehyd und ein Essigsäurederivat der Formeln

\[
\text{(IV) und (V),}
\]

worin

\(R^2, R^3, R^4\) und \(R^5\) den obigen Bedeutungsumfang haben

miteinander umgesetzt,

wobei im Falle von \(R^5 = \text{CN}\) bei a) und b) zunächst ein Imino-Zwischenprodukt der Formel

\[
\text{(VI),}
\]

worin \(R^2, R^3\) und \(R^4\) den obigen Bedeutungsumfang haben,

entsteht und dieses Imino-Zwischenprodukt unter Abspaltung der Iminogruppe hydrolysiert wird, oder

c) für den Fall, daß \(R^1\) Cyano bedeutet, das Imino-Zwischenprodukt gemäß b) oder das Cumarinderivat der Formel

\(\text{(I)}\) mit Cyanidionen zum Imino-Cyano-Zwischenprodukt oder zum Cyano-Zwischenprodukt der Formeln

\[
\text{(VII) bzw. (VIII),}
\]

worin \(R^2, R^3\) und \(R^4\) den obigen Bedeutungsumfang haben,

umgesetzt und dies zum Cumarinderivat oxidiert und gegebenenfalls zusätzlich hydrolysiert.
Ein Teil der Verbindungen der Formeln (V), nämlich die Thiazolyl-essigsäurederivate der Formel

\[
\begin{array}{c}
\text{R}^6 \text{N} \\
\text{S} \\
\text{CH}_2 - \text{R}^5
\end{array}
\]

in der
\[
\begin{array}{c}
\text{R}^6 \quad \text{Chlor oder Cyanog und} \\
\text{R}^7 \quad \text{Chlor bedeuten und} \\
\text{R}^5 \quad \text{den oben genannten Bedeutungsumfang hat, sind neu.}
\end{array}
\]

Die Erfindung betrifft demnach auch die Zwischenprodukte der Formel (X).
Die Herstellung von Verbindungen der Formel (X) ist beispielhaft in den Ausführungsbeispielen beschrieben.
Die erfindungsgemäßen Cumarinderivate, bei denen einer der Reste \(\text{R}^2, \text{R}^3 \) und \(\text{R}^4 \) eine primäre oder sekundäre Aminogruppe, die Hydroxylgruppe, die Carboxylgruppe oder die \(\text{C}_1-\text{C}_4-\text{Alkoxycarboxylgruppe} \) trägt, sind über diese genannten Gruppen bindungsfähig an biologisch aktive Verbindungen und daher geeignet, biologisch aktive Verbindungen anzufärben. Solche angefärbten biologisch aktiven Verbindungen können beispielsweise in Immuno-assay-Metho-
den zur Detektion ihrer komplementären Verbindungen eingesetzt werden. Hierbei wird die Fluoreszenzeigenschaft
der zum Anfärben benutzten erfindungsgemäßen Cumarinderivate ausgenutzt. Die biologisch aktiven Verbindungen
und ihre Komplementärverbindungen sind beispielsweise das Paar Antigen/Antikörper oder zwei zueinander komple-
mentäre DNA-Stränge. Zur Vermeidung unübersichtlicher Mehrfachreaktionen zwischen den Cumarinen und biologisch
aktiven Verbindungen sind die erfindungsgemäßen Cumarine darauf beschränkt, daß nur einer der Reste \(\text{R}^2, \text{R}^3 \) und
\(\text{R}^4 \) eine der genannten bindungsfähigen Gruppen trägt.

Die Erfindung betrifft daher auch die Verwendung der erfindungsgemäßen Cumarinderivate der Formel (I) zum
Anfärben von biologisch aktiven Verbindungen.
Cumarinderivate, die in 3-Position durch Phenyl oder Thiazolyl substituiert sind, in 4-Position durch Cyanog substi-
tuiert sein können, aber in 7-Position anders substituiert sind als die erfindungsgemäßen Cumarinderivate sind aus EP
101 897 bekannt. Diese bekannten Cumarinderivate weisen nicht die zum Anfärben biologisch aktiver Verbindungen
erforderlichen Gruppen auf; ihre Einsatzgebiete sind das Färben und Bedrucken von synthetischen und halbsyntheti-
ischen Materialien sowie die Verwendung als Energiewandler in Lichtsammelsystemen.

\(\text{C}_1-\text{C}_2-\text{Alkyl} \) bzw. \(\text{C}_1-\text{C}_2-\text{Alkoxy} \) können geradkettig oder verzweigt sein und sind beispielsweise Methyl, Ethyl, Prop-
pyl, Isopropyl, Butyl, Isobutyl, Methoxy, Ethoxy, Propoxy, Isoproxy, Butoxy, Isobutoxy. In bevorzugter Weise seien
Methyl, Ethyl, Methoxy und Ethoxy genannt. Bevorzugtes \(\text{C}_1-\text{C}_4-\text{Alkoxy-carbonyl} \) ist Methoxy-carbonyl und Ethoxy-car-

Die Herstellung der erfindungsgemäßen Cumarinderivate gemäß Herstellungsvariante b) im Sinne einer
Knoeve-nagel-Kondensation sei beispielsweise durch das folgende Formelschema exemplifiziert:
Hierbei wird ein Salicylaldehyd, der entsprechend Formel (IV) in para-Stellung zur Aldehydgruppe substituiert ist, mit einem Essigsäurederivat, das entsprechend Formel (V) substituiert ist, unter Wasseraustritt kondensiert, wobei für den Fall, daß es sich um das Essigsäurederivat handelt zunächst das Imino-Zwischenprodukt, wie im obigen Formelschema dargestellt, entsteht, welches durch Behandlung mit verdünnten Säuren, beispielsweise mit verdünnter Salzsäure, in das zugehörige Cumarinderivat übergeführt werden kann. Wenn das angestrebte Cumarinderivat Estergruppen enthält, wird eine solche Behandlung mit verdünnten Säuren in Gegenwart von größeren Mengen an Alkohol (Methanol, Ethanol, Propanol) bei Temperaturen im Bereich von 20-45°C durchgeführt, wobei die Umwandlung des Imino-Zwischenprodukts unter Erhaltung der Estergruppen erreicht wird. Sofern aus ursprünglich im Cumarinderivat vorhandenen Estergruppen die freien Carboxylgruppen gebildet werden sollen, kann zur Umwandlung des imino-Zwischenprodukts mit höher konzentrierten wässrigen Säuren bei höheren Temperaturen, etwa im Bereich von 70-100°C, gearbeitet werden, wobei gleichzeitig eine Verseifung zur Carboxylgruppe stattfindet.

An den Resten R² und R³ kann beispielsweise eine erfindungsgemäß erforderliche funktionelle Gruppe aus dem Bereich der primären und sekundären Aminogruppe der Hydroxylgruppe, der Carboxylgruppe oder der C₁-C₄-Alk-oxy-carboxylgruppe durch weitere Umsetzungen entwickelt werden. Im Beispiel des obigen Formelschemas kann die Phenylsulfonylgruppe als Rest R⁴ durch Verseifung, etwa mit 80-%iger Schwefelsäure, abgespalten werden. Zuvor kann jedoch, ebenfalls im Sinne des obigen Formelschemas, das genannte N-Atom selektiv einfach alkyliert werden, beispielsweise mit Hilfe von Diethoxylat in Gegenwart von schwachen Akalien; wird erst danach die Phenylsulfonylgruppe hydrolytisch abgespalten, bilden R³ und R⁴ gemeinsam mit dem N-Atom, das sie Substituieren, eine sekundäre Aminogruppe. Noch weiterhin kann, wie ebenfalls im Formelschema dargestellt, die innerhalb des Restes R² vorhandene Nitrogruppe zur primären Aminogruppe reduziert werden; hierzu kann beispielsweise Natriumdithionit als Reduktions-
mittl eingesetzt werden.

Die freie primäre Aminogruppen mit Salicylaldehyde und zu Schiff'schen Basen reagieren, ist es erforderlich, solche primären Aminogruppen zu schützen, beispielsweise durch eine Acyclgruppe oder die Phenylsulfonylgruppe. Eine solche Schutzgruppe kann in bereits oben geschilderter Weise durch Hydrolyse wieder abgespalten werden. Im Sinne der obigen Ausführungen kann selbstverständlich eine freie primäre Aminogruppe auch durch Reduktion (Hydrierung) aus einer Nitrogruppe oder einer Cyanogruppe entwickelt werden. Als Reduktionsmittel kommen Natriumdithionit, Zinn(II)-Salze oder katalytisch angeregter Wasserstoff in Frage.

Für den Fall der Einführung und Hydrierung einer Cyanogruppe ergibt sich folgender Reaktionsablauf:

Gemäß einer weiteren Herstellung kann nach a) von einem Aminophenol der Formel (II) und einem Formyllessigsäurederivat der Formel (III) ausgegangen werden. Diese beiden Ausgangsstoffe werden in ähnlicher Weise, wie weiter oben für b) geschildert wurde, unter Wasseraustritt kondensiert. Für den Fall, daß R^5 Methoxycarbonyl oder Ethoxycarbonyl bedeutet, wird zusätzlich Methanol bzw. Ethanol abgespalten. Für den Fall, daß R^6 Cyano bedeutet, entsteht ebenfalls wie bei der Reaktionsfolge nach b) zunächst das Imino-Zwischenprodukt der Formel (VI), welches mit verdünnter Säure zum Cumarinderivat umgewandelt wird.

