EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 06.04.94 Bulletin 94/14

Application number: 90308221.2

Date of filing: 26.07.90

Cutting element for rotary drill bit with multilayer cutting surface.

Priority: 04.08.89 GB 8917878

Date of publication of application: 06.02.91 Bulletin 91/06

Publication of the grant of the patent: 06.04.94 Bulletin 94/14

Designated Contracting States:
BE DE FR NL

References cited:
CH-A- 530 834
US-A- 3 311 181
US-A- 4 694 918

Proprietor: CAMCO DRILLING GROUP LIMITED
Hycalog Oldends Lane Industrial Estate
Stonehouse, Gloucestershire GL10 3RQ (GB)

Inventor: Newton, Thomas Alexander, Jr.
13711 Cricket Hollow
Houston, Texas 77069 (US)

Representative: Carter, Gerald et al
Arthur R. Davies & Co. 27 Imperial Square
Cheltenham, Gloucestershire GL50 1RQ (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The invention relates to cutting elements for rotary drill bits for use in drilling or coring holes in subsurface formations.

In particular, the invention is applicable to cutting elements for use on rotary drill bits of the kind comprising a bit body having a shank for connection to a drill string and an inner passage for supplying drilling fluid to the face of the bit, the bit body carrying a plurality of cutting elements. Each cutting element comprises a preform element, often in the form of a circular tablet, including a cutting table of superhard material having a front cutting face and a rear face, the rear face of the cutting table being bonded to a substrate of material which is less hard than the superhard material.

The cutting table, which is normally in the form of a single layer, usually comprises polycrystalline diamond, although other superhard materials are available, such as cubic boron nitride. The substrate of less hard material is often formed from cemented tungsten carbide, and the cutting table and substrate are bonded together during formation of the cutting element in a high pressure, high temperature forming press.

Since the substrate is of less hard material than the cutting table, the two-part arrangement of the cutting element provides a degree of self-sharpening since, in use, the less hard substrate wears away more easily than the harder cutting table.

The preform cutting element may be directly mounted on the bit body or may be bonded to a carrier, for example also of cemented tungsten carbide, the carrier being in turn received in a socket in the bit body. The bit body may be machined from metal, usually steel, or may be formed from an infiltrated tungsten carbide matrix by a powder metallurgy process.

Such cutting elements are subjected to extremes of temperature and heavy loads, including impact loads, when the drill is in use down a borehole. It is found that under drilling conditions spalling of the diamond table can occur, that is to say the separation and loss of diamond material over the cutting surface of the table. Such spalling usually spreads from the cutting edge, probably as a result of impact forces. The spalling reduces the cutting efficiency of the element, and in severe cases can lead to delamination, that is to say separation of the diamond table from the substrate.

It has been found that the incidence of spalling may be reduced by pre-bevelling the periphery of the diamond table. Reference in this regard may be made to U.S. Re-issue Patent No. 32036. However, the pre-bevelling process is comparatively costly and time consuming, involving as it does the cutting or grinding of a significant amount of the superhard material from the periphery of the diamond table. Also, the pre-for-
ond layer and bonded thereto. In this case the third layer may also comprise a form of polycrystalline diamond material which is less wear-resistant than the polycrystalline diamond material forming the second layer. For example it may be of the same composition as the front layer.

In the latter arrangement the presence of the third layer, being less wear-resistant than the second layer, enhances the self-sharpening property of the cutting element, since in use it wears away, rearwardly of the second layer, at a rate intermediate of the rate of wear of the second layer and the substrate.

In addition, the third layer may act as a transition layer between the second layer and the substrate in a manner to facilitate manufacture of the cutting element. For example, the third layer, as well as being less wear-resistant, may have a coefficient of thermal expansion and modulus of elasticity intermediate those of the second layer and the substrate. This may enhance the bonding the cutting table and the substrate and reduce the stresses incorporated in the cutting element in the region of the bond during its formation.

