EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 02.03.94 Int. Cl. A61C 7/00
Application number: 90905458.7
Date of filing: 03.04.90
International application number: PCT/EP90/00523
International publication number: WO 90/11731 (18.10.90 90/24)

MOBILE HINGE MEMBER AND ORTHODONTIC APPLIANCE USING IT.

Priority: 06.04.89 NO 891420
Date of publication of application: 03.04.91 Bulletin 91/14
Publication of the grant of the patent: 02.03.94 Bulletin 94/09
Designated Contracting States: CH DE FR GB LI
References cited:
US-A- 3 798 773
US-A- 4 462 800

Proprietor: ORTHO-DENT
84, Lower Clapton Road
London E5(GB)
Inventor: KUMAR, Swadesh
Utsiksvnr. 36
N-2200 Kongsvinger(NO)
Representative: Büchel, Kurt F., Dr.
Patentbüro Dr. Büchel
Letzanaweg 25
FL-9495 Triesen (LI)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to a mobile hinge as used in orthodontic appliances where arch wires on the upper and lower jaw are interconnected by a rod unit that normally consists of two telescopically movable parts.

FIELD OF THE INVENTION

Previous designs for a telescopic unit and other accessories have been described in the following U.S. Pat. Nos.: 3,028,671 to Berger, 4,462,800 to Jones and 2,959,856 to Gurin. The Berger patent discloses slotted screw and a nut. The Jones patent employs a hinge-screw combination. The Gurin patent employs a hinge without collar but with set screw. Similar constructions can be derived from U.S.-A-2 959 856, 3 158 934, 3 238 619, 4 462 800, 4 551 095 and 4 795 342.

BACKGROUND OF THE INVENTION

All these hinges that are also commercially available have the disadvantage to use screws either to fasten the rod unit to the wire or to retain the hinge member in the bearing aperture of the rod unit. As the jaws move forward and backward, the screws have the tendency to become loose. If the screw is used to fasten the wire, another drawback consists in that the masticatory load, already under normal jaw movements, provides a tremendous amount of pressure acting onto the wire at the contact area with the screw, thus resulting in a metal fatigue and eventual breakage of the wire. The use of a screw implies also that very fine threads have to be manufactured which constitutes a relatively costly procedure. In many cases, the use of a screw results in a bulky construction which causes an irritation of the soft tissue. If the screw is connected to the wire, the lateral movement of the rod unit is restricted, thus increasing the patient’s discomfort.

Certainly, in U.S.-Patent 4,583,944 there is a hinge member consisting of a stud that is connected to a tube extending normally to its smaller shank. There is no screw and no separate part. However, such a design is not only bulky and, therefore, disagreeable to the patient, but it is also difficult to manufacture, because the tube will usually be connected to the stud by soldering. Even if it were produced by other methods, it would always involve difficulties. Moreover, the telescopic unit of the Herbst appliance can only be stripped over the head portion of the stud, thus allowing that it can be stripped off by movements of the patient’s jaws. Therefore, it never came into practice.

SUMMARY OF THE INVENTION

It is an object of the present invention to simplify the construction and to make it more reliable. Inconveniences to the patient should be avoided.

This object is achieved according to the invention by a movable hinge member in which a shaft portion of generally cylindrical shape is integrally formed with a head portion of larger width to retain the hinge member within the bearing aperture on one side, while it is retained by the wire itself or by a little pin on the other side. The wire may be inserted into the end opposite to the head portion by providing a hole or a slot that may be closed by suitable means. In this way, the connection with the wire may be effected in a surprisingly simple manner.

In principle, the head portion could be T-shaped; however, it is preferred to have it circular, when seen in the direction of the longitudinal axis of the shaft portion, because in this way, it is less irritating to the patient.

For the same reasons, a cylindrical head can have at least one circular edge, especially on its front surface, rounded, whereby the front surface may outwardly be dished.