Die Funktionalitäten, durch die die erfindungsgemäßen Cumarinderivate ausgezeichnet sind, nämlich primäre oder sekundäre Aminogruppen, Hydroxylgruppen, Carboxylgruppen oder C_1-C$_4$-Alkoxykarbonylgruppen bzw. die genannten Gruppen, aus denen solche funktionalen Gruppen entwickelt werden können (Cyanogruppe oder durch Acyl oder Phenylsulfonyle geschützte Aminogruppen) können im Rahmen der geschilderten Herstellungsmöglichkeiten entweder über die zur Herstellung eingesetzten Salicylaldehyde oder die eingesetzten Aminophenole oder über die genannten Essigsäurederivate eingeführt werden. Im ersten Falle handelt es sich um in 7-Position des Cumarinderivats angeordnete funktionelle Gruppen; im letzteren Fall handelt es sich um in 3-Position der Cumarinderivate angebrachte funktionelle Gruppen.

Die Einführung der Cyanogruppe nach c) läßt sich formelmäßig beispielsweise wie folgt darstellen:
Die Umsetzung mit Cyanidionen kann im Falle von Carboxylgruppen enthaltenden Cumarinen in Form von deren Natriumsalz vorgenommen werden, welches beispielsweise in Dimethylformamid ausreichend löslich ist.

Die für die Herstellungsvariante a) erforderlichen Aminophenole können durch Reaktion von Resorcin mit einem primären oder sekundären Amin unter Wasserabspaltung gewonnen werden, wie es beispielhaft durch die folgende Formelgleichung dargestellt wird:

\[
\text{Resorcin} + (\text{H}_5\text{C}_2\text{NH}) \rightarrow \text{Aminophenol} \quad \text{H}_2\text{O}
\]

Solche m-Aminophenole können jedoch auch durch selektive N-Alkylierung von m-Aminophenolen mit Alkylhalogeniden in Anwesenheit eines säurebindenden Mittels, beispielsweise Calciumcarbonat, in grundsätzlich bekannter Weise gewonnen werden, wie es beispielhaft durch folgende Formelgleichung dargestellt wird:

\[
\text{Aminophenol} + \text{Cl-CH}_2\text{H}_4 \rightarrow \text{Aralkylamin} \quad \text{HCl}
\]

Die für die Herstellungsvariante b) erforderlichen Salicylaldehyde können durch Vilemeyer-Reaktion aus den zugrundeliegenden m-Aminophenolen, Phosphoroxichlorid und einem Formamid, beispielsweise Dimethylformamid, gewonnen werden, wie es beispielhaft durch folgende Formelgleichung dargestellt wird:
Beispiele:

Beispiel 1:

10 g (0,032 Mol) 7-Ethylamino-3-(4-nitrophenyl)-cumarin wurden in 70 ml DMF auf 100°C erhitzt, und unter gutem Rühren wurde eine Aufschlammung von 20 g (0,11 Mol) Natriumdithionit in 50 ml Wasser hinzugetropft. Nach 25 min wurde das Lösungsmittel abdestilliert und der Rückstand mit 100 ml Wasser ausgerührt.

Nach Absaugen wurde dieser Rückstand mit 40 ml konzentrierter Salzsäure und 80 ml Ethanol zur Zerstörung entstandener Sulfamidsäuren 2 Stunden unter Rückfluss erhitzt. Es wurde mit Natriumhydrogencarbonat neutralisiert und abgesaugt.

Ausbeute an 7-Ethylamino-3-(4-aminophenyl)-cumarin: 8,1 g (91 %) Schmelzpunkt: 283°C.

Beispiel 2:

In gleicher Weise wie in Beispiel 1 erhielt man 7-Methylamino-3-(4-aminophenyl)-cumarin.

Beispiel 3:

13,6 g (0,07 Mol) 4-Diethylamino-salicylealdehyde wurden mit 10 g (0,07 Mol) α-Cyano-toluolnitril, 5 ml Piperidin und 3 ml Essigsäure in 200 ml Ethanol unter Rückfluss erhitzt. Nach dem Abkühlen wurde abgesaugt und der Rückstand mit 100 ml halbkonz. Salzsäure 1 Stunde zum Rückfluss erhitzt. Nach dem Neutralisieren mit Natronlauge wurde das Produkt mit Wasser gewaschen und abgesaugt.

Ausbeute an 7-Diethylamino-3-(4-cyanophenyl)-cumarin 15,7 g (70 %).

Beispiel 4:

15 g (0,047 Mol) 7-Diethylamino-3-(4-cyanophenyl)-cumarin wurden in 100 ml Ethanol und 30 ml flüssigem Ammoniak bei 100 bar Wasserstoffdruck und 70°C mit Raney-Nickel als Katalysator hydriert. Nach Beendigung der Reaktion wurde das Lösungsmittel im Rotationsverdampfer abdestilliert, der Rückstand mit DMF aufgekocht und filtriert. Nach Abdestillieren des DMF wurde der Rückstand aus Toluol unter Zugabe von Tonsil umgelöst. Bei 0°C fielen 4,9 g 7-Diethylamino-3-(4-methylaminophenyl)-cumarin aus (32 %), Schmelzpunkt: 118°C.

Beispiel 5:

5 g (0,014 Mol) 7-Morpholino-3-(4-nitrophenyl)-cumarin wurden in 20 ml DMF auf 60°C erhitzt, und eine Aufschlammung von 10 g (0,055 Mol) Natriumdithionit in 20 ml Wasser wurde hinzugetropft. Nach 1 Stunde wurden die Lösungsmittel im Vakuum abdestilliert und der Rückstand 2 Stunden lang mit einer Mischung aus 20 ml Ethanol und 30 ml konzentrierter Salzsäure aufgekocht. Nach Neutralisation mit Natronlauge wurde das ausgefallene Produkt abgesaugt, bei 50°C getrocknet und anschließend aus siedendem Chlorbenzol unter Zusatz von Tonsil umkristallisiert.

Ausbeute an 7-Morpholino-3-(4-aminophenyl)-cumarin: 2,6 g (57 %), Schmelzpunkt: 211-216°C.
Beispiel 6:

Aus 4-(N-Ethyl-N-β-hydroxyethylylamino)-salicylialdehyd und p-Nitrophenyl-essigsäure-nitril erhielt man 7-(N-Ethyl-N-β-hydroxyethylylamino)-3-(4-nitrophenyl)-cumarin in 80 % der theoretischen Ausbeute und daraus weiter analog zu Beispiel 5 7-(N-Ethyl-N-β-hydroxyethylylamino)-3-(4-aminophenyl)-cumarin in 45 % der theoretischen Ausbeute, Schmelzpunkt 155° C.

Beispiel 7:

10.6 g (0.05 Mol) 4-Chlor-5-cyano-thiazolyl-2-essigsäuremethylster, 10.46 g (0.05 Mol) 4-(N-2-Hydroxyethyl-N-ethyl-amin)-salicylialdehyd, 0,5 ml Piperidin und 0,3 ml Essigsäure wurden in 150 ml Ethanol 4 Stunden unter Rückfluß erhitzt. Das beim Abkühlen ausfallende Produkt wurde aus siedendem Chlorbenzol unter Zusatz von Bleicherde (Tonsil) umkristallisiert. Man erhielt 10.0 g (53 %) 7-(N-Ethyl-N-β-hydroxyethylylamino)-3-(4-chlor-5 cyano-thiazol-2′-yl)-cumarin vom Schmelzpunkt 226° C.

Beispiel 8:

Beispiel 9:

Analog zu Beispiel 7 erhielt man unter Verwendung von 4,5-Benzothiazolyl-2-essigsäuremethylster das 7-(N-Ethyl-N-β-hydroxyethylylamino)-3-(4′,5′-benzothiazol-2′-yl)-cumarin vom Schmelzpunkt 221°C in 63 % der theoretischen Ausbeute.

Beispiel 10:

Durch Anlagerung von Cyanid und anschließende Oxidation erhielt man aus dem Cumarin von Beispiel 7 das 7-(N-Ethyl-N-β- hydroxyethylylamino)-3-(4′-chlor-5′-cyano-thiazol-2′-yl)-4-cyano-cumarin vom Schmelzpunkt 292°C in 64 % der theoretischen Ausbeute.

Beispiel 11:

Analog Beispiel 10 erhielt man aus dem Cumarin von Beispiel 9 das 7-(N-Ethyl-N-β-hydroxyethylylamino)-3-(4′,5′-benzothiazol-2′-yl)-4-cyano-cumarin vom Schmelzpunkt 263°C in 26 % der theoretischen Ausbeute.

