EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 13.09.95 Bulletin 95/37

Int. Cl. 6: H01L 29/78

Application number: 90311059.1

Date of filing: 09.10.90

MOS field effect transistor and method for manufacturing same.

Priority: 09.10.89 JP 262059/89

Date of publication of application: 17.04.91 Bulletin 91/16

Publication of the grant of the patent: 13.09.95 Bulletin 95/37

Designated Contracting States: DE FR GB

References cited:

References cited:

Proprietor: KABUSHIKI KAISHA TOSHIBA
72, Horikawa-cho,
Saiwai-ku
Kawasaki-shi, Kanagawa-ken 210, Tokyo (JP)

Inventor: Mizuno, Tomohisa, c/o Intellectual Property Div.
Kabushiki Kaisha Toshiba,
1-1 Shibaura 1-chome
Minato-ku, Tokyo 105 (JP)

Representative: Freed, Arthur Woolf et al
MARKS & CLERK,
57-60 Lincoln's Inn Fields
London WC2A 3LS (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates to an MOS field-effect transistor having an LDD structure.

As an MOS field effect transistor which is suitable for miniaturization of electronic devices, a transistor having a lightly doped drain structure (hereinafter referred to as an "LDD transistor") is well known in the art. Fig. 1 is a sectional view showing the element structure of a conventional LDD transistor. As is shown in Fig. 1, a gate electrode 33 is formed on a p-type silicon semiconductor substrate 31, such that a silicon oxide film 32 having a thickness of e.g. 150 Å is interposed therebetween. Two n'-type regions 34 and 35 each having a comparatively low impurity concentration and two n''-type regions 37 and 38 each having a comparatively high impurity concentration, are formed inside the substrate 31. The n''-type regions 34 and 35 are formed by ion implantation of n'-type impurities by using the gate electrode 33 as a mask, while the n''-type regions 37 and 38 are formed by ion implantation of n-type impurities by using a CVD oxide film 36 located on the side wall of the gate electrode 33 as a mask. The n'-type region 34 and the n''-type region 37 jointly constitute a drain region, while the n'-type region 35 and n''-type region 38 jointly constitute a source region.

Even if a high voltage is applied to the drain region of the above LDD transistor, the intensity of a drain field is reduced, due to the existence of the low-impurity concentration n'-type region 34. For this reason, the impact ionization in the vicinity of the drain is suppressed when current flows between the source and drain regions. As a result, the number of hot carriers generated is small, so that high reliability is achieved.

In the LDD transistor, however, the low-impurity concentration n'-type region 34 is located between the source and drain regions. Since, therefore, a depletion layer is constantly formed inside the n'-type region 34, the current-driving ability of the LDD transistor is not as good as that of an ordinary-structure MOS transistor. Thus, it is impossible for the LDD transistor to produce a drain current in large quantities.

In an effort to improve the current-driving ability, a so-called inverse "T" type LDD transistor has been developed, wherein the gate electrode is in the form of an inverse "T". However, the manufacturing process of this type of LDD transistor is complex, since the gate electrode has to be worked in the shape of an inverse "T".

IDEM 1988, pp 234-237 discloses a MOS transistor device with a side wall structure to the gate thereof according to the preamble of claim 1.

Accordingly, the first object of the present invention is to provide an MOS field-effect transistor which enables miniaturization of an element to the same degree as in the prior art, has improved ability to drive current, and is easy to manufacture. The second object of the present invention is to provide a method for manufacturing such an MOS field effect transistor.

To achieve the first object, the present invention provides an MOS field effect transistor according to claim 1.

To achieve the second object, the present invention provides an MOS field effect transistor-manufacturing method according to claim 6.

Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

The accompanying drawing, which is incorporated in and constitutes a part of the specification, illustrates a presently preferred embodiment of the invention and, together with the general description given above and the detailed description of the preferred embodiment given below, serves to explain the principles of the invention.