When a screw was used in known hinge members to retain it in the bearing aperture, it generally has an incision in its front surface for enabling insertion of a screw driver. Such incisions (or protrusions) are not only inconvenient for the patient, but it may also constitute a hygienic problem, since it may cause particles of food to be caught on.

With a hinge member according to the invention, it is easily possible to form it free of incisions and/or protrusions.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details of the invention will become apparent from the following description of embodiments according to the invention schematically illustrated in the drawings in which:

Fig. 1 is a perspective view of human jaws with an orthodontic appliance according to the invention in a first embodiment;

Fig. 1A to Fig. 4 represent the first embodiment of a hinge member used in the appliance according to Fig. 1, wherein Fig. 1A is a perspective view, Fig. 1B as a lateral view, Fig. 2 is a cross-section along the line II-II of Fig. 1B, Fig. 3 is a front end view from the side of the shaft portion, and Fig. 4 is a front end view from the head portion showing the course of the wire;

Fig. 5A to 7 are similar views, but of a second embodiment,
where Fig. 5A is a perspective view, Fig. 5B is a lateral view, Fig. 6A is another lateral view, when the hinge member is turned by 90° about its longitudinal axis with respect to Fig. 5B, Fig. 6B is a cross-section along the line B-B of Fig. 7 which is a bottom view to Fig. 6A; Fig. 8A to 10 are representations of a third embodiment in similar views as in Figs. 5A to 7, and so are Figs. 11A to 13 depicting a fourth embodiment; Fig. 14 is a perspective view of a usual telescopic rod unit; and Figs. 15 to 19 illustrate alternative possibilities to ensure retaining of the arch wire with an embodiment according to Figs. 5A to 7. Fig. 20A shows a variation of the appliance of Fig. 5A; Fig. 20B shows an application of such appliance, connected with an appliance according Fig. 1A.

DETAILED DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a orthodontic appliance according to the invention in practical use. On a telescopic rod unit 14, there are bearing forming elements 17a and 18a on each end. Each of the elements 17a, 18a, has a buccal surface 17" and 18" while the flat elements 17a, 18a have a surface 17" and 18" on the side facing the respective tooth, as will become apparent from Fig. 14. Each element 17a, 18a has a bearing aperture 17 and 18 in it to receive a movable hinge member 1, 2 and 3.

From Fig. 14, it will clearly be seen that the rod unit 14 generally consists of two parts 15 and 16, the latter receiving the part 15 by sliding engagement within a bore 19. This is the usual structure of a so called Herbst appliance. The invention, however, is by no means restricted to such a telescopic form of a rod unit and may be used with any kind of rod units whatsoever.

The movable hinge members of Fig. 1 consist of a shaft portion 2 ending on the buccal side in a head portion 3 that is integrally formed with it, as may clearly be seen from Fig. 1A to 4. Thus, it is no longer necessary to screw it onto the shaft portion, as it was common heretofore, which operation is complicated to do and implies the danger that the screw can get lost and could be swallowed by the patient. Moreover, such screws have the tendency to become loose due to the movements of the jaws, thus entraining the same risk. Figs. 1, 1B, 2 and 4 show also that the head portion has neither incisions nor protrusions, as was necessary with screws. This prevents irritations of the soft tissues of the patient and avoids that particles of food could remain in it. From Figs. 1B and 2 it will clearly be seen that the head portion 3, according to a preferred embodiment, is not only generally cylindrical, but has also its circular outer edge 3" which looks away from the shaft portion 2, rounded, so that the head portion 3 has a front surface 3" which is slightly outwardly dished. This dished front surface looks preferably to the buccal side (Fig. 1) because it doesn't provoke any irritation of the tissues, especially if made of stainless steel. Thus, the head portion engages in this preferred form the buccal surface 17" or 18" of the rod unit 12.

