EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 18.09.1996 Bulletin 1996/38

(21) Application number: 90850372.5

(22) Date of filing: 14.11.1990

(54) Cutting insert of sintered hard alloy
Schneideinsatz aus gesintertem Hartmetall
Plaquette de coupe en alliage dur fritté

(84) Designated Contracting States:
AT DE FR GB IT SE

(30) Priority: 15.11.1989 SE 8903835

(43) Date of publication of application: 22.05.1991 Bulletin 1991/21

(73) Proprietor: SANDVIK AKTIEBOLAG
811 81 Sandviken (SE)

(72) Inventors:
• Westergren, Kenneth
 S-126 58 Hägersten (SE)

• Weinl, Gerold
 S-125 31 Ålsjö (SE)
• Oskarsson, Rolf
 S-144 00 Rönninge (SE)

(74) Representative: Östlund, Alf Olof Anders et al
Sandvik AB
Patent Department
811 81 Sandviken (SE)

(56) References cited:
• E. KLAR: "Metals Handbook", 9th edition vol. 7:
 "Powder metallurgy", 1984, pages 296-307,
 American Society for Metals, Metals Park, Ohio,
 US

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 76001 PARIS (FR)
Description

The present invention relates to cutting inserts based on carbonitride alloys particularly useful in tools for chip-forming machining such as turning and milling.

It is generally known in the cemented carbide industry that surface defects such as cracks, pores etc. near to a working cutting edge can have a negative influence on the efficiency of cutting tools. Cemented carbide usually means sintered hard alloys based upon tungsten carbide (WC), cobalt (Co) and cubic carbides such as TiC, TaC and NbC. A group of materials being used to-day mainly for finishing are titanium-based carbonitride alloys colloquially often named cermet. The hard phase of these alloys essentially consists of cubic phases of so-called B1-type of TiC-TiN being wholly or partly alloyed with other carbide- or nitride-forming elements such as W, Mo, Ta, Nb, V, Hf, Cr and Zr. The hard constituents are usually present as more or less rounded particles with core-rim structure but can also be present as needle- or disk-shaped monocrystals. By suitable choice of raw materials and/or manufacturing method the core-rim structure can be modified so that desired properties are obtained. The binder phase consists of one or more of the metals Fe, Co and Ni of the iron group, usually Ni or Ni+Co. Often the binder phase is alloyed with one or more of the carbide- or nitride-forming elements. Other hard phases than the cubic nitrides and carbides can occur e.g. WC. The mentioned alloys are in their nature considerably more brittle than the classic cemented carbide essentially due to the fact that the wetting between titanium carbide and the binder phase - consisting of either merely nickel or of nickel and cobalt - is not as good as that between tungsten carbide and cobalt.

Furthermore, it can be observed that these carbonitride alloys are seen relatively as more fine-grained than "normal" cemented carbide. This essentially depends upon the fact that the actual powder is more difficultly ground than that of cemented carbide, is coming from more fine-grained raw materials and/or has less disposition towards grain growth. Fine-grained powder is more difficult to press to presodies than less difficulty ground powder because of i.e. a. spring-back.

Titanium-based carbonitride alloys also often contain, intentionally or unintentionally, a surface zone with another composition than the rest of the material being up to some 100 µm in width. Hard constituents such as carbides, nitrides and/or carbonitrides of titanium have a much greater thermal expansion coefficient than tungsten carbide. As the amounts of the hard constituents as well as those of the binder phase are about the same, the titanium carbonitride alloys have a considerably greater thermal expansion coefficient than ordinary cemented carbide. This causes a titanium carbide pressed body to expand more relatively than a cemented carbide pressed body during heating to sintering temperature.

From the above, and from other additional factors, it is realized that it is considerably more difficult to make dense bodies of carbonitride alloys being free of defects than of cemented carbide i.e. because cracks or other weaknesses from the pressing have much greater tendencies to open during the run up to the sintering temperature. This is particularly applicable at complicated geometrical forms having sudden "staple" regarding relative thickness differences. As carbonitride alloys furthermore are brittle by their nature, a disastrous influence on the toughness behaviour can be expected for sintered cutting inserts of carbonitride alloys if they have defects of the above mentioned kind near to a working edge.