Beispiel 12:

27,7 g (0,1 Mol) BESA (4-(Benzolsulfonylamido)-salicylaldehyd), 17,5 g (0,1 Mol) 4-Cyanomethyl-benhøzesäuremethylester, 2,5 ml Piperidin und 1,7 ml Eissessig in 200 ml Ethanol wurden 3 Stunden unter Rückfluß erhitzt. Nach Erkalten wurde abgesaugt und das ausgefallene Material mit 100 ml Methanol und 100 ml konz. Salzsäure 2 Stunden unter Rückfluß erhitzt. Es fielen 25,3 g (58 %) 7-Benzolsulfonylamino-3-(4′-methylcarboxyphenyl)-cumarin aus, die ohne weitere Vorreinigung für Beispiel 17 eingesetzt werden konnten.

Beispiel 13:

35 g (0,08 Mol) der Verbindung aus Beispiel 12, 30 g (0,22 Mol) Kaliumcarbonat, 30,8 g (0,2 Mol) Diethylysulfat und 200 ml DMF wurden 48 h unter gutem Rühren auf 50°C erhitzt. Danach wurde das Lösungsmittel abdestilliert und der Rückstand mit Wasser ausgerührt. Nach Absaugen und Trocknen erhielt man 35 g 7-(N-Ethyl-N-benzolsulfonylamino)-3-(4′-methyl-carboxyphenyl)-cumarin (83 %).

Beispiel 14:

35 g (0,075 Mol) 7-(N-Ethyl-N-benzolsulfonylamino)-3-(4′-methylcarboxyphenyl)-cumarin wurden in 65 ml 80 %iger Schwefelsäure 3 Stunden lang auf 100°C erwärmt. Zur Aufarbeitung wurde vorsichtig in 400 ml Eiswasser gegeben und mit Natronlauge auf pH 6,5 gebracht. Nach Absaugen wurde mit Wasser gewaschen. Ausbeute: 16 g (68 %) 7-
(N-Ethyl)-3-(4'-carboxyphenyl)-cumarin.

Beispiel 15:

Analog zu Beispiel 8 erhielt man unter Verwendung von 4-(N,N-Bis-[ethoxycarbonylmethyl]-amino)-salicylaldehyd das 7-(N,N-Bis-[ethoxycarbonylmethyl]-amino)-3-(4',5'-dichlor-thiazol-2'-yl)-cumarin vom Schmelzpunkt 190°C in 62% der theoretischen Ausbeute.

Beispiel 16:

3,5 g (0,0072 Mol) des Cumarins aus Beispiel 15 in 50 ml DMF wurden bei 40°C mit einer Lösung von 1 g (0,015 Mol) Kaliumcyanid in 10 ml Wasser versetzt und drei Stunden bei dieser Temperatur gerührt. Man kühlt auf 0-5°C ab und gab 4,0 g (0,009 Mol) Bleitraacetat in 10 ml DMF hinzu. Nach 2 Stunden wurde das ausgefallene Material abgesaugt, mit Methanol gewaschen und aus 200 ml siedendem Toluol unter Zusatz von Bleicherde (Tonsil) umkristallisiert. Ausbeute: 1,6 g (43%) 7-(N,N-Bis-[ethoxycarbonylmethyl]-amino)-3-(4',5'-dichlor-thiazol-2'-yl)-4-cyano-cumarin vom Schmelzpunkt 165°C.

Beispiel 17:

5,4 g (0,02 Mol) 4,5-Bis(ethoxycarbonyl)-2-thiazolyllessigsäure-trinitril, 4,2 g (0,02 Mol) 4-Morpholinosalicylaldehyd, 0,5 ml Piperidin und 0,3 ml Essigsäure wurden in 100 ml Ethanol unter Rückfluß 3 Stunden lang erhitzt. Das nach dem Abkühlen ausfallenden Zwischenprodukt (Imin) wurde bei 45°C in 80 ml Ethanol, 10 ml konzentrierter Salzsäure und 10 ml Wasser 4 Stunden lang gerührt. Nach dem Neutralisieren mit 20%iger Natronlauge wurde aus Toluol unter Zusatz von Bleicherde (Tonsil) umkristallisiert. Man erhielt 7,4 g (80%) 7-(N-Morpholin)-3-(4',5'-bis-[ethoxycarbonyl]-thiazol-2'-yl)-cumarin vom Schmelzpunkt 265°C.

Beispiel 18:

5,6 g (0,02 Mol) 4-[N-Ethyl-N-(4-ethylbutyrat)-amin]-salicylaldehyd, 3,5 g Benzthiazolyllessigsäure-trinitril, 0,5 ml Piperidin und 0,3 ml Essigsäure wurden 3 Stunden unter Rückfluß in 100 ml Ethanol erhitzt. Nach Abdämpfen des Ethanol wurde weitere 2 Stunden mit 100 ml halbkonzentrierter Salzsäure zum Sieden erhitzt. Nach dem Abkühlen wurde mit Natronlauge auf pH 6,5 eingestellt, abgesaugt und aus siedender Essigsäure unter Zusatz von Aktivkohle umkristallisiert. Man erhielt 5,5 g 7-[N-Ethyl-N-(carboxy-tetramethyl)-amino]-3-(4',5'-benzothiazol-2'-yl)-cumarin vom Schmelzpunkt 218°C in 67% der theoretischen Ausbeute.

Beispiel 19:

Analog zur beschriebenen Verfahrensweise erhielt man die Verbindung vom Schmelzpunkt 137°C in 50% der theoretischen Ausbeute.

Beispiel 20:

Analog zur beschriebenen Verfahrensweise erhielt man die Verbindung
Beispiel 21:

Analog zur beschriebenen Verfahrensweise erhielt man die Verbindung

vom Schmelzpunkt
\(>300^\circ\text{C}\) in 32 %
der theoretischen Ausbeute

Beispiel 22:

Analog zur beschriebenen Verfahrensweise erhielt man die Verbindung

Beispiel 23:

Analog zur beschriebenen Verfahrensweise erhielt man die Verbindung

vom Schmelzpunkt
\(>300^\circ\text{C}\) in 67 %
der theoretischen Ausbeute

Beispiele 24 - 32:

Synthese der verwendeten m-Aminophenole

Die verwendeten m-Aminophenole konnten durch zwei Verfahren gewonnen werden:

a) Reaktion von Resorcin mit einem primären oder sekundären Amin unter Wasserabspaltung, wie in DE-OS 15 43 368 beschrieben.

Beispiel 24:

110 g (1,0 Mol) Resorcin, 89 g (1,0 Mol) N-(2-Hydroxy-ethyl)-ethylamin und 6,2 g (0,1 Mol) Borsäure wurden auf 180 - 200°C erhitzt und das entstehende Wasser über einen Zeitraum von ca. 8 Std. abdestilliert. Nach Abkühlen auf 60°C wurden 130 ml Methanol zugegeben und der gebildete Borsäuremethylester abdestilliert. Im Hochvakuum wurden dann zunächst nicht umgesetztes Amin und Resorcin, anschließend das Produkt abdestilliert.

Siedepunkt: 191°C (3 mbar) Ausbeute an 3-(N-2-Hydroxy-ethyl-N-ethyl)aminophenol: 40 %
Reinheit laut GC: 80 %
Diese Verbindung konnte auch nach Methode b) aus N-Ethyl-m-aminophenol und 2-Chlorehanol hergestellt werden.

Beispiel 25:

149,1 g (1,0 Mol) 3-Ethylaminophenol (92 % Reinheit), 120 g (1,2 Mol) Calciumcarbonat (gemahlen) und 500 ml DMF wurden auf 120°C erwärmt, und während 4-5 Stunden langsam 80,5 g (1,0 Mol) 2-Chlorehanol hinzugetropft. Es wurde noch 12 h bei 125°C nachgerührt und dann das Lösungsmittel abdestilliert. Der Rückstand wurde mit 300 - 500 ml Wasser versetzt und filtriert. Nach dreimaligem Ausschütteln mit Chloroform (je 150 ml) wurden die vereinigten organischen Phasen abdestilliert. Man erhielt 67 g Produkt (Reinheit 95 %).
Kp.: (0,15) mbar: 180°C
Um die alkoholische OH-Gruppe bei der nachfolgenden Vilsmeier-Reaktion zu schützen, wurde eine Acetylierung wie folgt durchgeführt:
95 g (0,5 Mol) 3-(N-2-Hydroxyethyl-N-ethyl)aminophenol, 113 g (1,1 Mol) Essigsäureanhydrid und 87 g (1,0 Mol) Pyridin wurden 3 Stunden lang unter Rückfluß erhitzt. Zur Aufarbeitung wurde auf 300 g Eis gegeben, mit Natriumhydrogencarbonat neutral gestellt und mehrfach mit Chloroform ausgeschüttelt. Nach Trocknung über Natriumsulfat wurden die vereinigten organischen Phasen im Vakuum destilliert. Bei 0,3 mbar und 166 - 170°C gingen 78,2 g (56 %) 3-(N-2-Acetoxy-ethyl-N-ethyl)amino-acetoxyphenol über.