In order to ensure retention of the movable hinge member 1-3 within the respective aperture 17 or 18, there is a bore 1 arranged at the area of the other end of the shaft portion 2, opposite to the end carrying the head portion 3. As best seen in Fig. 1A, the hole 1 extends across the longitudinal axis L of the hinge member and preferably at right angles. This hole serves to receive the wire 4 (Fig. 4) which can be fastened on it in any way desired. In most cases, it will be sufficient to bend the end of the wire around the end of the shaft portion 2. But it would also be possible to use clamping pieces to be clamped onto the wire, e.g. on both sides of the hole 1. Thus, the arch wire 4 itself retains the hinge member 1-3 within the respective aperture 17 or 18. The wire 4 is no longer clamped by any screw and can, if necessary, move with less friction within the hole 1. Thus, metal fatigue and breaking of the wire 4 are easily avoided, while the hinge member can move with a greater amount of play.

While stainless steel has been mentioned as a possible material for the hinge member 1-3, also medical grade plastic material can be used.

When mounting the appliance of Fig. 1, it is sufficient to insert the hinge members 1-3 into the apertures 17 and 18 of the rod unit 14, the head portion 3 acting as a limiting collar. Then, the wire is inserted into the holes 1 of both hinge members before it is ligated to the usual brackets in the oral cavity.

Especially when an arch wire with a square cross-section is used, known under the brand name "Cobra" arch wire, it may be useful to apply an embodiment, as represented in Figs. 5A to 7. In this embodiment, in addition to the arrangement described with reference to Figs. 1A to 4, there is a slot-like incision 19 which extends diametrically of the shaft portion 2 and from the end surface 2" of the latter inwardly across the course of the hole 1, preferably at right angles. Figs. 5B and 6A show that the head portion 3 has both outer circular edges rounded. In this embodiment, the arch wire can be inserted into the slot 19 to extend diamet-
ically to the shaft portion 2 and can be retained by inserting a pin or plug into the hole 1. Alternatively, the hole 1 may be used to insert an arch wire of circular cross-section.

This embodiment allows the wire to move more freely, thus increasing the comfort to the patient. It is, however, suitable that the dimensions of the slot-like incision 19 meet approximately the dimensions of the cross-section of the wire either with its bottom surface 20 and the hole 1 (when a pin is inserted) and with the lateral surface portions 19", or with the hole 1 and the outer surface portions 19" (Fig. 6A), as will be described later with reference to Fig. 17, or both.

An alternative embodiment may be derived from Figs. 8A to 10. In this embodiment, the shaft portion 2 has an annular recess 21 adjacent the head portion 3. In addition, the slot-like incision 19 may be provided or may also be omitted. The annular recess 21 provides a collar which after insertion into a bearing aperture 17 or 18 (Fig. 14) serves as a bearing surface, since the bearing forming element 17a or 18a will lie between the inner surface 3b of the head portion 3 and the collar surface 22 in front of it (Fig. 9A). Thus, the arch wire being mounted on the end portion of the shaft or shank 2 will become free of any motion that will occur during movements of the jaws, thus contributing to a better and more durable seat of the wire in the brackets on the teeth.

A similar construction as in Figs. 8A to 10, but without the slot-like incision 19, is shown in Figs. 11A to 13. Such an arrangement is, above all, intended for wires of circular cross-section, but it will be understood that, in principle, it would also be possible to insert a wire of a square cross-section into the hole 1, if it is large enough. It should also be noted that the expression "arch wire" in this context should encompass all elongated structures that would be intended and used for orthodontic appliances for the purposes of an ordinary arch wire.

Fig. 15 illustrates the use of a hinge member according to Figs. 5A to 7 in practice. If one inserts a pin or plug 23 into the hole 1, the slot 19 is closed to retain a wire 4 in it. The wire 4 has much more freedom to move and is less clamped than heretofore so that tendency of breakage is reduced and mobility of the jaws is improved. The pin or plug 23 is preferably slightly conical, as is best seen from Fig. 15 in relation to the hole 1. If the pin 23 consists of relatively soft material, such as plastic material (e.g. polyurethane), it may be depressed into the hole, until its upper part deforms elastically. To this end, it may be advantageous to give the pin 23 a cross-section that deviates from a circular one, as to provide sharp edges which are easier deformed within the hole 1. For example, a star-like cross-section could be provided. On the other hand, the head 24 of the pin 23 could assume any shape desired. It could be favourable to provide a shape that fits exactly with the surface of the shaft 2, i.e. a T-shape, but with a curved cross-beam snugly engaging the peripheral surface of the shaft portion 2.