Fig. 1 is a sectional view showing the element structure of a conventional LDD transistor;

Fig. 2 is a sectional view showing the element structure of an LDD transistor according to one embodiment of the present invention;

Figs. 3 and 4 are graphs showing the characteristics of the LDD transistor of the embodiment;

and

Figs. 5A-5F are sectional views illustrating a process in which the LDD transistor of the embodiment is manufactured.

Referring to Fig. 2, a silicon oxide film 12 having a thickness of e.g. 6 nm (60 Å) is formed on part of the surface of a p-type silicon semiconductor substrate 11. A polysilicon gate electrode 13 is formed on the silicon oxide film 12. The gate electrode 13 has reduced resistance since a conductive material, such as impurities, is introduced into it. A silicon oxide film 14 having a thickness of e.g. 9 nm (90 Å) is formed on the surfaces of both the substrate 11 and the gate electrode 13. On a pair of opposing side walls of the gate electrode 13, an insulation film 15 is formed, with the silicon oxide film 14 interposed. The insulation film 15 is formed of a material whose dielectric constant is at least larger than the dielectric constant of silicon oxide. For example, the insulation film 15 is formed of tantalum oxide (Ta2O5). In general, the larger the dielectric constant of an insulation film is, the smaller will be the amount of band gap energy. Thus, the insulation film 15 has a smaller amount of band gap energy than that of the silicon oxide 14. Parenthetically, the band gap energy of the silicon oxide film 14 is approximately 9 eV.
A drain region D and a source region S are formed in a surface region of the substrate 11. The drain region D is made up of: an n⁺ region 16 which contains a comparatively low concentration of phosphorous (P) as n-type impurities; and an n⁺-type region 17 which is adjacent to the n⁺-type region 16 and contains a comparatively high concentration of arsenic (As) as n-type impurities. Likewise, the source region S is made up of: an n⁻ region 18 which contains a comparatively low concentration of phosphorous (P); and an n⁻-type region 19 which is adjacent to the n⁻-type region 18 and contains a comparatively high concentration of arsenic (As).

As is shown in Fig. 2, the n⁺-type region 17 of the drain region and the n⁻-type region 19 of the source region S are located on the laterally outer sides than the side walls of the gate electrode 13.

In the LDD transistor having the above-mentioned structure, the insulation film 15 which is formed of a material having a large dielectric constant is located on the side walls of the gate electrode 13. When the gate electrode 13 is applied with a predetermined voltage of positive polarity, an intense electric field is generated from the side faces of the gate electrode toward the substrate 11.

To examine the characteristics of an LDD transistor having the structure illustrated in Fig. 2, two-dimensional device simulation was carried out. The results of this simulation are shown in Fig. 3. In the graph shown in Fig. 3, the origin corresponds to a point located in the boundary between the gate electrode 13 and the drain region D, the abscissa represents the horizontal distance X (μm) by which a given point is located away from the point of the boundary, and the ordinate represents the field intensity (MV/cm) measured at the given point. In the two-dimensional device simulation, the gate length was 0.5 μm, the gate voltage was 3V, and the drain voltage was 6V. In the graph shown in Fig. 3, the data indicated by the solid lines corresponds to a device embodying the present invention, wherein the insulation films 15 on the side walls of the gate electrode 13 are formed of tantalum oxide whose dielectric constant ε is 30. The data indicated by the dot-dash broken lines corresponds to a device wherein the insulation films 15 are formed of silicon nitride (Si₃N₄) whose dielectric constant ε is 7.5. The data indicated by the long-stroke broken lines corresponds to a device wherein the insulation films 15 are formed of silicon oxide (SiO₂) whose dielectric constant ε is 3.9.

In the transistor of the embodiment device comprising the tantalum oxide insulation film 15, the intensity of the drain electric field is considerably reduced in the neighborhood of the gate electrode, as is seen from the portion circled in the Fig. 3 graph. This phenomenon is attributable to the fact that the insulation film 15 (which has a large dielectric constant) reduces the maximum electric field acting in the plane of the silicon substrate surface and narrows the range of the maximum electric field. Since the intensity of the drain electric field is considerably reduced in the neighborhood of the gate electrode, the impact ionization is suppressed in the vicinity of the drain, even when an ON current is made to flow between the source and drain regions by providing a predetermined potential difference therebetween. Therefore, the generation of hot carriers is suppressed, so that high reliability of the device is attained.