Beispiel 26:

14,9 g (0,1 Mol) 3-Ethylaminophenol (92% Reinheit) wurden in 35 - 50 ml DMF mit 11 g (0,11 Mol) feingemahlenem Calciumcarbonat auf 65°C erhitzt. Innerhalb von 30 min wurden 16,7 g (0,1 Mol) Bromessigsäureethylester hinzugetropft. Es wurde 1 Stunde bei 80°C nachgerührt. Nach Abdampfen des Lösungsmittels wurde der Rückstand mit 100 ml Wasser und 50 ml Chloroform versetzt und filtriert. Die wässrige Phase wurde erneut mit Chloroform extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet und danach im Vakuum destilliert. Bei 0,15 mbar und 167-171°C gingen 16,3 g (73 %) Produkt über.

In analoger Weise wurden dargestellt (Beispiele 27-32)

aus N-Ethyl-m-aminophenol und Bromessigsäureethylester nach Methode b), Kp. 167-171°C/0,15 mbar, 73 % der theoretischen Ausbeute (Beispiel 27)

aus Resorcin und N-8-Hydroxy-ethyl-methylamin nach Methode a) in 63 % der theoretischen Ausbeute, Kp. 170°C/0,4 mbar (Beispiel 28)

13
aus Resorcin und N-8-Hydroxyethyl-piperazin nach Methode a) in 40 % der theoretischen Ausbeute, Schmelzpunkt 124 - 126°C (Beispiel 29)

aus m-Aminophenol nach Methode b) und Bromessigsäureethylester in 40 % der theoretischen Ausbeute, Schmelzpunkt 58°C, Kp. 180°C/0,2 mbar (Beispiel 30)

aus N-Ethyl-aminophenol und 3-Brom-n-propanol nach Methode b) in 36 % der theoretischen Ausbeute, Öl bei Raumtemperatur (Beispiel 31)

aus N-Ethyl-aminophenol und 3-Brom-n-buttersäureethylester nach Methode b) in 62 % der theoretischen Ausbeute, Kp. 170°C/0,1 mbar (Beispiel 32)

Beispiele 33 - 38:

Beispiel 33:

16,9 g (0,06 Mol) 3-(N,N-Diessigsäureethylester)-aminophenol wurden in 40 ml DMF gelöst und 12 g (7,4 ml, 0,078 Mol) Phosphor oxychlorid langsam zugetropft, so daß die Innentemperatur 20°C nicht überschritt. Zur Aufarbeitung wurde auf Eis gegeben, mit Natronlauge neutralisiert und mit Chloroform ausgeschüttelt. Nach Trocknen der vereinigten organischen Phasen wurde das Chloroform abdestilliert. Der Rückstand wurde mit Toluol und Tonsil aufgekocht. Abdampfen des Lösungsmittels ließ 12,6 g (68 %) Produkt von Schmelzpunkt 70°C.

Beispiel 34:

Zu 18 g (0,068 Mol) 3-(N-2-Acetoxyethyl-N-ethyl-amin)-acetoxyphenol in 20 ml DMF wurden 12,34 g (7,6 ml, 0,08 Mol) Phosphor oxychlorid hinzugefügt, so daß die Innentemperatur 20°C nicht überschritt. Nach 1 Stunde bei dieser Temperatur wurde 5 h lang auf 60°C erwärmt. Zur Aufarbeitung wurde vorsichtig auf 200 g Eis gegeben, mit Natronlauge neutralisiert und mehrmals mit Chloroform ausgeschüttelt. Nach Trocknen der vereinigten organischen Phasen wurde das Chloroform am Rotationsverdampfer entfernt und das zurückbleibende Öl 6 Stunden lang mit halbkonzentrierter Salzsäure zur Schutzgruppenabspaltung gerührt. Nach Neutralisation, Ausschütteln mit Chloroform und Trocknen sowie Abdampfen des Lösungsmittels wurde der Rückstand mit Toluol und Tonsil aufgekocht. Nach Filtration und Entfernen des Toluols blieben 7,1 g (50 %) 4-(N-2-Hydroxyethyl-N-ethyl-amin)-salicylaldehyd vom Schmelzpunkt 60°C zurück. In analoger Weise wurden dargestellt (Beispiele 35-38)
bei 100°C Reaktionstemperatur in 48% der theoretischen Ausbeute, Öl bei Raumtemperatur (Beispiel 35).

bei 100°C Reaktionstemperatur in 56% der theoretischen Ausbeute, Schmelzpunkt 54°C (Beispiel 36).

bei 100°C Reaktionstemperatur in 30% der theoretischen Ausbeute, Öl bei Raumtemperatur (Beispiel 37).

bei 55°C Reaktionstemperatur in 78% der theoretischen Ausbeute, Schmelzpunkt 90°C (Beispiel 38).

656 g (2,1 Mol) 4,5-Dichlor-2-thiazolylmalonsäurediethylster und 3 Liter reine Ameisensäure wurden 7 Stunden unter Rückfluß geführt. Nach dem Eindampfen im Rotationsverdampfer (509 g; quant.) wurde an der Ölpumpe destilliert. Ausbeute 463 g (92% der Theorie) 4,5-Dichlor-2-thiazolylessigsäureethylster. Siedepunkt 120°C/0,1 mbar. Schmelzpunkt unter 50°C (aus wenig Petrolether umkristallisierbar).

Analog wurde erhalten:

4-Chlor-5-cyan-2-thiazolylessig säuremethylster. Schmelzpunkt 63°C.
Beispiel 40.

40 g (0,4 Mol) Cyanessigsäureamid wurden in 200 ml Dimethylformamid gelöst. Nach Zugabe von 111 g (0,5 Mol) Chloroxalessigsäurediethylester wurde 4 Tage bei Raumtemperatur gerührt. Anschließend wurde in etwa 2,5 Liter Eiswasser gegossen, mit Dichlormethan aufgenommen und die Dichlormethan-Phase eingeengt. Fraktionierte Destillation im Bereich von 150-230°C/1,5-2 mbar lieferte 11,6 g Rohprodukt, das aus Hexan-Toluol (3:1) umkristallisiert wurde. Ausbeute: 7,6 g 4,5-Bis(ethoxycarbonyl)-2-thiazolylessigsäurenitril von einer GC-Reinheit von 99,4 %. Schmelzpunkt 75,7-77°C.

In 100 ml Nitrobenzol wurden 14,66 g (0,11 Mol) wasserfreies Aluminiumchlorid vorgelegt. Dazu gab man 16,5 g (0,1 Mol) 3-N,N-Diethylymin-phenol und 19 g (0,1 Mol) α-(Hydroxymethylen)-4-nitrophenyl-acetonitril (Herstellung: B. Booze et. al., Bull. Soc. Chim. Belg., 1968, 97, 267-70). Die Mischung wurde 2 Stunden bei 100°C gerührt, dabei schied sich ein Niederschlag ab. Man erhöhte nun die Temperatur auf 130° und rührte weitere 1,5 Stunden. Nach dem Abkühlen wurde 100 ml Isopropanol und 50 ml Wasser zugegeben. Anschließend tropfte man bei 80° 30 ml 37 %ige Salzsäure zu. Nach dem Abkühlen und Absaugen des gebildeten NiederschLAGes erhielt man 29 g (85,8 % d.Th.) 3-(4-Nitrophenyl)-7-diethyaminocumarin als gelbe Kristalle, die nach dem Umlösen aus Acetonitril bei 162-3°C schmelzen.
Tabelle:

Spektroskopische Daten (in nm) der maximalen Anregungswellenlänge (Exc.\textsubscript{max}), der maximalen Emission (Em.\textsubscript{max}) und deren Differenz (∆ Stokes) im verwendeten Lösungsmittel (LM) sowie die Fluoreszenzquantenausbeute FQ der in den angegebenen Beispielen hergestellten Cumarinderivate

<table>
<thead>
<tr>
<th>Beispiel Nr.</th>
<th>Exc.\textsubscript{max}</th>
<th>Em.\textsubscript{max}</th>
<th>∆ Stokes</th>
<th>LM</th>
<th>FQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>399</td>
<td>533</td>
<td>134</td>
<td>DMF</td>
<td>0,77</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
<td>529</td>
<td>129</td>
<td>DMF</td>
<td>0,76</td>
</tr>
<tr>
<td>4</td>
<td>403</td>
<td>484</td>
<td>81</td>
<td>DMF</td>
<td>0,72</td>
</tr>
<tr>
<td>4</td>
<td>401</td>
<td>503</td>
<td>102</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>0,69</td>
</tr>
<tr>
<td>5</td>
<td>393</td>
<td>520</td>
<td>127</td>
<td>DMF</td>
<td>0,79</td>
</tr>
<tr>
<td>5</td>
<td>382</td>
<td>512</td>
<td>130</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>0,74</td>
</tr>
<tr>
<td>6</td>
<td>407</td>
<td>520</td>
<td>113</td>
<td>DMF</td>
<td>0,76</td>
</tr>
<tr>
<td>7</td>
<td>487</td>
<td>539</td>
<td>52</td>
<td>DMF</td>
<td>0,52</td>
</tr>
<tr>
<td>7</td>
<td>479</td>
<td>514</td>
<td>35</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>0,79</td>
</tr>
<tr>
<td>8</td>
<td>472</td>
<td>518</td>
<td>46</td>
<td>DMF</td>
<td>0,63</td>
</tr>
<tr>
<td>8</td>
<td>456</td>
<td>500</td>
<td>44</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>0,89</td>
</tr>
<tr>
<td>9</td>
<td>462</td>
<td>513</td>
<td>51</td>
<td>DMF</td>
<td>0,82</td>
</tr>
<tr>
<td>9</td>
<td>443</td>
<td>495</td>
<td>52</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>0,85</td>
</tr>
<tr>
<td>10</td>
<td>568</td>
<td>641</td>
<td>73</td>
<td>DMF</td>
<td>0,11</td>
</tr>
</tbody>
</table>
Tabelle: (Fortsetzung)