In the case of Fig. 17, the slot 19 is closed by a front cap 25 which is welded, sooted or fixed in any suitable way to the front surface of the shaft portion 2. Thus, the hole 1 could, in principle, be omitted. But if it is required that the dimensions of the slot 19 conform essentially to the dimensions of the arch wire within a first section 19a reaching from the surface 20 until the hole 1, or in a section 19b extending from the hole 1 til the cup 25, it could be advantageous to provide a different length of the sections 19a and 19b to conform to different types of wires. Thus, as shown, the hole 1 intersects the slot 19 to form slot sections 19a, 19b of different lengths.

Fig. 18 and 19 show that the recess need not be annular and could likewise be arranged adjacent to the second end of the shaft portion (Figs. 18A and C, 19A and C). Also in this case, the arch wire is released from forces acting upon it when the jaws move.

While the hinge member has been described in its preferred realization, i.e. being integrally formed with the shaft portion, it will be understood that it would likewise be possible to manufacture them as two separate parts which afterwards are interconnected to one another. This could be done by providing one or these parts with a bore and the other one with a fitting projection that is placed within the bore, the interconnection being effected either by providing snapping means (which connect both parts inextricably) or by pressing on, by cementing on, or even by providing respective threads (which, in this case, wouldn't provoke the disadvantages discussed above in relation with screws acting upon the wire or on the soft tissues, since no incision would be necessary for assembling both parts during manufacture).

It should further be noted that the hole - either for receiving the arch wire 4 or the plug 23 - need not to be circular in cross-section. This will be easily understood when considering the slot 19, which is rectangular in cross-section for receiving rectangular or square-shaped wires. There is still more constructive freedom in relation with the pin or plug 23 which also may be triangular in cross-section or may have any other shape. Accordingly, the hole 1 may have any cross-section desired.

Furthermore, the head 3, in its preferred embodiment, is larger in width or diameter than the shaft portion 2. However, for some embodiments it could be desirable to make it smaller, although
retaining of the shaft portion, in this case, has to be attained in another way; for example, the head of smaller diameter could have a hole similar to the hole 1 in order to receive a plug 23 which then will play the role of the head 3, as shown. One could also solder (or otherwise connect) a round or square tube to the end of the shaft portion 2 so as to extend normally to its longitudinal axis L. Especially silver would be suitable for soldering. Such a design could also be used for providing the hole 1 at the second end of the shaft portion.

It has already been mentioned in the introduction that the head need not to be cylindrical, but can be T-shaped. Other possible shapes are spherical or cup-shaped.

Although hinge members with a single hole 1 on the free end of the shaft portion 2 have been shown, it could, for some applications, likewise be provided with at least another hole near the head 3.

Such an embodiment is shown in Fig. 20 where besides the hole 1 there is another hole 1a near the head portion 3. This hole 1a could extend in the same plane and direction as the hole 1, but extends preferably in a deferring plane, especially a plane normal to the one of hole 1. The purpose of the hole 1a may be to connect some wire parts of the Herbst appliance with one of the hinges.

Claims

1. A mobile hinge member for an orthodontic appliance for pivotally connecting a rod unit (14) with an arch wire (4) of the appliance by inserting the hinge member into a bearing aperture (17,18) of the rod unit, said mobile hinge member comprising:
 a. a shaft portion (2) being substantially cylindrical of a predetermined diameter and having a first end and a second end along a longitudinal axis;
 b. head means (3) on said first end, being larger in width than said predetermined diameter of said shaft portion when measured in normal direction to said longitudinal axis, said head means being integrally formed with said shaft portion; and
 c. at least one opening (1,19) within the range of said second end, said opening extending across said longitudinal axis of said shaft portion characterized in that:
 said shaft portion and said head means being free of any thread, so as to enable the connection to said appliance by merely inserting the shaft portion into said bearing aperture and retaining the shaft portion therein by inserting said arch wire into the opening.