In connection of the embodiment device, it should be noted that the 9 nm (90 Å)-thick silicon oxide film 14 is located between the drain region D and the insulation film 15. The thickness of the silicon oxide film 14 is far greater than the length (length: about 20 Å) of the mean free path of hot carriers which may be generated in the vicinity of the drain region as a result of the impact ionization. In addition, the band gap energy of the silicon oxide film 14 is as high as 9 eV. Therefore, even if hot carriers are generated in the vicinity of the drain, the hot carriers hardly pass through the silicon oxide film 14 or reach the insulation film 15. As a result, very few hot carriers are trapped in the interior of the insulation film 15 or in the interface between the insulation films 14 and 15. Consequently, the reliability of the device is improved.

Like the prior art device, the embodiment device is of an LDD structure. Thus, an element can be miniaturized to substantially the same degree as in the prior art.

To further examine the characteristics of the LDD transistor having the structure illustrated in Fig. 2, two-dimensional device simulation was carried out, with the gate voltage and the drain voltage both set to be 3V. The results of this simulation are shown in Fig. 4. In the graph shown in Fig. 4, the origin corresponds to a point located in the boundary between the gate electrode 13 and the source region S, the abscissa represents the horizontal distance X (μm) by which a given point is located away from the point of the boundary, and the ordinate represents the electron density (numbers/cm²) measured at the given point. In the graph shown in Fig. 4, the data indicated by the solid lines corresponds to a device wherein the insulation film 15 is formed of tantalum oxide whose dielectric constant ε is 30, the data indicated by the dot-dash broken lines corresponds to a device wherein the insulation film 15 is formed of silicon nitride (Si₃N₄) whose dielectric constant ε is 7.5, the data indicated by the long-stroke broken lines corresponds to a device wherein the insulation film 15 is formed of silicon nitride (Si₃N₄) whose dielectric constant ε is 3.9, and the data indicated by the short-stroke broken
lines corresponds to a device wherein no insulation film is formed and a vacuum state (dielectric constant ε: 1.0) is assumed.

As is apparent from the graph shown in Fig. 4, the electron density in the n'-type layer 18 of the source region S increases with an increase in the intensity of the electric field generated from the side of the gate electrode. However, the electron density in the source region S is dependent on the dielectric constant ε of the insulation film 15. In other words, the larger the dielectric constant ε of the insulation film 15 is, the higher the electron density in the source region S is. In the case where the insulation film 15 is formed of tantalum oxide (whose dielectric constant ε is as large as 30), the range of the depletion layer inside the n'-type region 17 is narrow. For this reason, the parasitic resistance of the n'-type region of the embodiment device is decreased, thus increasing the drain current. In short, the MOS transistor of the embodiment has high ability to drive current.

In the embodiment device mentioned above, the insulation film 15 located on the side walls of the gate electrode 13 is formed of tantalum oxide having a large dielectric constant ε, and the silicon oxide film 14, whose thickness is far greater than the length of the mean free path of hot carriers, is located between the insulation film 15 and the drain region D. With this structure, both the hot carrier effect and the parasitic resistance can be suppressed. In addition, the hot carriers are prevented from entering the interior of the insulation film 15. Therefore, the embodiment device is very reliable and has high current-driving ability.

The method for manufacturing the above LDD transistor will now be described, with reference to Figs. 5A to 5F. In Figs. 5A-5F, the same reference numerals as in Fig. 2 are used to denote the structural elements corresponding to those shown in Fig. 2.