<table>
<thead>
<tr>
<th>Beispiel Nr.</th>
<th>Exc.(_{\text{max}})</th>
<th>Em.(_{\text{max}})</th>
<th>Δ Stokes</th>
<th>LM</th>
<th>FQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>530</td>
<td>629</td>
<td>99</td>
<td>DMF</td>
<td>0,34</td>
</tr>
<tr>
<td>11</td>
<td>522</td>
<td>595</td>
<td>73</td>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>0,80</td>
</tr>
<tr>
<td>15</td>
<td>444</td>
<td>499</td>
<td>55</td>
<td>DMF</td>
<td>0,76</td>
</tr>
<tr>
<td>15</td>
<td>428</td>
<td>500</td>
<td>72</td>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>0,88</td>
</tr>
<tr>
<td>16</td>
<td>505</td>
<td>600</td>
<td>95</td>
<td>DMF</td>
<td>0,65</td>
</tr>
<tr>
<td>16</td>
<td>483</td>
<td>557</td>
<td>74</td>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>0,88</td>
</tr>
<tr>
<td>17</td>
<td>457</td>
<td>532</td>
<td>75</td>
<td>DMF</td>
<td>0,71</td>
</tr>
<tr>
<td>18</td>
<td>459</td>
<td>510</td>
<td>51</td>
<td>DMF</td>
<td>0,74</td>
</tr>
<tr>
<td>18</td>
<td>466</td>
<td>520</td>
<td>54</td>
<td>(\text{H}_2\text{O})</td>
<td>0,31</td>
</tr>
<tr>
<td>19</td>
<td>467</td>
<td>515</td>
<td>48</td>
<td>DMF</td>
<td>0,50</td>
</tr>
<tr>
<td>19</td>
<td>465</td>
<td>501</td>
<td>36</td>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>0,82</td>
</tr>
<tr>
<td>20</td>
<td>539</td>
<td>613</td>
<td>74</td>
<td>DMF</td>
<td>0,43</td>
</tr>
<tr>
<td>21</td>
<td>448</td>
<td>503</td>
<td>55</td>
<td>DMF</td>
<td>0,62</td>
</tr>
<tr>
<td>21</td>
<td>450</td>
<td>516</td>
<td>66</td>
<td>(\text{H}_2\text{O})</td>
<td>0,83</td>
</tr>
<tr>
<td>22</td>
<td>476</td>
<td>520</td>
<td>44</td>
<td>DMF</td>
<td>0,74</td>
</tr>
<tr>
<td>22</td>
<td>473</td>
<td>504</td>
<td>31</td>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>0,89</td>
</tr>
<tr>
<td>23</td>
<td>449</td>
<td>522</td>
<td>73</td>
<td>DMF</td>
<td>0,82</td>
</tr>
<tr>
<td>23</td>
<td>438</td>
<td>500</td>
<td>62</td>
<td>(\text{CH}_2\text{Cl}_2)</td>
<td>0,89</td>
</tr>
<tr>
<td>24</td>
<td>440</td>
<td>506</td>
<td>66</td>
<td>DMF</td>
<td>0,84</td>
</tr>
<tr>
<td>25</td>
<td>404</td>
<td>484</td>
<td>80</td>
<td>DMF</td>
<td>0,76</td>
</tr>
</tbody>
</table>

Patentansprüche

1. Cumarinderivate der Formel
EP 0 428 939 B1

in der

\[R^1 \text{ Wasserstoff oder Cyano bedeutet,} \]

\[R^2 \text{ für Phenyl oder für in 2-, 4- oder 5-Stellung gebundenes Thiazolyl steht, wobei Phenyl durch Cyano, Amino,} \]
\[-\text{NH-C_1-C_4-Alkyl, } -C_1-C_4-Alkyl-NH_2, \] \[-C_1-C_4-Alkyl-NH-C_1-C_4-Alkyl, \text{ Carboxyl, } C_1-C_4-Alkoxycarbonyl, } \]
\[C_1-C_4-Alkyl-carbonyl-oxy, \text{ Hydroxy, } C_1-C_4-Alkylamino-carbonyl \text{ oder } C_1-C_4-Alkylcarbonyl-amino substituiert} \]
\[\text{ist und zusätzlich durch } C_1-C_4-Alkyl, \text{ Fluor, Chlor oder Brom substituiert sein kann, und wobei Thiazolyl ein-} \]
\[\text{oder zweifach durch Chlor, Cyano, Carboxyl oder } C_1-C_4-Alkoxycarbonyl \text{ substituiert ist, wobei bei zweifacher} \]
\[\text{Substitution die beiden Substituenten verschieden sein können und wobei die 4- und die 5-Stellung gemeinsam} \]
\[\text{einen ankondensierten Benzolring tragen können, der durch Carboxyl, Amino oder Hydroxy substituiert sein} \]
\[\text{kann,} \]

\[R^3 \text{ Wasserstoff, } C_1-C_4-Alkyl \text{ oder } C_1-C_4-Alkoxycarbonyl-C_1-C_4-alkyl \text{ bedeutet und} \]

\[R^4 \text{ für } C_1-C_4-Alkyl \text{ oder Phenylsulfonyl steht, wobei } C_1-C_4-Alkyl \text{ durch Hydroxy, Amino, Carboxyl oder } C_1-C_4-Alkoxycarbonyl \]
\[\text{substituiert sein kann und Phenyl ein- oder zweifach durch Chlor, Brom oder } C_1-C_4-Alkyl \text{ sub-} \]
\[\text{stituiert sein kann,} \]
\[\text{wobei weiterhin } R^3 \text{ und } R^4 \text{ gemeinsam mit dem N-Atom, das sie substituieren, einen Morpholinring oder einen} \]
\[\text{Piperazinring, der einen oder zwei Substituenten aus der Gruppe Methyl, Ethyl und Phenyl tragen kann,} \]
\[\text{be-} \]
\[\text{deutnen können und} \]
\[\text{wobei weiterhin einer der Reste } R^2, R^3 \text{ und } R^4 \text{ eine primäre oder sekundäre Aminogruppe, die Hydroxygruppe,} \]
\[\text{die Carboxylgruppe, Cyano, Acylylamino Phenylsulfonylamino oder die } C_1-C_4-Alkoxycarbonylgruppe \text{ trägt, wobei} \]
\[\text{Cyano oder die } C_1-C_4-Alkoxycarbonylgruppe \text{ durch Verseifung in die Carboxylgruppe, ebenfalls durch Verseifung} \]
\[\text{die Acylamino- oder Phenylsulfonylaminogruppe in eine Aminogruppe und die Cyanogruppe durch Hydrierung in} \]
\[\text{eine Primäre Aminogruppe überführt werden kann.} \]

2. Verfahren zur Herstellung von Cumarinderivaten der Formel

\[(I), \]

in der

\[R^1 \text{ Wasserstoff oder Cyano bedeutet,} \]

\[R^2 \text{ für Phenyl oder für in 2-, 4- oder 5-Stellung gebundenes Thiazolyl steht, wobei Phenyl durch Cyano, Amino,} \]
\[-\text{NH-C_1-C_4-Alkyl, } -C_1-C_4-Alkyl-NH_2, \] \[-C_1-C_4-Alkyl-NH-C_1-C_4-Alkyl, \text{ Carboxyl, } C_1-C_4-Alkoxycarbonyl, } \]
\[C_1-C_4-Alkyl-carbonyl-oxy, \text{ Hydroxy, } C_1-C_4-Alkylamino-carbonyl \text{ oder } C_1-C_4-Alkylcarbonyl-amino substituiert ist} \]
\[\text{und zusätzlich durch } C_1-C_4-Alkyl, \text{ Fluor, Chlor oder Brom substituiert sein kann, und wobei Thiazolyl ein-} \]
\[\text{oder zweifach durch Chlor, Cyano, Carboxyl oder } C_1-C_4-Alkoxycarbonyl \text{ substituiert ist, wobei bei zweifacher} \]
\[\text{Substitution die beiden Substituenten verschieden sein können und wobei die 4- und die 5-Stellung gemeinsam} \]
\[\text{einen ankondensierten Benzolring tragen können, der durch Carboxyl, Amino oder Hydroxy substituiert sein} \]