Such transition layers have been employed in the construction of inserts for roller cone bits, as described in U.S. Patent Specification No. 4694918. In the arrangements described in that specification, however, the front, outermost layer is always the hardest layer, and there is no disclosure of the concept of the present invention where the front layer is less wear-resistant than one or more layers inwardly thereof. The transition layer is also not used for the purpose of enhancing self-sharpening since the inserts of a roller cone bit operate by impact crushing the formation and do not provide a cutting edge in the manner of cutting elements for a drag bit. It will be apparent that transition layers, for example as described in U.S. Patent Specification No. 4694918, may be employed in any of the arrangements according to the present invention.

Instead of the provision of a single third layer, of less wear-resistance, behind the second layer, as described above, the cutting table may include a plurality of further layers stacked behind the second layer, the further layers being of reducing wear-resistance as they extend away from the second layer towards the substrate. By providing a plurality of further layers of decreasing wear-resistance, the rate at which the layers are worn away, in use, increases towards the less hard substrate and this enhances the self-sharpening effect.

In an alternative arrangement according to the present invention, the aforesaid third layer may be formed of a polycrystalline diamond material which is more wear-resistant still than the second layer. In a development of such arrangement there may be provided a plurality of layers stacked behind the second layer, the further layers being formed of increasingly wear-resistant polycrystalline diamond material as they extend away from the second layer.

Instead of the polycrystalline diamond cutting table comprising two or more distinct layers bonded together, it may comprise a single layer, the composition of the single cutting layer varying throughout its thickness in a manner so as to provide said front portion which is less wear resistant than at least one other portion of the remainder of the single layer.

Various means may be employed to render the different portions or layers of the cutting table of different wear-resistance. For example, the front portion or front layer of the cutting table may be rendered less wear-resistant by being formed of diamond particles which are, on average, of larger grain size than the diamond particles forming said other portion of the cutting table.

Alternatively or additionally, the front portion of the front layer may be rendered less wear-resistant by being formed of diamond particles of lower packing density than the diamond particles forming said other portion of the cutting table.

In a further alternative, the front portion or front layer of the polycrystalline diamond cutting table may comprise polycrystalline diamond material which is rendered less wear-resistant by the inclusion of an additive material prior to formation of the cutting element in the press. The additive material may, for example, be tungsten carbide particles or pre-cemented particles of tungsten carbide.

The formation of a superhard composite by combining polycrystalline diamond particles with pre-cemented tungsten carbide particles is disclosed in U.S. Patent Specification No. 4,525,178.

The following is a more detailed description of embodiments of the invention, reference being made to the accompanying drawings in which Figures 1 to 8 are diagrammatic sections through cutting elements in accordance with the invention.

Referring to Figure 1, the cutting element, which is generally in the form of a circular tablet, comprises a front cutting table 10 of superhard material bonded to a thicker substrate 11 of less hard material, such as cemented tungsten carbide. As is well known, the components of the cutting element are bonded together during formation of the whole cutting element in a high pressure, high temperature forming press.

Usually, in cutting elements of this type, the front cutting table 10 comprises a single layer of polycrystalline diamond of substantially uniform composition. (The use in the specification of the description "substantially uniform" does not imply that the layer is formed of particles of substantially uniform size. In any part of the layer there will normally be particles of a range of sizes and other particles may be present in addition to the diamond particles. The description "substantially uniform" therefore means that the proportions of the particles of different sizes and/or com-
positions is approximately the same in all parts of the layer. The composition of the diamond making up the single layer is selected to provide a high degree of wear-resistance so as to provide the desired cutting efficiency and life of the cutting element in use on the drill bit.

Figure 1, however, shows a cutting element in accordance with the present invention where the front cutting table 10 comprises two layers 12 and 13 of different compositions. The material forming the front layer 12 is less wear-resistant than the material forming the second layer 13, and as previously described it is found that this may inhibit spalling of the front cutting surface.

Various methods may be used to achieve the desired difference in wear-resistance of the two layers. For example, the wear-resistance of polycrystalline diamond material may be varied by varying the grain size of the diamond particles used in the formation of the layer. A smaller maximum or average particle size in a diamond layer will result in greater wear-resistance than a larger maximum or average particle size. Thus, to provide the effect required by the invention the front layer 12 may have a larger maximum or average particle size than the layer 13.

