EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 14.12.94 Int. Cl.5: B66B 19/00, B66B 7/02
Application number: 90311783.6
Date of filing: 26.10.90

Mount system for elevator guide rails.

Priority: 26.10.89 US 427055
Date of publication of application: 02.05.91 Bulletin 91/18
Publication of the grant of the patent: 14.12.94 Bulletin 94/50
Designated Contracting States: DE ES FR GB IT

References cited:
EP-A- 0 149 773
US-A- 3 196 642
US-A- 3 948 358
US-A- 4 079 817
US-A- 4 593 794

Proprietor: OTIS ELEVATOR COMPANY
10 Farm Springs
Farmington, CT 06032 (US)

Inventor: Garrido, Alfonso
Principe de Vergara, 28
E-28001 Madrid (ES)
Inventor: Sevilleja, Jose
La del Manojo de Rosas, 95
E-28041 Madrid (ES)
Inventor: Cabanas, Julian
Plaza de la Regenta, 8
Rivas-Vaciamadrid, Madrid (ES)

Representative: Leale, Robin George et al
FRANK B. DEHN & CO.
Imperial House
15-19 Kingsway
London WC2B 6UZ (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to an improved mount assembly for mounting elevator guide rails in an elevator hoistway. More specifically, the mount assembly of this invention provides for a more stable guide rail securement without the addition of further structural building components.

Most modern multistory buildings worldwide are constructed with horizontal structural beams which are spaced apart a vertical distance of about three meters. US-A-4593794 illustrates an elevator hoistway in such a building provided with vertical guide rails in which the rails are secured to the walls of the hoistway. However, more typically the horizontal structural beams are used for anchoring the elevator guide rails in the building hoistways. To this end, steel beams will be fixed to the structural beams by brackets, and the guide rail mounting clip assemblies will be fastened to the steel beams. The guide rails will then be clipped to the clip assemblies. The brackets, steel beams and clip assembly plates are then all welded together.

The three meter vertical spacing of the building’s structural beams can create problems relative to the lateral stiffness of the guide rails. These problems have been addressed in two ways. One solution to the problem of lateral guide rail flexure is to use heavier guide rails which are inherently more stiff. These guide rails are more costly, and are more difficult to install and support due to their increased weight. A more common solution to the problem has been to fasten intervening horizontal steel beams to the building structure midway between each of the normal building structural beams, and to use the intervening beams also to carry auxiliary steel support beams which have rail clip assemblies on them. The rail clips in the latter case will have a vertical spacing of 1.5 meters, and conventional guide rails can thus be used. The latter solution, however, also increases cost and delays elevator installation because of the additional structural beams which must be installed.

It is therefore an object of this invention to provide an improved elevator guide rail mounting system for use in reducing lateral flexure of guide rails in modern building structures.

According to the invention there is provided an elevator hoistway having spaced apart horizontal building structural beams and a mount assembly for mounting an elevator guide rail, said mount assembly comprising:

a) a basal beam connected to a said structural beam, said basal beam extending vertically in the hoistway and including upper and lower ends thereof offset upwardly and downwardly of the structural beam respectively;
b) elongated extension arms mounted on said upper and lower ends of said basal beam extending horizontally into the hoistway above and below the structural beam; and
c) a guide rail mounting clip assembly secured to each of said extension arms at an end thereof distal of said basal beam, said guide rail mounting clip assembly being operable to mount a guide rail in place in the hoistway.

Preferably the elevator hoistway further comprises a guide rail mounted on said mount assembly, two guide rail mounting clip assemblies being provided between adjacent structural beams in the hoistway.

Preferably rail mounting clip assemblies, mounted on the ends of the extension arms, are provided for each horizontal structural beam in the hoistway, thus, two vertically offset guide rail clip mounting assemblies may be provided, one above and one below each structural beam. Thus each gap of 3 meters between adjacent structural beams may contain two guide rail clip mounting assemblies so that the vertical distance between adjacent guide rail clip mounting assemblies is significantly less than the 3 meter distance between the horizontal structural beams. Once assembled, the entire mounting assembly can be welded together for increased rigidity. The use of this mounting system providing two guide rail clip assemblies for each structural building beam provides increased resistance to rail flexure and allows the use of standard guide rails in the hoistway without the need for additional structural members being connected to the hoistway walls.

The following is a detailed description of a preferred embodiment of the invention given by way of example only, and taken in conjunction with the accompanying drawings, in which:

FIGURE 1 is a fragmented elevational view of an elevator hoistway showing the guide rail mount assemblies of this invention mounted on the horizontal structural beams;

FIGURE 2 is a detailed plan view of one of the rail clip assemblies; and

FIGURE 3 is a plan view of the hoistway showing the positioning of the rails and mount assemblies relative to the hoistway walls.

Referring now to the drawings, there is shown in FIG. 1 a portion of an elevator hoistway denoted generally by the numeral 2, which hoistway 2 has a back wall 4 which includes vertically spaced-apart horizontal structural beams 6 which form a part of the building itself. The vertical distance A between the mid plane of adjacent ones of the beams 6 is generally about 3 meters. Each of the beams 6 has a bracket 8 fastened thereto. A vertically elongated basal beam 10 is fastened to each bracket 8 with the ends of the beams 10 projecting upwardly and
downwardly past the structural beams 6. Extension arms 12 are secured to each end of the basal beams 10. Guide rail clip assemblies 14 are secured to the extension arms 12, and the guide rail 16 is held in place in the hoistway by the clip assemblies 14.

Details of a clip assembly 14 are shown in FIG. 2. The clip assembly 14 includes a base plate 18 which is welded to the extension arms 12. There are four generally Z-shaped clips 20 which are secured to the base plate 18 by bolts 22, and which overlap the sides of the rail 16 to hold the latter in place.