19
kann,

\[R^3 \] Wasserstoff, \(C_1\)-\(C_4\)-Alkyl oder \(C_1\)-\(C_4\)-Alkoxy-carbonyl-\(C_1\)-\(C_4\)-alkyl bedeutet und

\[R^4 \] für \(C_1\)-\(C_4\)-Alkyl oder Phenylsulfonyl steht, wobei \(C_1\)-\(C_4\)-Alkyl durch Hydroxy, Amino, Carboxyl oder \(C_1\)-\(C_4\)-Alkoxy-carbonyl substituiert sein kann und Phenyl ein- oder zweifach durch Chlor, Brom oder \(C_1\)-\(C_4\)-Alkyl substituiert sein kann, wobei weiterhin \(R^2 \) und \(R^4 \) gemeinsam mit dem N-Atom, das sie substituieren, einen Morpholinring oder einen Piperazinring, der einen oder zwei Substituenten aus der Gruppe Methyl, Ethyl und Phenyl tragen kann, be- deuten können und wobei weiterhin einer der Reste \(R^2 \), \(R^3 \) und \(R^4 \) eine primäre oder sekundäre Aminogruppe, die Hydroxygruppe, die Carboxylgruppe oder die \(C_1\)-\(C_4\)-Alkoxy-carbonylgruppe trägt oder durch Verseifung von Cyano oder \(C_1\)-\(C_4\)-Alkoxy-carbonyl in die Carboxylgruppe, durch Verseifung von Acylamino oder Phenylsulfonylamino in eine Amino- gruppe oder durch Hydrierung von Cyano in eine primäre Aminogruppe übergeführt werden kann, dadurch gekennzeichnet, daß man

a) ein m-Aminophenol und ein Formylessigsäurederivat der Formeln

\[\begin{align*}
R^4 & \quad \text{und} \\
& \quad \text{OH}
\end{align*} \]

\[\begin{align*}
O &= \text{CH} \\
& \quad \text{CH-R}^2 \\
& \quad \text{R}^5
\end{align*} \]

worin

\(R^2 \), \(R^3 \) und \(R^4 \) den obigen Bedeutungsumfang haben und

\(R^5 \) Cyano, \(C_1\)-\(C_4\)-Alkoxy-carbonyl oder Carboxyl bedeutet, miteinander umsetzt oder
d) einen Salicylaldehyd und ein Essigsäurederivat der Formeln

\[\begin{align*}
R^4 & \quad \text{und} \\
& \quad \text{CHO}
\end{align*} \]

\[\begin{align*}
& \quad \text{OH} \\
& \quad \text{CH}_2 \\
& \quad \text{R}^5
\end{align*} \]

worin

\(R^2 \), \(R^3 \), \(R^4 \) und \(R^5 \) den obigen Bedeutungsumfang haben miteinander umsetzt, wobei im Falle von \(R^5 = \text{CN} \) bei a) und b) zunächst ein Imino-Zwischenprodukt der Formel

\[\begin{align*}
R^4 & \quad \text{und} \\
& \quad \text{NH}
\end{align*} \]

worin \(R^2 \), \(R^3 \) und \(R^4 \) den obigen Bedeutungsumfang haben.
entsteht und dieses Imino-Zwischenprodukt unter Abspaltung der Iminogruppen hydrolysiert wird, oder

c) für den Fall, daß \(R^1 \) Cyanob bedeutet, das Imino-Zwischenprodukt gemäß b) oder das Cumarinderivat der
Formel (I) mit Cyanidionen zum Imino-Cyan-Zwischenprodukt oder zum Cyano-Zwischenprodukt der Formeln

\[
\begin{align*}
\text{bzw.}

\text{worin } R^2, R^3 \text{ und } R^4 \text{ die obige Bedeutung haben, umgesetzt und dieses Zwischenprodukt zum Cumarinderivat oxidiert und gegebenenfalls zusätzlich hydrolysiert.}
\end{align*}
\]

3. 2-Thiazoly-essigsäurederivate der Formel

\[
\begin{align*}
\text{in der}

R^6 & \text{ Chlor oder Cyan und} \\
R^7 & \text{ Chlor bedeutet und} \\
R^5 & \text{ für Carbonyl, } C_1-C_4 \text{-Alkoxy-carbonyl oder Cyan steht.}
\end{align*}
\]

4. Cumarinderivate der Formel

\[
\begin{align*}
\text{in der}

R^1 & \text{ Wasserstoff oder Cyan bedeutet,} \\
R^{12} & \text{ für Phenyl oder für in 2-, 4- oder 5-Stellung gebundenes Thiazolyl steht, wobei Phenyl durch Carboxyl,} \\
& C_1-C_4 \text{-Alkyl-carbonyloxy, Amino, } \text{-NH}-C_1-C_4 \text{-Alkyl, } \text{-C}_1\text{-C}_4 \text{-Alkyl-NH}_2, C_1-C_4 \text{-Alkyl, Cyan, Fluor, Chlor oder} \\
& \text{ Brom substituierbar sein kann und wobei Thiazolyl durch Chlor, Cyan oder Carboxyl oder einen in 4 und 5-Stel} \\
& \text{l lung ankondensierten Benzolring, der seinerseits Carboxyl oder Amino tragen kann, substituiert sein kann,}
\end{align*}
\]

\[
\begin{align*}
R^{13} & \text{ Wasserstoff, Methyl oder Ethyl bedeutet und} \\
R^{14} & \text{ für } \text{-C}_1\text{-C}_4 \text{-Alkyl-OH, } \text{-C}_1\text{-C}_4 \text{-Alkyl-NH}_2 \text{ oder } \text{C}_1\text{-C}_4 \text{-Alkyl-COOH steht,}
\end{align*}
\]

wobei weiterhin \(R^{13} \) und \(R^{14} \) gemeinsam mit dem N-Atom, das sie substituieren, einen Morpholinring oder einen Piperazinring, der durch Methyl, Phenyl oder Methyl und Phenyl substituiert sein kann, bedeuten können.
5. Coumarin derivatives of the formula

\[
\begin{align*}
R^1 & \quad R^{13} \quad R^{14} \\
R^2 & \\
R^3 & \\
R^4 & \\
\end{align*}
\]

in which

- \(R^1 \) denotes hydrogen or cyano,
- \(R^2 \) represents phenyl or thiazolyl bonded in the 2-, 4- or 5-position, where phenyl is substituted by cyano, amino, \(-\text{NH}-\text{C}_1\text{-C}_4\text{-alkyl}, -\text{C}_1\text{-C}_4\text{-alkyl-NH}_2, -\text{C}_1\text{-C}_4\text{-alkyl-NH}\text{-C}_1\text{-C}_4\text{-alkyl}, \text{carboxyl}, \text{C}_1\text{-C}_4\text{-alkoxy-carbonyl}, \text{C}_1\text{-C}_4\text{-alkyl-carbonyloxy}, \text{hydroxyl}, \text{C}_1\text{-C}_4\text{-alkylamino-carbonyl} \text{ or } \text{C}_1\text{-C}_4\text{-alkylcarbonyl-amino} \text{ and can additionally be substituted by C}_1\text{-C}_4\text{-alkyl, fluorine, chlorine, bromine, and where thiazolyl is monosubstituted or disubstituted by cyano, carboxyl or C}_1\text{-C}_4\text{-alkoxy-carbonyl}, \text{where, in the case of disubstitution, the two substituents may be different and where the 4- and the 5-position can together carry a fused benzene ring which can be substituted by carboxyl, amino or hydroxyl.}
- \(R^3 \) denotes hydrogen, \(\text{C}_1\text{-C}_4\text{-alkyl} \text{ or } \text{C}_1\text{-C}_4\text{-alkoxy-carbonyl-C}_1\text{-C}_4\text{-alkyl} \text{ and}
- \(R^4 \) represents \(\text{C}_1\text{-C}_4\text{-alkyl} \text{ or phenylsulphonyl, where } \text{C}_1\text{-C}_4\text{-alkyl can be substituted by hydroxyl, amino, carboxyl or C}_1\text{-C}_4\text{-alkoxy-carbonyl} \text{ and phenyl can be monosubstituted or disubstituted by chlorine, bromine or C}_1\text{-C}_4\text{-alkyl, where furthermore } R^3 \text{ and } R^4 \text{ together with the N atom which they substitute, can denote a morpholine ring or a piperazine ring which can carry one or two substituents from the group consisting of methyl, ethyl and phenyl, and}

where furthermore one of the radicals \(R^2, R^3 \text{ and } R^4 \) carries a primary or secondary amino group, the hydroxyl group, the carboxyl group, cyano, acylamino phenylsulphonylamino or the \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl} \text{ group, it being}
possible to convert cyano or the C₁-C₄-alkoxy-carbonyl group into the carboxyl group by hydrolysis, likewise the acylamino group or the phenylsulphonylamino group into an amino group by hydrolysis and the cyano group into a primary amino group by hydrogenation.