In addition to, or instead of, varying the wear-resistance by varying the grain size, the wear-resistance may also be varied by varying the grain size distribution or packing density of the diamond particles. Thus, a mix having an appropriate range of different particle sizes will usually provide a higher packing density, and thus greater wear-resistance, than a mix of comparatively uniformly sized particles, since the smaller particles will fill the voids between the larger particles. Accordingly, the variation in wear-resistance required by the invention may be achieved by forming the front layer 12 from diamond particles providing a lower packing density than the particles used for the layer 13. Due to the effect of pressure on packing density, during formation of a layer, it may be necessary to form the layers during separate pressings rather than simultaneously.

In a further alternative method of varying the wear-resistance of the layers, this may be achieved by including with the diamond particles, before they are introduced into the forming press, an additive which alters the final wear-resistance. Such an additive may comprise, for example, particles of tungsten carbide or pre-cemented particles of tungsten carbide, mixed with the diamond particles. The front layer 12 will thus contain a higher proportion of the additive than the second sub-layer 13, which may have no additive at all.

The necessary properties of the additive are that it must be bondable to diamond and must be able to withstand the temperature and pressure to which it must be subjected in the press during the initial formation of the cutting element. It should also have a high Young's modulus and fairly high strength and a low coefficient of thermal expansion. Other suitable additives may be metallic tungsten or other refractory metal, or a ceramic such as boron carbide, silicon carbide, tantalum carbide, titanium carbide, titanium nitride, boron nitride, or titanium boride.

Figure 2 is an enlarged view, in the region of the cutting edge, of a cutting element according to Figure 1 after an initial period of wear when it is mounted and in use on a drill bit, the bit body being indicated 14. It will be seen that an angled wear flat 15 becomes formed on the cutting edge. Where the wear flat 15 occurs on the harder layer 13, the wear flat is generally parallel to the surface of the formation 16 and is thus determined by the rake angle of the cutting element. However, due to the lower wear-resistance of the front layer 12 there is greater wear of this layer in the region of the cutting edge as indicated at 17. It will be seen that this provides a rounded edge to the cutting element where it engages the formation. As previously mentioned, it has been found that the incidence of spalling can be reduced by pre-bevelling the periphery of the diamond cutting table, and the rounding of the cutting edge achieved by the present invention has a similar anti-spalling effect. Accordingly, in addition to the two-layer form of cutting table reducing the tendency to spall, the present invention also results, after a period of use, in a structural shape of a kind which has been found further to reduce the tendency to spall.

It should be mentioned that some slight rounding of the cutting edge of the diamond layer will normally occur, with wear, in a conventional preform cutting element. However, this slight rounding is normally insufficient to inhibit spalling, whereas the present invention increases the extent of rounding to a point where an anti-spalling effect is achieved.

The arrangement according to the invention has advantage over the pre-bevelled arrangement referred to earlier and described in U.S. Re-Issue Patent No. 32036. In the known arrangement, in order to provide the anti-spalling effect, the pre-beveling must be at such an angle that the bevelled surface is inclined away from the surface of the formation when the cutting element is mounted at the required rake angle. However, this pre-bevelled edge wears away during use of the cutting element, so that eventually a point is reached when all the bevel has worn away. The wear flat, where it extends across the single layer of the cutting table, is then substantially parallel to the surface of the formation, due to the cutting table being of substantially uniform composition. When this point is reached, and the bevel has been worn away, the cutting element obviously has no more resistance to spalling than a similarly worn conventional non-pre-bevelled cutting element.

In the arrangement according to the present invention, however, the rounded portion 17, extending
away from the surface of the formation, is constantly renewed and persists during the whole life of the cutting element, and thus tends to inhibit spalling during the whole life of such element.