Referring first to Fig. 5A, the surface of a p-type silicon semiconductor substrate 11 is thermally oxidized, so as to form a 6 nm (60 Å)-thick silicon oxide film 12 on the entire surface of the substrate. Subsequently, a 0.2 μm-thick polysilicon layer is deposited over the resultant semiconductor structure by chemical vapor deposition (CVD). The silicon oxide layer 12 and the polysilicon layer jointly constitute a laminated film. Then, this laminated film is selectively removed, to thereby form a gate electrode 13 having a predetermined shape, as is shown in Fig. 5B. When the polysilicon layer is being deposited or has been deposited, n-type or p-type impurities are introduced, so that the resultant gate electrode 13 has reduced resistance. The impurities may be introduced after the gate electrode 13 is patterned into the predetermined shape.

As is shown in Fig. 5C, a 90 Å-thick silicon oxide film 14 is formed on the surface of the gate electrode 13 and that of the substrate 11 by thermal oxidation. Subsequently, by use of the gate electrode 13 as a mask, phosphorous (P) is ion-implanted into the substrate 11 by application of an acceleration voltage of 40 KeV and in a dose of 5 × 10¹³ atoms/cm², to thereby form n'-type regions 15 and 17 having a comparatively low impurity concentration.

As is shown in Fig. 5D, a tantalum oxide (Ta₂O₅) film 20 having a thickness of 0.15 μm is deposited by CVD over the semiconductor structure, including the surface of the gate electrode 13. The tantalum oxide film 20, thus deposited, is removed by reactive ion etching (RIE), such that the tantalum oxide film 20 is left only on a pair of opposing side walls of the gate electrode 13, as is shown in Fig. 5E. The tantalum oxide film 20 left on the opposing side walls constitutes an insulation film 15.

Then, by use of both the gate electrode 13 and the insulation film 15 as a mask, arsenic (As) is ion-implanted into the substrate 11 by application of an acceleration voltage of 40 KeV and in a dose of 5 × 10¹⁵ atoms/cm². As a result of this ion implantation, n'-type regions 17 and 19 having a comparatively high impurity concentration are formed in the substrate 11, as is shown in Fig. 5F. In this manner, the manufacture of the LDD transistor shown in Fig. 2 is completed.

The present invention is not limited to the embodiment mentioned above, and may be modified in various manners. The above embodiment was described, referring to the case where the insulation film 15 was formed of tantalum oxide. However, the insulation film 15 may be formed of any dielectric material as long as this material has a dielectric constant larger than ε = 7.5 and is not silicon nitride. In the above embodiment, the silicon oxide film 12 constitutes a gate insulation film, but this gate insulation film may be constituted by a laminated film made up of a silicon oxide film and a silicon nitride film. In other words, the gate insulation film may be either a so-called ONO film, a oxy-nitride film, or the like.

In the above explanation of the method of the embodiment, the low-impurity concentration n'-type regions 15 and 17 were described, with reference to Fig. 5C, as being formed by ion implantation after the formation of the silicon oxide film 14. However, the step of forming the n'-type regions 15 and 17 may be carried out first, being followed by the step of forming the silicon oxide film 14 over the semiconductor structure.

As described in the foregoing, the present invention can provide a MOS field effect transistor which enables miniaturization of an element to the same degree as in the prior art, has improved ability to drive current, and is easy to manufacture. The present invention can also provide a method for manufacturing such an MOS field effect transistor.

The invention is not limited to the specific details, representative devices, and illustrated examples shown and described herein. Accordingly, various
modifications may be made without departing from the scope of the present invention as defined by the appended claims.

Claims

1. An MOS field effect transistor, comprising:
 - a semiconductor substrate (11) of a first conductivity type;
 - a source region (S) and a drain region (D), both of a second conductivity type, which are formed inside the substrate and are isolated from each other by a predetermined distance;
 - a first insulation layer (12) formed on the substrate and located between the source region and the drain region;
 - a gate electrode conductive layer (13) formed on the first insulation layer;
 - a pair of second insulation layers (15) formed on opposing side walls of the gate electrode conductive layer, respectively; and
 - a third insulation layer (14) which is formed between the second insulation layers and the source and drain regions, and having a thickness greater than the length of a mean free path of hot carriers generated in the vicinity of the drain region and having a larger band gap energy than the second insulation layers (5), characterized in that: the pair of second insulation layers have a dielectric constant greater than 7.5, and are not made of silicon nitride.