2. Process for the preparation of coumarin derivatives of the formula

\[
\text{R}^1\text{R}^2\text{R}^3\text{N}\overset{\text{O}}{\text{O}}\text{R}^4
\]

(I),

in which

\(\text{R}^1\) denotes hydrogen or cyano,

\(\text{R}^2\) represents phenyl or thiazolyl bonded in the 2-, 4- or 5-position, where phenyl is substituted by cyano, amino, \(-\text{NH-C}_1\text{-C}_4\text{-alkyl}\), \(-\text{C}_1\text{-C}_4\text{-alkyl-NH}_2\), \(-\text{C}_1\text{-C}_4\text{-alkyl-NH-C}_1\text{-C}_4\text{-alkyl}\), carboxyl, \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl}\), \(\text{C}_1\text{-C}_4\text{-alkyl-carbonyloxy}\), hydroxyl, \(\text{C}_1\text{-C}_4\text{-alkylamino-carbonyl}\) or \(\text{C}_1\text{-C}_4\text{-alkylcarbonyl-amino}\) and can additionally be substituted by \(\text{C}_1\text{-C}_4\text{-alkyl}\) fluorne, chlorine or bromine, and where thiazolyl is monosubstituted or disubstituted by chlorine, cyano, carboxyl or \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl}\), where, in the case of disubstitution, the two substituents may be different and where the 4- and the 5-position can together carry a fused benzene ring which can be substituted by carboxyl, amino or hydroxyl,

\(\text{R}^3\) denotes hydrogen, \(\text{C}_1\text{-C}_4\text{-alkyl}\) or \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl-C}_1\text{-C}_4\text{-alkyl}\) and

\(\text{R}^4\) represents \(\text{C}_1\text{-C}_4\text{-alkyl}\) or phenylsulphonyl, where \(\text{C}_1\text{-C}_4\text{-alkyl}\) can be substituted by hydroxyl, amino, carboxyl or \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl}\) and phenyl can be monosubstituted or disubstituted by chlorine, bromine or \(\text{C}_1\text{-C}_4\text{-alkyl}\),

where furthermore \(\text{R}^3\) and \(\text{R}^4\), together with the N atom which they substitute, can denote a morpholine ring or a piperazine ring which can carry one or two substituents from the group consisting of methyl, ethyl and phenyl, and

where furthermore one of the radicals \(\text{R}^2\), \(\text{R}^3\) and \(\text{R}^4\) carries a primary or secondary amino group, the hydroxyl group, the carboxyl group or the \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl}\) group or can be converted into the carboxyl group by hydrolysis of cyano or \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl}\), into an amino group by hydrolysis of acylamino or phenylsulphonylamino or into a primary group by hydrogenation of cyano, characterized in that

a) an \(\text{N}\)-aminophenol and a formylacetic acid derivative of the formulae

\[
\begin{align*}
&\text{R}^3\text{N}\overset{\text{O}}{\text{O}}\text{R}^4 \\
&\text{R}^3\text{N}\overset{\text{O}}{\text{O}}\text{R}^4 \\
&\text{R}^3\text{N}\overset{\text{O}}{\text{O}}\text{R}^4 \\
&\text{R}^3\text{N}\overset{\text{O}}{\text{O}}\text{R}^4 \\
&\text{R}^3\text{N}\overset{\text{O}}{\text{O}}\text{R}^4
\end{align*}
\]

in which

\(\text{R}^2\), \(\text{R}^3\) and \(\text{R}^4\) have the above scope of meaning

and

\(\text{R}^5\) denotes cyano, \(\text{C}_1\text{-C}_4\text{-alkoxy-carbonyl}\) or carboxyl,

are reacted with one another or
b) a salicylaldehyde and an acetic acid derivative of the formulae

\[
\begin{align*}
\text{R}^4 & \text{N} \text{CH} \text{OH} \quad \text{and} \quad \text{R}^2 \\
\text{R}^3 & \text{R}^5
\end{align*}
\]

in which
\(\text{R}^2, \text{R}^3, \text{R}^4 \) and \(\text{R}^5 \) have the above scope of meaning,

are reacted with one another,

where if \(\text{R}^5 = \text{CN} \) in a) and b), first an imino intermediate of the formula

\[
\begin{align*}
\text{R}^4 & \text{N} \text{O} \text{NH} \\
\text{R}^3 & \text{R}^5
\end{align*}
\]

in which \(\text{R}^2, \text{R}^3 \) and \(\text{R}^4 \) have the above scope of meaning,

is formed and this imino intermediate is hydrolysed with elimination of the imino group, or

c) in the case in which \(\text{R}^1 \) denotes cyano, the imino intermediate as in b) or the coumarin derivative of the formula (l) is reacted with cyanide ions to give the imino-cyano intermediate or the cyano intermediate of the formulae

\[
\begin{align*}
\text{R}^4 & \text{N} \text{O} \text{H} \text{CN} \\
\text{R}^3 & \text{R}^5 \quad \text{or} \quad \text{R}^4 & \text{N} \text{O} \text{H} \text{CN} \\
\text{R}^3 & \text{R}^5
\end{align*}
\]

in which \(\text{R}^2, \text{R}^3 \) and \(\text{R}^4 \) have the above scope of meaning,

and this intermediate is oxidized to the coumarin derivative and optionally additionally hydrolysed.

3. 2-Thiazolylic-acetic acid derivatives of the formula

\[
\begin{align*}
\text{R}^6 & \text{N} \text{CH} \text{CH}_2 \text{R}^5 \\
\text{R}^6 & \text{N} \text{CH}_2 \text{R}^5
\end{align*}
\]

in which
\(\text{R}^6 \) denotes chlorine or cyano and

\(\text{R}^7 \) denotes chlorine and

\(\text{R}^6 \) represents carboxyl, \(\text{C}_1-\text{C}_4 \)-alkoxy-carbonyl or cyano.
4. Coumarin derivatives of the formula

\[
\begin{align*}
&\text{in which} \\
&\text{R}^1 \text{ denotes hydrogen or cyano,} \\
&\text{R}^{12} \text{ represents phenyl or thiazolyl bonded in the 2-, 4- or 5-position, where phenyl can be substituted by carboxyl, C}_1\text{-C}_4\text{-alkyl-carbonyloxy, amino, -NH-C}_1\text{-C}_4\text{-alkyl, -C}_1\text{-C}_4\text{-alkyl-NH}_2, \text{ C}_1\text{-C}_4\text{-alkyl, cyano, fluorine, chlorine or bromine and where thiazolyl can be substituted by chlorine, cyan or carboxyl or a benzene ring fused in the 4- and 5-position, which in turn can carry carboxyl or amino,} \\
&\text{R}^{13} \text{ denotes hydrogen, methyl or ethyl and} \\
&\text{R}^{14} \text{ represents -C}_1\text{-C}_4\text{-alkyl-OH, -C}_1\text{-C}_4\text{-alkyl-NH}_2 \text{ or C}_1\text{-C}_4\text{-alkyl-COOH,} \\
&\text{where furthermore R}^{13} \text{ and R}^{14} \text{, together with the N atom which they substitute, can denote a morpholine ring or a piperazine ring which can be substituted by methyl, phenyl or methyl and phenyl.}
\end{align*}
\]

5. Coumarin derivatives of the formula

\[
\begin{align*}
&\text{in which} \\
&\text{R}^1, \text{R}^{13} \text{ and R}^{14} \text{ assume the scope of meaning mentioned in Claim 4 and} \\
&\text{R}^{22} \text{ represents phenyl or thiazolyl bonded in the 2-position, where phenyl can be substituted by para-carboxyl, para-amino, para-NH-C}_1\text{-C}_4\text{-alkyl, para-CH}_2\text{-NH}_2, \text{ cyano, methyl or ethyl and where thiazolyl can be substituted by chlorine, cyan or carboxyl or a benzene ring fused in the 4-and 5-position which in turn can carry carboxyl or amino.}
\end{align*}
\]

6. Use of the coumarin derivatives according to Claim 1 for dyeing biologically active compounds.

Reverditations

1. **Dérivés de la coumarine répondant à la formule :**
dans laquelle

R\(^1\) représente l'hydrogène ou un groupe cyano,
R\(^2\) représente un groupe phényle ou un groupe thiazolyle relié en position 2, 4 ou 5,
le groupe phényle étant substitué par des groupes cyano, aminoh, -NH-alkyle en C\(_1\)-C\(_4\), (alkyle en C\(_1\)-C\(_4\))-NH\(_2\),
(alkyle en C\(_1\)-C\(_4\))-NH-alkyle en C\(_1\)-C\(_4\), carboxyle, (alkoxy en C\(_1\)-C\(_4\))-carbonyle, (alkyle en C\(_1\)-C\(_4\))-carbonyloxycarboxyle,
hydroxy, (alkylamino en C\(_1\)-C\(_4\))-carbonyle ou (alkyle en C\(_1\)-C\(_4\))-carbonylamino et pouvant en outre être substitué par des groupes alkyle en C\(_1\)-C\(_4\), le fluor, le chlore ou le brome, le groupe thiazolyle portant un ou deux substituants chloro, cyano, carboxyle ou (alkoxy en C\(_1\)-C\(_4\)) carbonyle, les deux substituants pouvant être différents dans le cas d'une disubstitution, les positions 4 et 5 pouvant en outre porter ensemble un cycle benzénique condensé qui peut lui-même être substitué par des groupes carboxyle, amino ou oxydor,
R\(^3\) représente l'hydrogène, un groupe alkyle en C\(_1\)-C\(_4\) ou (alkoxy en C\(_1\)-C\(_4\))-carbonylaalkyle en C\(_1\)-C\(_4\) et
R\(^4\) représente un groupe alkyle en C\(_1\)-C\(_4\) ou phénylsulfonylyle, le groupe alkyle en C\(_1\)-C\(_4\) pouvant être substitué par des groupes hydroxy, aminoh, carbonyl (alkoxy en C\(_1\)-C\(_4\))-carbonyle, et le groupe phényle pouvant porter un ou deux substituants chloro, bromo ou alkyle en C\(_1\)-C\(_4\).