Referring to FIG. 3, the relative positions of the assembly in the hoistway 2 are shown. It will be noted that the extension arms 12 are positioned closely adjacent to the side walls 3 proximate the wall 4, the elevator car C (shown in phantom) being cantilever mounted in the hoistway 2.

It will be appreciated that the mounting assembly of this invention allows two sets of guide rail mounting clip assemblies to be used for each horizontal structural beam. This advantage reduces the vertical distance between adjacent rail clips thus stiffening the rails against lateral flexure. The mounting assemblies are of simple construction, strong and yet relatively lightweight and easily installed, as compared to the prior art alternatives. As a result, conventional guide rails can be used with the mounting assembly of this invention.

Since many changes and variations of the disclosed embodiment of the invention may be made without departing from the inventive concept, it is not intended to limit the invention otherwise than as required by the appended claims.

Claims

1. An elevator hoistway (2) having spaced apart horizontal building structural beams (6) and a mount assembly for mounting an elevator guide rail (16), said mount assembly comprising:
 a) a basal beam (10) connected to a said structural beam (6), said basal beam (10) extending vertically in the hoistway (2) and including upper and lower ends thereof offset upwardly and downwardly of the structural beam (6) respectively;
 b) elongated extension arms (12) mounted on said upper and lower ends of said basal beam (10) extending horizontally into the hoistway above and below the structural beam (6); and
 c) a guide rail mounting clip assembly (14) secured to each of said extension arms (12) at an end thereof distal of said basal beam (10), said guide rail mounting clip assembly being operable to mount a guide rail (16) in place in the elevator hoistway (2).

2. An elevator hoistway (2) as claimed in claim 1, further comprising a guide rail (16) mounted on said mount assembly, two guide rail mounting clip assemblies (14) being provided between adjacent structural beams (6) in the elevator hoistway (2).

3. An elevator hoistway (2) as claimed in claim 2, wherein said clip assemblies (14) are connected to said structural beams (6) adjacent each side wall of the elevator hoistway (2) and mount two guide rails (16) in the hoistway.

4. An elevator hoistway (2) as claimed in claim 2 or 3, wherein each of said structural beams (6) is provided with one clip assembly (14) or two clip assemblies (14) respectively.

Patentansprüche

1. Förderweg (2) eines Aufzugs, enthaltend von einander beabstandet angeordnete Strukturträger (6) eines Gebäudes und eine Befestigungseinrichtung zur Befestigung einer Führungsschiene (16) des Aufzugs, wobei die genannte Befestigungseinrichtung enthält:
 a) einen Hauptträger (10), welcher mit dem genannten Strukturträger (6) verbunden ist, wobei der genannte Hauptträger (10) sich vertikal in dem Förderweg (2) erstreckt und obere und untere Enden aufweist, welche aufwärts und abwärts des Strukturträgers (6) sieh entsprechend erstrecken;
 b) verlängerte Verlängerungarme (12), welche an den genannten oberen und unteren Enden des genannten Hauptträgers (10) sich horizontal in den Förderweg oberhalb und unterhalb des Strukturträgers (6) erstrecken; und
 c) eine zur Befestigung der Führungsschiene vorgesehene Halteeinrichtung (14), welche an jedem Ende der genannten Verlängerungarme (12) an deren Enden befestigt ist, und zwar in einem Abstand vom genannten Hauptträger (10), wobei die genannte Halteeinrichtung zur Befestigung der Führungsschiene derart funktionsfähig ist, daß die Führungsschiene (16) im Förderweg (2) des Aufzugs an der erforderlichen Stelle befestigt werden kann.

2. Förderweg (2) eines Aufzugs nach Anspruch 1, weiterhin enthaltend eine Führungsschiene (16), welche an der genannten Befestigungs einrichtung befestigt ist, zwei zur Befestigung
sont reliés auxdites poutres de structure d'immeuble (6) adjacentes à chaque paroi latérale de ladite cage d'ascenseur (2), et supportent deux rails de guidage (16) dans la cage d'ascenseur.

4. Cage d'ascenseur (2) selon la revendication 2 ou la revendication 3, dans laquelle chacune desdites poutres de structure d'immeuble (6) est pourvue respectivement, d'un ensemble à griffes (14) ou de deux ensembles à griffes (14).

Revendications

1. Cage d'ascenseur (2) comportant des poutres de structure d'immeuble (6) horizontales et espacées et un ensemble de montage pour monter un rail de guidage d'ascenseur (16), ledit ensemble de montage comprenant : a) une poutre de base (10) reliée à ladite poutre de structure, ladite poutre de base (10) s'étendant verticalement dans la cage (2) et comprenant des extrémités supérieure et inférieure correspondantes, respectivement décalées vers le haut et vers le bas de la poutre de structure (6); b) des bras d'extension allongés (12) montés sur lesdites extrémités inférieure et supérieure de ladite poutre de base (10) et s'étendant horizontalement dans la cage au-dessus et en dessous de la poutre de structure (6); et c) un ensemble à griffe de montage pour rail de guidage (14) fixé à chaque bras d'extension (12) à une extrémité la plus éloignée de ladite poutre de base (10), ledit ensemble à griffe de montage pour rail de guidage étant utilisable pour monter en place un rail de guidage (16) dans la cage d'ascenseur (2).

2. Cage d'ascenseur (2) selon la revendication 1, comprenant en outre un rail de guidage (16) monté sur ledit ensemble de montage, deux ensembles à griffe de montage pour rail de guidage (14) étant prévus entre des poutres de structure d'immeuble adjacentes (6) dans la cage d'ascenseur (2).

3. Cage d'ascenseur (2) selon la revendication 2, dans laquelle lesdits ensembles à griffes (14)