2. An MOS field effect transistor according to claim 1, characterised in that each of said source region(s) and drain region (D) includes:
 - a first region (16, 18) which is of the second conductivity type and has a low impurity concentration; and
 - a second region (17, 19) which is of the second conductivity and has a high impurity concentration, said second region being in contact with the first region and located on an outer side of an end portion of the gate electrode conductive layer.

3. An MOS field effect transistor according to claim 1, characterized in that said third insulation layer (14) is formed of silicon oxide and has a thickness of not less than 2 nm.

4. An MOS field effect transistor according to claim 1, characterized in that said third insulation layer (14) has a thickness of 9 nm.

5. An MOS field effect transistor according to claim 1, characterized in that said second insulation layers (15) are formed of tantalum oxide.

6. A method for manufacturing an MOS field effect transistor according to any preceding claim, the method comprising the steps of:
 - forming a first insulation layer (12) on a semiconductor substrate of a first conductivity type;
 - depositing a conductive layer (13) on the first insulation layer;
 - selectively removing a laminated structure made up of the conductive layer and the first insulation layer, such that the laminated structure has a predetermined shape;
 - forming a second insulation layer (14), which is thicker than the first insulation layer, over the resultant semiconductor structure such that the second insulation layer is formed at least on the laminated structure;
 - forming a low-concentration impurity region (16, 18) in the substrate by introducing impurities of a second conductivity into the substrate at a low doping rate, with the laminated structure used as a mask;
 - depositing a third insulation layer (20), which has a dielectric constant greater than 7.5 and is not made of silicon nitride, over the semiconductor structure by chemical vapor deposition;
 - removing the third insulation layer by anisotropic etching such that the third insulation layer (15) is left on the opposing side walls of the conductive layer; and
 - forming a high-concentration impurity region (17, 19) in the substrate by introducing impurities of the second conductivity into the substrate, with the third insulation layer left on the opposing side walls of the conductive layer being used as a mask.

7. A method according to claim 6, characterized in that said second insulation layer (14) is formed of silicon oxide and has a thickness of not less than 2 nm.

8. A method according to claim 6, characterized in that said second insulation layer (14) has a thickness of 9 nm.

9. A method according to claim 6, characterized in that said third insulation layer (15) is formed of tantalum oxide.

Patentansprüche

1. MOS-Feldeffekttransistor, der folgende Komponenten aufweist:
 - ein Halbleitersubstrat (11) eines ersten Leitfähigkeitstyps;
ein Source-Gebiet (S) und ein Drain-Gebiet (D), beide von einem zweiten Leitfähigkeitsstyp, die innerhalb des Substrats gebildet werden und durch einen festgelegten Abstand voneinander isoliert sind:

eine erste Isolationsschicht (12), die auf dem Substrat gebildet wird und sich zwischen dem Source-Gebiet und dem Drain-Gebiet befindet;

eine leitende Gate-Elektrodenschicht (13), die auf der ersten Isolationsschicht gebildet wird;

ein Paar zweiter Isolationsschichten (15), die jeweils auf gegenüberliegenden Seitenwänden der leitenden Gate-Elektrodenschicht gebildet werden, und
die dritte Isolationsschicht (14), die zwischen den zweiten Isolationsschichten und dem Source-Gebiet und dem Drain-Gebiet gebildet wird und eine Stärke hat, die größer als die Länge einer mittleren freien Weglänge von Heißleitern ist, die in der Nähe des Drain-Gebiets gebildet werden, und die eine größere Bandlückenergie als die zweiten Isolationsschichten (15) hat, dadurch gekennzeichnet, daß das Paar der zweiten Isolationsschichten eine Dielektrizitätskonstante von mehr als 7,5 hat und nicht aus Siliziumnitrid hergestellt wird.