R\(^3\) et R\(^4\) pouvant également former ensemble et avec l’atome d’azote dont ils sont substituants un cycle morpholine ou un cycle pipérazine qui peut porter un ou deux substituants choisis parmi les groupes méthyle, éthyle et phényle, et
da l’autre part, l’un des substituants R\(^2\), R\(^3\) et R\(^4\) porte un groupe amino primaire ou secondaire, un groupe hydroxy, un groupe carboxyle, cyano, acylaminoh, phénylsulfonylamine ou (alkoxy en C\(_1\)-C\(_4\))-carbonyle, le groupe cyano ou le groupe (alkoxy en C\(_1\)-C\(_4\))-carbonyle pouvant être converti par saponification en un groupe carboxyle, et de même le groupe acylaminoh ou le groupe phénylsulfonylamine pouvant être converti par sa-ponification en un groupe amino et le groupe cyano par hydrogénation en un groupe amino primaire.

2. Procédé de préparation des dérivés de la courmarine répondant à la formule :

\[
\text{(I)}
\]

dans laquelle

R\(^1\) représente l'hydrogène ou un groupe cyano,
R\(^2\) représente un groupe phényle ou un groupe thiazolyle relié en position 2, 4 ou 5,
le groupe phényle étant substitué par des groupes cyano, aminoh, -NH-alkyle en C\(_1\)-C\(_4\), (alkyle en C\(_1\)-C\(_4\))-NH\(_2\),
(alkyle en C\(_1\)-C\(_4\))-NH-alkyle en C\(_1\)-C\(_4\), carboxyle, (alkoxy en C\(_1\)-C\(_4\))-carbonyle, (alkyle en C\(_1\)-C\(_4\))-carbonyloxycarboxyle,
hydroxy, (alkylamino en C\(_1\)-C\(_4\))-carbonyle ou (alkyle en C\(_1\)-C\(_4\))-carbonylamino et pouvant en outre être substitué par des groupes alkyle en C\(_1\)-C\(_4\), le fluor, le chlore ou le brome, le groupe thiazolyle portant un ou deux substituants chloro, cyano, carboxyle ou (alkoxy en C\(_1\)-C\(_4\)) carbonyle, les deux substituants pouvant être différents dans le cas d’une disubstitution, les positions 4 et 5 pouvant en outre porter ensemble un cycle benzénique condensé qui peut lui-même être substitué par des groupes carboxyle, amino ou oxydor,
R\(^3\) représente l'hydrogène, un groupe alkyle en C\(_1\)-C\(_4\) ou (alkoxy en C\(_1\)-C\(_4\))-carbonylaalkyle en C\(_1\)-C\(_4\) et
R\(^4\) représente un groupe alkyle en C\(_1\)-C\(_4\) ou phénylsulfonylyle, le groupe alkyle en C\(_1\)-C\(_4\) pouvant être substitué par des groupes hydroxy, aminoh, carbonyl (alkoxy en C\(_1\)-C\(_4\))-carbonyle, et le groupe phényle pouvant porter un ou deux substituants chloro, bromo ou alkyle en C\(_1\)-C\(_4\).
R³ et R⁴ pouvant également former ensemble et avec l'atome d'azote dont ils sont substituants un cycle morpholine ou un cycle pipérazine qui peut porter un ou deux substituants choisis parmi les groupes méthyle, éthyle et phényle, et d'autre part, l'un des substituants R², R³ et R⁴ porte un groupe aminé primaire ou secondaire, un groupe hydroxy, un groupe carboxyle, cyano, acylaminocyané, phénylsulfonylamino ou (alcoxy en C₇-C₄)-carboxyle, le groupe cyano ou le groupe (alcoxy en C₁-C₃)-carboxyle pouvant être converti par saponification en un groupe carboxyle, et de même le groupe acylaminocyané ou le groupe phénylsulfonylamino pouvant être converti par saaponification en un groupe aminé et le groupe cyano par hydrogénation en un groupe aminé primaire,

caractérisé en ce que

a) on fait réagir entre eux un m-aminophénol et un dérivé de l'acide formylacétique de formule :

\[
\begin{align*}
R^4 \quad \text{et} \quad & \quad O=CH \\
R^3 \quad & \quad \text{CH-R²} \\
\end{align*}
\]

dans lesquelles

R², R³ et R⁴ ont les significations indiquées ci-dessus et
R⁵ représente un groupe cyano, (alcoxy en C₁-C₄)-carboxyle ou carboxyle,

ou bien

b) on fait réagir entre eux un aldéhyde salicylique et un dérivé de l'acide acétique de formules

\[
\begin{align*}
R^4 \quad \text{et} \quad & \quad \text{CHO} \\
R^3 \quad & \quad \text{CH₂} \\
\end{align*}
\]

dans lesquelles

R², R³, R⁴ et R⁵ ont les significations indiquées ci-dessus,
etant précisé que, dans le cas où R⁵ = CN, aussi bien en a) qu'en b), on forme d'abord un produit intermédiaire iminé de formule :

\[
\begin{align*}
R^4 \quad & \quad R² \\
R^3 \quad \text{NH} \\
\end{align*}
\]

dans laquelle

R², R³ et R⁴ ont les significations indiquées ci-dessus,
ou qu'on hydrolyse avec scission des groupes imino, ou bien

c) dans le cas où R¹ représente un groupe cyano, on fait réagir le produit intermédiaire iminé selon b) ou le dérivé de la coumarine de formule (I) avec des iones cyanure, ce qui donne un produit intermédiaire iminocyané ou respectivement un produit intermédiaire cyané de formules :

\[
\begin{align*}
R^4 \quad & \quad \text{CN} \\
R^3 \quad & \quad \text{NH} \\
\end{align*}
\]
dans lesquelles
R², R³ et R⁴ ont les significations indiquées ci-dessus,
qu'on oxyde en le dérivé de la coumarine en faisant suivre le cas échéant d'une hydrolyse.

3. Dérivés de l'acide 2-thiazolyacétique répondant à la formule :

\[R^7 \quad \text{N} \quad \text{R}^6 \quad \text{CH}_2 \cdot \text{R}^5 \]

dans laquelle

R⁶ représente le chlore ou un groupe cyano,
R⁷ représente le chlore et
R⁶ représente un groupe carboxyle, (alkoxy en C₁-C₄)-carboxyle ou cyano.

4. Dérivés de la coumarine répondant à la formule :

\[\text{R}^1 \quad \text{R}^{12} \quad \text{N} \quad \text{R}^{13} \]
dans laquelle

R¹ représente l'hydrogène ou un groupe cyano,
R¹² représente un groupe phényle ou thiazole relié en position 2, 4 ou 5, le groupe phényle pouvant être substitué par des groupes carboxyle, (alkyle en C₁-C₄)-carboxyloxy, amino, -NH-alkyle en C₁-C₄, -(alkyle en C₁-C₄)
-NH₂, alkyle en C₁-C₄, cyano, le fluor, le chlore ou le brome, et le groupe thiazole pouvant être substitué par le chlore, un groupe cyano ou carboxyle ou par un cycle benzénique condensé en position 5 et qui peut lui-même porter des groupes carboxyle ou amino.
R¹³ représente l'hydrogène, un groupe méthyle ou éthyle et
R¹⁴ représente un groupe -(alkyle en C₁-C₄)-OH, -(alkyle en C₁-C₄)-NH₂ ou (alkyle en C₁-C₄)-COOH.
R¹³ et R¹⁴ pouvant en outre former ensemble et avec l'atome d'azote dont ils sont substituants un cycle morpholine ou pipérazine qui peut être substitué par des groupes méthyle, des groupes phényle, ou des groupes méthyle et phényle.

5. Dérivés de la coumarine de formule :

\[\text{R}^1 \quad \text{R}^{22} \quad \text{N} \quad \text{R}^{13} \]
dans laquelle

R¹, R¹³ et R¹⁴ ont les significations indiquées dans la revendication 4 et
R²² représente un groupe phényle ou un groupe thiazole relié en position 2, le groupe phényle pouvant porter des substituants para-carboxyle, para-amino, para-NH-alkyle en C₁-C₄, para-CH₂-NH₂, cyano, méthyle ou éthyle, et le groupe thiazole pouvant être substitué par le chlore, un groupe cyano ou carboxyle ou un cycle benzénique condensé sur les positions 4 et 5 et
qui peut lui-même porter des substituants carboxyles ou amino.

6. Utilisation des dérivés de la coumarine selon revendication 1 pour la coloration de composés possédant une activité biologique.