Figure 3 shows an alternative arrangement where a third diamond layer 18 is provided between the second layer 13 and the substrate 11. The third layer 18 is of less wear-resistance than layer 13, for example it may be of similar composition and hence wear-resistance to the front layer 12. Since the third layer 18 is less wear-resistant than the layer 13 it wears away, in use, more rapidly than the layer 13. It therefore contributes to the desirable self-sharpening effect referred to previously by allowing part of the superhard cutting table itself, as well as the substrate 14, to be worn away at a greater rate than the layer 13 of the cutting table.

The less wear-resistant layer 18 may also act as a transition layer, as previously described, to improve the bonding between the substrate and the cutting table.

Figure 4 shows a modification of the arrangement of Figure 3 in which there are provided a plurality of further layers behind the second layer 13, the further layers being indicated at 19. Any required number of further layers 19 may be provided and their wear-resistance is preferably graded, using any of the methods referred to earlier, so that the layers 19 becomes less hard and wear-resistant as they extend from the layer 13 towards the substrate 11. As in the previous arrangement the layers 19 may also act as multiple transition layers in the manner of U.S. Specification No. 4,694,918.

In the arrangement of Figure 4, the single less wear-resistant layer 12 in front of the layer 13 may be replaced by two layers of less wear-resistance than the layer 13, the outermost of the two layers being less wear-resistant than the next layer.

Figure 5 is an enlarged view of the cutting element shown in Figure 4, in use and after a certain amount of wear of the cutting element has occurred. It will be seen that, as in the arrangement shown in Figure 2, the front layer 12 has worn away to a rounded shape which enhances the anti-spalling effect. However, it will also be seen that the further layers 19 behind the second layer 13 have also worn away as they extend rearwardly of the layer 13, thus providing clearance between the formation 16 and both the cutting table and the substrate 11 to the rear of the layer 13, thus enhancing the self-sharpening effect.

Figure 6 shows a cutting element of similar construction to the element shown in Figure 3 in which the cutting table 20 comprises a front diamond layer 21, a second diamond layer 22, a third diamond layer 23 and a substrate 24 of cemented tungsten carbide. In accordance with the invention the front layer 21 is of less wear-resistance than the second layer 22, using any of the methods referred to, to provide the desirable anti-spalling effect. In the arrangement of Figure 6, however, the third layer 23 is of greater wear-resistance than the second layer 22. In such an arrangement the resultant rounding of the cutting edge which occurs after some use of the cutting element may extend over both the front layer 21 and the second layer 22, since these are both less wear-resistant than the third layer 23.

A further development of the type of cutting element shown in Figure 6 is shown in Figure 7. In this case there are a plurality of diamond layers 25 making up the cutter table, the layers being bonded to one another and the rearmost layer being bonded to the substrate 26. In use, rounding of the layers of the cutting table will be spread over all those layers which are in front of the layer which, for the time being, is bearing against the formation.

In the arrangements shown in Figures 6 and 7 the layers are of essentially the same thickness but they may also be of different thicknesses and it will be appreciated that the profile shape of the resultant rounding will depend to a certain extent on the relative thickness of the layers, as well as their relative wear-resistance.

In the arrangements of Figures 6 and 7, transition layers of diamond may also be provided between the rearmost of the layers shown and the substrate, in accordance with the teachings of U.S. Patent Specification No. 4,694,918.

In the arrangements so far described, the different portions of the superhard cutting table are in the form of discrete layers which are formed in the press, preferably simultaneously, when the cutting element is formed, the composition of each layer being substantially uniform (as hereinbefore defined). However, as shown in Figure 8, it is also possible for the cutting table to comprise a single non-uniform layer 27 of polycrystalline diamond, bonded to the substrate 28, the composition of the single layer 27 varying from its front cutting face 29 to its rear surface 30 where it is bonded to the substrate 28. The varying composition of the layer 27 between these surfaces may be so arranged, using any of the methods referred to earlier, that the wear-resistance of the layer increases continuously as it extends from the cutting face 29 towards the substrate 28. This may be achieved by (a) decreasing the particle size and/or (b) increasing the packing density and/or (c) decreasing the proportion of additive in the layer as it extends from the surface 29 towards the substrate. Such variation, and consequent increase in wear-resistance, may continue all the way up to the rear surface 30 where the diamond layer is bonded to the substrate. If desired a transition layer may be provided between the surface 30 and the substrate 28.