2. Hinge member as claimed in claim 1, wherein said head means is circular when seen in the direction of said longitudinal axis.

3. Hinge member as claimed in claim 2, wherein said head means is substantially cylindrical forming a first circular edge facing said shaft portion, and a second circular edge being opposite to said first circular edge, looking away from said shaft portion and surrounding a front surface.

4. Hinge member as claimed in claim 3, wherein said second edge (3') is rounded, said front surface (3") being thus, outwardly dished.

5. Hinge member as claimed in claim 3, wherein said front surface is free of any incision or protrusion.

6. Hinge member as claimed in claim 1, wherein said opening is a bore hole.

7. Hinge member as claimed in claim 6, wherein said bore hole extends at right angles to said longitudinal axis.

8. Hinge member as claimed in claim 1, wherein said opening is slot-like (19) and extends to said second end of said shaft portion.

9. Hinge member as claimed in claim 8, wherein said slot-like opening extends along said longitudinal axis.

10. Hinge member as claimed in claim 8, further comprising a hole (1) extending across the slot-like opening.

11. Hinge member as claimed in claim 10, wherein said hole intersects the slot-like opening at a location so as to form slot sections of different lengths.

12. Hinge member as claimed in claim 1, wherein said shaft portion comprises a recess (21) for receiving a portion of said rod unit which forms said bearing aperture.

13. An orthodontic appliance comprising
 a. a rod unit (14) having two ends;
 b. a pair of bearing aperture (17,18) forming means connected each to one of said ends, said bearing aperture forming means having a buccal surface (17",18") and a tooth facing surface (17",18");
 c. at least one hinge member to be received in one of said bearing apertures, the hinge
member including a shaft portion (2) being substantially cylindrical and has a predetermined diameter, having a first end and a second end along a longitudinal axis,

head means (3) on said first end, being larger in width than said predetermined diameter of said shaft portion when measured in normal direction to said longitudinal axis, said head means being integrally formed with said shaft portion; and

at least one opening (1,19) within the range of said second end, said opening extending across said longitudinal axis of said shaft portion characterized in that:

said shaft portion and said head means being free of any thread, so as to enable the connection with said rod unit by inserting the shaft portion into said bearing aperture and retaining the shaft portion therein by inserting a wire (4) into said opening.

14. An appliance as claimed in claim 13, wherein said head means faces said buccal surface.

15. Hinge member as claimed in claim 12, wherein said recess is annular.

16. Hinge member as claimed in claim 12, wherein said recess is adjacent to said second end.

Patentansprüche

1. Ein bewegliches Scharnierelement für eine kieferorthopädische Vorrichtung zur Drehpunkts-Verbindung eines Stabelements (14) mit einem Drahtbogen (4) der Vorrichtung, wobei das Scharnierelement in eine Lagerausnehmung (17,18) des Stabelements eingeführt wird, mit:

- einem im wesentlichen zylindrischen Schaftteil (2), mit vorgegebenem Durchmesser, und mit einem erstem und einem zweiten Ende entlang einer Längsachse;

- einem Kopfteil (3) am ersten Ende, welcher größer in seiner Erstreckung ist als der Durchmesser des Schaftteils, in Normalrichtung zur Längsachse gemessen, wobei der Kopfteil mit dem Schaftteil einszustück ausgebildet ist;

- wenigstens einer Öffnung (1,19) im Bereich des zweiten Endes, wobei sich diese Öffnung quer zur Längsachse des Schaftteils erstreckt, dadurch gekennzeichnet, dass der Schaftteil und der Kopfteil frei von jeglichem Gewinde sind, so dass die Verbindung zur Vorrichtung lediglich durch Einstecken des Schaftteils in die Lagerausnehmung und Si-

chern des Schaftteils durch Einstecken des Drahtbogens in die Öffnung geschieht.