2. MOS-Feldeffekttransistor nach Anspruch 1, dadurch gekennzeichnet, daß jedes der Source-Gebiete (S) und Drain-Gebiete (D) folgende Komponenten einschließt:

ein erstes Gebiet (16, 18), das dem zweiten Leitfähigkeitsstyp entspricht und eine geringe Störstellenkonzentration hat, und
ein zweites Gebiet (17, 19), das dem zweiten Leitfähigkeitsstyp entspricht und eine hohe Störstellenkonzentration hat, wobei das zweite Gebiet mit dem ersten Gebiet in Kontakt ist und sich an einer Außenseite eines Endabschnitts der leitenden Gate-Elektrodenschicht befindet.

3. MOS-Feldeffekttransistor nach Anspruch 1, dadurch gekennzeichnet, daß die dritte Isolationsschicht (14) aus Siliziumoxid gebildet wird und eine Stärke nicht unter 2 nm hat.

4. MOS-Feldeffekttransistor nach Anspruch 1, dadurch gekennzeichnet, daß die dritte Isolationsschicht (14) eine Stärke von 9 nm hat.

5. MOS-Feldeffekttransistor nach Anspruch 1, dadurch gekennzeichnet, daß die zweiten Isolationsschichten (15) aus Tantaloxid gebildet werden.

6. Verfahren zur Herstellung eines MOS-Feldeffekttransitors nach einem der vorhergehenden Ansprüche, wobei das Verfahren folgende Schritte umfaßt:

 Bildung einer ersten Isolationsschicht (12) auf einem Halbleitersubstrat eines ersten Leitfähigkeitsstyps;

 Aufbringung einer leitenden Schicht (13) auf die erste Isolationsschicht;

 selektives Entfernen einer laminierten Struktur, die von der leitenden Schicht und der ersten Isolationsschicht gebildet wird, derart, daß die laminierte Struktur eine festgelegte Form hat;

 Bildung einer zweiten Isolationsschicht (14), die stärker als die erste Isolationsschicht ist, über der resultierenden Halbleiterstruktur, so daß die zweite Isolationsschicht wenigstens auf der laminierten Struktur gebildet wird;

 Bildung eines Gebietes mit geringer Störstellenkonzentration (16, 18) in dem Substrat durch das Einführen von Störstellen einer zweiten Leitfähigkeit mit einer niedrigen Dotierungsrate in das Substrat, wobei die laminierte Struktur als Maske genutzt wird;

 Aufbringen einer dritten Isolationsschicht (20), die eine Dielektrizitätskonstante von mehr als 7,5 hat und nicht aus Siliziumnitrid hergestellt wird, über der Halbleiterstruktur durch chemische Gasphasenabscheidung (CVD);

 Entfernen der dritten Isolationsschicht durch anisotropes Ätzen, derart, daß die dritte Isolationsschicht (15) auf den gegenüberliegenden Seitenwänden der leitenden Schicht verbleibt, und

 Bildung eines Gebietes mit hoher Störstellenkonzentration (17, 19) in dem Substrat durch das Einführen von Störstellen der zweiten Leitfähigkeit in das Substrat, wobei die dritte Isolationsschicht, die auf den gegenüberliegenden Seitenwänden der leitenden Schicht verbleiben ist, als Maske genutzt wird.

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die zweite Isolationsschicht (14) aus Siliziumoxid hergestellt wird und eine Stärke von nicht unter 2 nm hat.

8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die zweite Isolationsschicht (14) eine Stärke von 9 nm hat.

9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die dritte Isolationsschicht (15) aus Tantaloxid hergestellt wird.