Alternatively, the arrangement may be such that the wear-resistance of the layer 27 increases up to an intermediate position away from the front face 29.
whereafter the wear-resistance decreases again until the rear surface 30 is reached.

Claims

1. A preform cutting element including a cutting table (10) of polycrystalline diamond material having a front cutting face and a rear face, the rear face of the cutting table being bonded to a substrate (11) of material which is less hard than the polycrystalline diamond material, characterised in that the cutting table (10) includes a front portion (12) which provides said cutting face and comprises a form of polycrystalline diamond material which is less wear-resistant than the polycrystalline diamond material forming at least one other portion (13) of the remainder of the cutting table (10).

2. A cutting element according to Claim 1, characterised in that the cutting table (10) comprises at least two distinct layers (12,13) of polycrystalline diamond material bonded together and including a front layer (12) which provides said cutting face and a second layer (13) behind said front layer, the front layer (12) comprising the form of polycrystalline diamond material which is less wear-resistant than the polycrystalline diamond material forming the second layer.

3. A cutting element according to Claim 2, characterised in that the front and second layers (12,13) constitute the whole of the cutting table.

4. A cutting element according to Claim 2, characterised in that there is provided a third layer (18) of polycrystalline diamond material behind the second layer (13) and bonded thereto.

5. A cutting element according to Claim 4, characterised in that the third layer (18) comprises a form of polycrystalline diamond material which is less wear-resistant than the polycrystalline diamond material forming the second layer (13).

6. A cutting element according to Claim 5, characterised in that the third layer (18) is of the same composition as the front layer (12).

7. A cutting element according to any of Claims 4 to 6, characterised in that the third layer (18) has a coefficient of thermal expansion and modulus of elasticity intermediate those of the second layer (13) and the substrate (11).

8. A cutting element according to Claim 2, characterised in that the cutting table (Fig. 4) includes a plurality of further layers (19) stacked behind the second layer (13), the further layers being of reducing wear-resistance as they extend away from the second layer towards the substrate.

9. A cutting element according to Claim 4, characterised in that the aforesaid third layer (23, Fig. 6) is formed of a polycrystalline diamond material which is more wear-resistant still than the second layer (22).

10. A cutting element according to Claim 9, characterised in that there is provided a plurality of layers (25, Fig. 7) stacked behind the second layer, the further layers being formed of increasingly wear-resistant polycrystalline diamond material as they extend away from the second layer.

11. A cutting element according to Claim 1, characterised in that the cutting table comprises a single layer (27, Fig. 8), the composition of the single cutting layer varying throughout its thickness in a manner so as to provide said front portion which is less wear-resistant than at least one other portion of the remainder of the single layer.

12. A cutting element according to Claim 1, characterised in that the front portion (12) of the cutting table is rendered less wear-resistant by being formed of diamond particles which are, on average, of larger grain size than the diamond particles forming the other portions (13) of the cutting table.

13. A cutting element according to Claim 1, characterised in that the front portion (12) of the cutting table is rendered less wear-resistant by being formed of diamond particles of lower packing density than the diamond particles forming the other portions (13) of the cutting table.

14. A cutting element according to Claim 1, characterised in that the front portion (12) of the cutting table is rendered less wear-resistant by the inclusion of an additive material prior to formation of the cutting element in the press.

15. A cutting element according to Claim 14, wherein the additive material is tungsten carbide particles or precentemated particles of tungsten carbide.

Patentansprüche

1. Schneideelementtrockelung, mit einer Schneideplatte (11) aus polykristallinem Diamantmaterial, welche eine vordere Schneidefläche und eine hintere Fläche hat, wobei die hintere Fläche der
2. Schneideelement nach Anspruch 1, dadurch gekennzeichnet, dass die Schneideplatte (11) aus wenigstens zwei verschiedenen Schichten (12,13) polykristallinem Diamantmaterial besteht, welche gleichzeitig verbunden sind, und eine erste vordere Schicht (12), welche die Schneidefläche bildet und eine zweite Schicht (13) hinter der ersten Schicht umfasst, wobei die vordere Schicht (12) aus einer Form polykristallinem Diamantmaterials besteht, welches weniger abriebfest ist als das polykristalline Diamantmaterial, welches die zweite Schicht bildet.