2. Scharnierelement nach Anspruch 1, dadurch gekennzeichnet, dass der Kopfteil in Richtung der Längsachse gesehen - kreisförmig ist.

4. Scharnierelement nach Anspruch 3, dadurch gekennzeichnet, dass der zweite Rand (3′) gerundet und die Stirnfläche (3″) infolgedessen auswärts gekrümmt ist.

5. Scharnierelement nach Anspruch 3, dadurch gekennzeichnet, dass die Stirnfläche frei von jeglichen Einkerben oder Vorsprüngen ist.

6. Scharnierelement nach Anspruch 1, dadurch gekennzeichnet, dass die Öffnung ein Bohrloch ist.

7. Scharnierelement nach Anspruch 6, dadurch gekennzeichnet, dass sich das Bohrloch rechtwinklig zur Längsachse erstreckt.

8. Scharnierelement nach Anspruch 1, dadurch gekennzeichnet, dass die Öffnung schlitzzformig (19) ist und sich bis zum zweiten Ende des Schaftteils erstreckt.

9. Scharnierelement nach Anspruch 8, dadurch gekennzeichnet, dass sich die schlitzzformige Öffnung entlang der Längsachse erstreckt.

10. Scharnierelement nach Anspruch 8, dadurch gekennzeichnet, dass zusätzlich ein Loch (1) vorgesehen ist, das sich quer zur schlitzzformigen Öffnung erstreckt.

11. Scharnierelement nach Anspruch 10, dadurch gekennzeichnet, dass sich das Loch mit der schlitzzformigen Öffnung an einer Stelle schneidet, so dass Lochbereiche verschiedener Länge entstehen.

12. Scharnierelement nach Anspruch 1, dadurch gekennzeichnet, dass der Schaftteil eine Ausnehmung (21) zur Aufnahme des Teils des Stabelements aufweist, das die Lagerausnehm-
mung bildet.

13. Eine kieferorthopädische Vorrichtung mit
- einem Stabelement (14) mit zwei Enden;
- einem Paar von Lagerausnehmungen (17,18), deren jede jeweils einem der En-
den zugeordnet ist und jeweils eine Buccal-Oberfläche (17",18") und eine den
Zähnen zugewandte Oberfläche (17",18") hat;
- wenigstens einem Scharnierelement zur
Aufnahme in eine der Lagerausnehmun-
gen, welches Scharnierelement umfasst:
- einen im wesentlichen zylindrischen
Schafteil (2) mit vorgegebenem
Durchmesser, und mit einem ersten
und einem zweiten Ende entlang einer
Längsachse;
- einen Kopfteil (3) an dem ersten
Ende, welcher größer in seiner Er-
streckung ist als der Durchmesser des
Schafteils, in Normalrichtung zur
Längsachse gemessen, wobei der
Kopfteil mit dem Schaftteil einstückig
ausgebildet erstreckt, dadurch ge-
kennzeichnet, dass der Schaftteil und
der Kopfteil frei von jeglichem Gewin-
de sind, so dass die Verbindung zur
Vorrichtung durch Einstecken des
Schafteils in die Lagerausnehmung
und durch Sichern des Schaftteils
durch Einstecken eines Drahtes (4) in
die Öffnung geschieht.