It has now surprisingly been found that cutting inserts of titanium-based carbonitrides which have been given defects usually in the form of cracks according to above by non-uniform powder filling and/or pressing, see Fig. 1, have considerably better efficiency than corresponding cutting inserts without defects, see Fig. 2. This result is contrary to what can be expected. It has in metallographic examinations of a sample cut perpendicularly to the cracks been found that these have partly "healed" during the sintering, see Fig. 3 and 4, i.e. been rounded and now have an "inner surface" consisting essentially of binder phase. "Sharp", not partly healed cracks are naturally considerably more dangerous for the toughness behaviour.

In testing such material the earlier described effects were obtained i.e. better edge toughness behaviour in materials with defects in the form of surface reliefs and cracks than in "perfect" materials. The material according to the invention is thus better because strains have dissolved and the working edge due to the higher degree of compaction at the pressing been given better properties in sintered condition in the form of maintained sharpness and less tendency to chippings. In the case of titanium carbonitride alloys a degenerated edge often leads to rapid and major failures.

Because the cracks have at least partly healed, their negative influence has been greatly decreased and reduced to surface defects of more cosmic nature, but should probably still have a strongly brittle effect. Thus, it can only partly be explained why they do not have any considerable weakening influence but first of all why those edges function better than those without defects of mentioned kind.

Furthermore, it has been found that cutting inserts showing cracks and surface reliefs according to the earlier description have non-uniformly compacted edges from the pressing. According to established knowledge in the cemented carbide domain a uniform powder filling and an even compaction to the same relative density in all the compressed body have been aimed at - as far as possible - in order to obtain edges free of defects and without weaknesses reducing the toughness. Contrary to this established aim it has now been found that non-uniformly compacted edges
show a better behaviour. The non-uniformity shall naturally not be arbitrary. A higher degree of compaction has to be created outmost in the working cutting edge itself. These non-uniformities gradually lead to stresses in the material as it begins to expand non-uniformly when the temperature is increased and the strains are dissolved often giving rise to cracks during the run to the sintering temperature. Said temperature is in the interval 1350-1500 °C for the titanium-based carbonitride alloys involved in the present invention. Said "run-up" cracks are smoothed and rounded, i.e. partly healed, during the sintering period when liquid material is present. This can later be established by means of ground samples such as discussed above in Fig. 3 and 4.

According to the invention there is thus now available a cutting insert, preferably for chipforming machining, which in the pressing but not after the sintering than that of surrounding material. As a consequence the cutting inserts have usually obtained cracks and surface reliefs. The cutting inserts are of a material consisting of at least 50 % by volume of carbonitrides of metals from groups IVA, VA or VIA in the periodic system or mixtures thereof and a binder phase consisting of Co, Ni and/or Fe. The mentioned cracks are about 2-10 µm, preferably about 5 µm wide and up to 500 µm, preferably 50-400 µm deep. They are lying as a band of smaller cracks >1 mm long or as a long interconnecting crack. The cracks occur on the rake face, particularly on the chipbreaker, close to the working edge but can also go around the whole cutting insert. Cracks can also be present on the clearance face. They are often symmetrical with respect to the cutting insert. The crack wall is covered by a 1-5 µm thick layer of binder phase and the structure next to the crack is enriched in binder phase.

The invention is particularly applicable to complicated cutting inserts with sintered-in chip-breakers. Examples of an intersection of such a geometry is shown in Fig. 5. When chipbreakers are used the cracks are preferably situated at the bottom of the chipbreaker groove.

Cutting inserts according to the invention can naturally be coated with one or more hard layers of TiC, TiN, TiCN, Al₂O₃ etc. by known technique.

The invention also relates to a method of making cutting inserts by powder metallurgical means, pressing and sintering of a material consisting of at least 50 % by volume of carbonitrides of metals from groups IVA, VA or VIA of the periodic system or mixtures thereof and a binder phase consisting of Co, Ni and/or Fe, at which the powder at the pressing is given a nonuniform compaction so that the pressed body has a higher relative density in those areas which are to form the working edges in the finally sintered cutting insert than in the surrounding material.