3. Schneideelement nach Anspruch 2, dadurch gekennzeichnet, dass die vordere und zweite Schicht (12,13) die Gesamtstärke der Schneideplatte bilde.

4. Schneideelement nach Anspruch 2, dadurch gekennzeichnet, dass eine dritte Schicht (18) aus polykristallinem Diamantmaterial hinter der zweiten Schicht (13) vorgesehen und mit dieser verbunden ist.

5. Schneideelement nach Anspruch 4, dadurch gekennzeichnet, dass die dritte Schicht (18) aus einer Form polykristallinem Diamantmaterial besteht, welches weniger abriebfest ist als das polykristalline Diamantmaterial, welches die zweite Schicht (13) bildet.

6. Schneideelement nach Anspruch 5, dadurch gekennzeichnet, dass die dritte Schicht (18) dieselbe Zusammensetzung hat wie die vordere Schicht (12).

7. Schneideelement nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die dritte Schicht (18) einen thermischen Ausdehnungskoeffizient und einen Elastizitätsmodul hat, welche zwischen denen der zweiten Schicht (13) und des Substrates (11) liegen.

8. Schneideelement nach Anspruch 2, dadurch gekennzeichnet, dass die Schneideplatte (Fig.4) eine Vielzahl weiterer Schichten (19) umfasst, welche hinter der zweiten Schicht (13) aufeinander gestapelt sind, wobei die weiteren Schichten immer weniger abriebfester werden, je weiter sie sich von der zweiten Schicht in Richtung des Substrates entfernen.

9. Schneideelement nach Anspruch 4, dadurch gekennzeichnet, dass die vorgenannte dritte Schicht (23, Fig.6) aus einem polykristallinen Diamantmaterial hergestellt ist, welches abriebfester als die zweite Schicht (22) ist.

10. Schneideelement nach Anspruch 9, dadurch gekennzeichnet, dass eine Vielzahl von Schichten (25, Fig.7) übereinander gestapelt hinter der zweiten Schicht vorgesehen ist, wobei die weiteren Schichten aus einem zunehmend abriebfesteren polykristallinen Diamantmaterial bestehen, je weiter sie von der zweiten Schicht entfernt sind.

11. Schneideelement nach Anspruch 1, dadurch gekennzeichnet, dass die Schneideplatte aus einer einzigen Schicht (27, Fig.8) besteht, wobei die Zusammensetzung der einzelnen Schneidezähne über deren Dicke in einer Weise verändert, so dass der vordere Teil, welcher weniger abriebfester als wenigstens ein anderer Teil der verbleibenden Teile der einzigen Schicht ist, bereitgestellt wird.

12. Schneideelement nach Anspruch 1, dadurch gekennzeichnet, dass der vordere Teil (12) der Schneideplatte weniger abriebfest gemacht wird, in dem er aus Diamantteilchen gebildet wird, welche durch die Durchschnittsgröße der Größen der Diamantteilchen, welche die anderen Teile (13) der Schneideplatte bilde.

13. Schneideelement nach Anspruch 1, dadurch gekennzeichnet, dass der vordere Teil (12) der Schneideplatte weniger abriebfest gemacht wird, in dem er aus Diamantteilchen anderer Packungsdichte als die die anderen Teile (13) der Schneideplatte bildenden Diamantteilchen gebildet wird.