14. Vorrichtung nach Anspruch 13, dadurch ge-
kennzeichnet, dass der Kopfteil der Buccal-
Oberfläche gegenüber liegt.

15. Scharnierelement nach Anspruch 12, dadurch
gekennzeichnet, dass die Ausnehmung ringför-
mig ist.

16. Scharnierelement nach Anspruch 12, dadurch
gekennzeichnet, dass die Ausnehmung dem
zweiten Ende benachbart liegt.

Revendications

1. Pièce d'articulation mobile pour un appareil
orthodontique, servant à relier de façon arti-
culée une unité-barrette (14) à un fil métallique
d'arcade (4) de l'appareil par introduction de la
pièce d'articulation dans un orifice de palier
(17,18) de l'unité-barrette, la pièce d'articula-
tion mobile comprenant:
- une partie formant une tige (2) sensiblement
cylindrique de diamètre prédéterminé et prés-
entant une première extrémité et une secon-
de extrémité dans le sens d'un axe longitudi-

2. Pièce d'articulation selon la revendication 1,
daussi laquelle la tête est circulaire lorsqu'elle
est observée dans le sens de l'axe longitudinal.

3. Pièce d'articulation selon la revendication 2,
daussi laquelle la tête est sensiblement cylindri-
que et possède un premier bord circulaire fai-
sant face à la tige et un second bord circulaire
opposé au premier, dirigé en sens contraire à
la tige et entourant une surface frontale.

4. Pièce d'articulation selon la revendication 3,
daussi laquelle le second bord (3') est arrondi,
de sorte que la surface frontale (3") est bom-
bée extérieurement.

5. Pièce d'articulation selon la revendication 3,
daussi laquelle la surface frontale est exempte
de toute entaille ou saillie.

6. Pièce d'articulation selon la revendication 1,
daussi laquelle l'ouverture est un trou percé.

7. Pièce d'articulation selon la revendication 6,
daussi laquelle le trou percé est orienté à angle
droit par rapport à l'axe longitudinal.

8. Pièce d'articulation selon la revendication 1,
daussi laquelle l'ouverture est semblable à une
fente (19) et s'étend jusqu'à la seconde extrémi-
té de la tige.

9. Pièce d'articulation selon la revendication 8,
daussi laquelle l'ouverture semblable à une fen-
te s'étend suivant l'axe longitudinal.

10. Pièce d'articulation selon la revendication 8,
comprenant en outre un trou (1) s'étendant à
travers l’ouverture semblable à une fente.

11. Pièce d’articulation selon la revendication 10, dans laquelle le trou coupe l’ouverture semblable à une fente à un point intermédiaire, de manière à définir des segments de fente de différentes longueurs.

12. Pièce d’articulation selon la revendication 1, dans laquelle la tige présente un creux (21) pour recevoir une partie de l’unité-barrette formant l’orifice de palier.

13. Appareil orthodontique comprenant une unité-barrette (14) présentant deux extrémités; une paire de moyens formant des orifices de palier (17,18), reliés chacun à l’une de ces extrémités, les moyens formant les orifices de palier ayant une surface buccale (17’’,18’’) et une surface (17”,18’’) faisant face aux dents; au moins une pièce d’articulation destinée à être reçue dans l’un des orifices de palier, la pièce d’articulation comportant une partie formant une tige (2) sensiblement cylindrique et de diamètre prédéterminé, pos-sédant une première extrémité et une seconde extrémité dans le sens d’un axe longitudinal, un moyen formant une tête (3) sur la première extrémité, la tête étant plus large que le diamètre prédéterminé de la tige, lorsqu’elle est mesurée suivant une direction normale à l’axe longitudinal, la tête étant d’un seul tenant avec la tige; et au moins une ouverture (1,19) située dans la région de la seconde extrémité et s’étendant à travers l’axe longitudinal de la tige, characterisé en ce que la tige et la tête sont exemptes de tout filet, et l’agencement est tel que la liaison avec l’unité-barrette est réalisable par introduction de la tige dans l’orifice de palier et la retenue de la tige dans cet orifice par l’introduc-tion d’un fil dans l’ouverture.

14. Appareil selon la revendication 13, dans lequel la tête fait face à la surface buccale.

15. Articulation selon la revendication 12, dans laquelle le creux est annulaire.

16. Pièce d’articulation selon la revendication 12, dans laquelle le creux est situé à côté de la seconde extrémité.