Example 1

A sintered carbonitride alloy with the following composition (in % by weight): Co 10.8, Ni 5.4, WC 15.9, TiC 28.8, TiN 19.6, TaC 6.3, VC 3.9, Mo₂C 9.3 has been used to make cutting inserts according to the invention. (The composition is for the sake of simplicity given as elementary raw materials even if duplex ones are used e.g. (Ti,Ta)C, Ti(C,N) and/or (Ti,Ta)(C,N).) Used raw materials having the grain size 1-10 µm were milled for 50 hours in a conventional cemented carbide mill (ball mill) with hard-metal coolants as milling bodies. In connection with the milling 4 % by weight of pressing medium (polyethylene glycol) was added. After drying of the powder in usual ways, spray-drying in inert atmosphere, cutting inserts type SnMG 120412-MF were pressed with a pressure usually exceeding 150 MPa. During the pressing the so called counter-holding was reduced so that a non-uniform compaction according to above description existed. The result was that surface defects were later obtained in the sintered material in the form of cracks situated close to the working part of the edge. The cutting inserts were blasted after the sintering.

The basic toughness of the cutting inserts was tested in an intermittent cutting operation of a package of SS 1672, Fig. 6, with the following cutting data:

Cutting speed: 70 m/min
Feed: 0.2 mm/rev. (i=1.0)
Cutting depth: 1.5 mm

The value i=1.0 states that the feed is doubled in one minute from the given start value, (0.2). The test is stopped after 3 min. if no failure has happened.

30 edges with cracks and 30 without cracks were tested against each other with the following results:

<table>
<thead>
<tr>
<th>Inserts without cracks</th>
<th>Relative feed at 50 % failure frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inserts with cracks acc. to inv.</td>
<td>1.33</td>
</tr>
</tbody>
</table>

In no case failure occurred in relation to or because of cracks.
Claims

1. Cutting insert of a material comprising at least 50 % by volume of carbonitrides of metals from groups IVA, VA or VIA in the periodic system or mixtures thereof and a binder phase comprising Co, Ni and/or Fe, characterised in that it contains surface defects on the rake face in the form of cracks having a width of 2-10 μm and a depth of up to 500 μm, resulting from that a pressbody of said material has been given non-uniform compaction so that the working edges after the pressing but not after the sintering have had a higher relative density than surrounding material.

2. Cutting insert according to claim 1, characterized in that the material is a sintered titanium-based carbonitride alloy.

3. Method of making a cutting insert by powder metallurgical means of a material comprising at least 50 % by volume of carbonitrides of metals from groups IVA, VA or VIA in the periodic system or mixtures thereof and a binder phase comprising Co, Ni and/or Fe, characterized in that the powder is given non-uniform compaction at the pressing so that the pressbody has a higher relative density in those areas which are to form the working edges in the finally sintered cutting insert than in the surrounding material.

Patentansprüche

2. Schneideinsatz nach Anspruch 1, dadurch gekennzeichnet, daß das Material eine gesinterte Carbonitridelegie rung auf Titanbasis ist.

Revindications

1. Plaquette de coupe faite d'un matériau comprenant au moins 50 % en volume de carbonitrures de métaux des groupes IVA, VA ou VIA du tableau périodique ou de mélanges de ceux-ci, et une phase liante comprenant Co, Ni et/ou Fe, caractérisée en ce qu'elle contient des défauts de surface sur la face de coupe sous forme de crêtes ayant une largeur de 2 à 10 μm et une profondeur de jusqu'à 500 μm, provenant de ce qu'un corps comprimé dudit matériau a subi un compactage non-uniforme, de sorte que les arêtes actives, après la compression, mais pas après le frittage, ont eu une densité relative plus élevée que le matériau environnant.

2. Plaquette de coupe selon la revendication 1, caractérisée en ce que le matériau est un alliage de carbonitrures à base de titane fritté.

3. Procédé de fabrication d'une plaquette de coupe par moyens de métallurgie des poudres à partir d'un matériau comprenant au moins 50 % en volume de carbonitrures de métaux des groupes IVA, VA ou VIA du tableau périodique ou de mélanges de ceux-ci, et une phase liante comprenant Co, Ni, et/ou Fe, caractérisé en ce que la poudre subit un compactage non-uniforme lors de la compression, de sorte que le corps comprimé présente une densité relative plus élevée dans les zones qui doivent former les arêtes actives de
la plaquette de coupe ensuite frittée que dans le matériau environnant.