15. Schneideelement nach Anspruch 1, bei welchem das Zusatzmaterial Wolframkarbidkristallen oder präzisierter Teilchen von Wolframkarbid sind.
Revendications

1. Élément de coupe, sous forme de préforme, comprenant une plaque de coupe (10) de matière polycristalline diamantée ayant une face de coupe avant et une face arrière, la face arrière de la plaque de coupe étant fixée à un substrat (11) d’une matière qui est moins dure que la matière polycristalline diamantée, caractérisé en ce que la plaque de coupe (10) comprend une partie frontale (12) qui réalise ladite surface de coupe et est formée d’une forme de matière polycristalline diamantée qui est moins résistante à l’usure que la matière polycristalline diamantée formant au moins une autre partie (13) du restant de la plaque de coupe (10).

2. Élément de coupe selon la revendication 1, caractérisé en ce que la plaque de coupe (10) comprend au moins deux couches distinctes (12,13) de matière polycristalline diamantée fixées l’une à l’autre et comprenant une couche frontale (12) qui réalise ladite surface de coupe et une seconde couche (13) derrière ladite couche frontale, la couche frontale (12) étant formée d’une forme de matière polycristalline diamantée qui est moins résistante à l’usure que la matière polycristalline diamantée formant la seconde couche.

3. Élément de coupe selon la revendication 2, caractérisé en ce que les couches frontale et seconde (12,13) forment l’entièreté de la plaque de coupe.

4. Élément de coupe selon la revendication 2, caractérisé en ce qu’une troisième couche (18) de matière polycristalline diamantée est prévue derrière la seconde couche (13) et y est fixée.

5. Élément de coupe selon la revendication 4, caractérisé en ce que la troisième couche (18) est formée d’une forme de matière polycristalline diamantée qui est moins résistante à l’usure que la matière polycristalline diamantée formant la seconde couche (13).

6. Élément de coupe selon la revendication 5, caractérisé en ce que la troisième couche (18) a la même composition que la couche frontale (12).

7. Élément de coupe selon une quelconque des revendications 4 à 6, caractérisé en ce que la troisième couche (18) a un coefficient de dilatation thermique et un module d’élasticité intermédiaire à ceux de la seconde couche (13) et du substrat (11).

8. Élément de coupe selon la revendication 2, caractérisé en ce que la plaque de coupe (Fig.4) comprend une pluralité de couches supplémentaires (19) empilées derrière la seconde couche (13), les couches supplémentaires ayant une résistance à l’usure qui diminue avec leur éloignement de la seconde couche en direction du substrat.

9. Élément de coupe selon la revendication 4, caractérisé en ce que ladite troisième couche (23, Fig.6) est formée d’une matière polycristalline diamantée qui est moins résistante à l’usure que la seconde couche (22).

10. Élément de coupe selon la revendication 9, caractérisé en ce qu’une pluralité de couches (25,Fig.7) empilées derrière la seconde couche est prévue, lesdites couches supplémentaires étant formées d’une matière polycristalline diamantée dont la résistance à l’usure augmente avec leur éloignement de la seconde couche.

11. Élément de coupe selon la revendication 1, caractérisé en ce que ladite plaque de coupe comprend une couche unique (27,Fig.8), la composition de la couche de coupe unique variant le long de son épaisseur d’une manière telle à fournir ladite partie frontale, qui est moins résistante à l’usure qu’au moins une autre partie du restant de ladite couche unique.

12. Élément de coupe selon la revendication 1, caractérisé en ce que la partie frontale (12) de la plaque de coupe est rendue moins résistante à l’usure en la formant de particules diamantées qui sont en moyenne d’une grandeur de grains plus grande que les particules diamantées formant les autres parties (13) de la plaque de coupe.

13. Élément de coupe selon la revendication 1, caractérisé en ce que la partie frontale (12) de la plaque de coupe est rendue moins résistante à l’usure en la formant de particules diamantées d’une densité de tassement plus faible que les particules diamantées formant les autres parties (13) de la plaque de coupe.

14. Élément de coupe selon la revendication 1, caractérisé en ce que la partie frontale (12) de la plaque de coupe est rendue moins résistante à l’usure par l’inclusion d’une matière additive avant la formation de l’élément de coupe dans la presse.

15. Élément de coupe selon la revendication 14, dans lequel la matière additive comprend des particules de carbure de tungstène ou des particules précipitées de carbure de tungstène.