Revendications

1. Transistor à effet de champ MOS comprenant:
un substrat semi-conducteur (11) d'un premier type de conductivité ;
une région de source (S) et une région de drain (D), ayant toutes les deux un deuxième type de conductivité, formées à l'intérieur du substrat et isolées l'une de l'autre d'une distance prédéterminée ;
une première couche isolante (12) formée sur le substrat et agencée entre la région de source et la région de drain ;
une couche conductrice à électrode de grille (13) formée sur la première couche isolante ;
une paire de deuxièmes couches isolantes (15) formées respectivement sur les parois latérales opposées de la couche conductrice à électrode de grille ; et
une troisième couche isolante (14), formée entre les deuxièmes couches isolantes et les régions de source et de drain, et ayant une épaisseur supérieure à la longueur d'un libre parcours moyen de porteurs chauds produits au voisinage de la région de drain et ayant une énergie de l'intervalle entre les bandes supérieure à celle des deuxièmes couches isolantes (15), caractérisé en ce que : la paire de deuxièmes couches isolantes ont une constante diélectrique supérieure à 7,5 et ne sont pas composées de nitride de silicium.

2. Transistor à effet de champ MOS selon la revendication 1, caractérisé en ce que chacune desdites régions de source (S) et de drain (D) englobe :
une première région (16, 18) du deuxième type de conductivité et ayant une faible concentration en impuretés ; et
une deuxième région (17, 19) du deuxième type de conductivité et ayant une concentration élevée en impuretés, ladite deuxième région étant en contact avec la première région et située sur un côté externe d'une partie d'extrémité de la couche conductrice à électrode de grille.

3. Transistor à effet de champ MOS selon la revendication 1, caractérisé en ce que ladite troisième couche isolante (14) est composée d'oxyde de silicium et a une épaisseur non inférieure à 2 nm.

4. Transistor à effet de champ MOS selon la revendication 1, caractérisé en ce que ladite troisième couche isolante (14) a une épaisseur de 9 nm.

5. Transistor à effet de champ MOS selon la revendication 1, caractérisé en ce que lesdites deuxièmes couches isolantes (15) sont composées d'oxyde de tantale.

6. Procédé de fabrication d'un transistor à effet de champ MOS selon l'une quelconque des revendications précédentes, le procédé comprenant les étapes ci-dessous :
formation d'une première couche isolante (12) sur un substrat semi-conducteur d'un premier type de conductivité ;
dépôt d'une couche conductrice (13) sur la première couche isolante ;
elimination sélective d'une structure stratifiée composée de la couche conductrice et de la première couche isolante, de sorte que la structure stratifiée a une forme prédéterminée ;
formation d'une deuxième couche isolante (14), plus épaisse que la première couche isolante, au-dessus de la structure semi-conductrice résultante, de sorte que la deuxième couche isolante est formée au moins sur la structure stratifiée ;
formation d'une région à faible concentration en impuretés (16, 18) dans le substrat par introduction d'impuretés d'un deuxième type de conductivité dans le substrat, avec un faible taux de dopage, la structure stratifiée étant utilisée comme masque ;
dépôt d'une troisième couche isolante (20) ayant une constante diélectrique supérieure à 7,5 et non composée de nitride de silicium au-dessus de la structure semi-conductrice par dépôt en phase vapeur (CVD) ;
elimination de la troisième couche isolante par gravure anisotrope de sorte que la troisième couche isolante (15) est maintenue sur les parois latérales opposées de la couche conductrice ; et
formation d'une région à concentration élevée en impuretés (17, 19) dans le substrat, par introduction d'impuretés du deuxième type de conductivité dans le substrat, la troisième couche isolante, maintenue sur les parois latérales opposées de la couche conductrice, étant utilisée comme masque.

7. Procédé selon la revendication 6, caractérisé en ce que ladite couche isolante (14) est composée d'oxyde de silicium et a une épaisseur non inférieure à 2 nm.

8. Procédé selon la revendication 6, caractérisé en ce que ladite deuxième couche isolante (14) a une épaisseur de 9 nm.

9. Procédé selon la revendication 6, caractérisé en ce que ladite troisième couche isolante (15) est composée d'oxyde de tantale.