EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 12.01.94 Bulletin 94/02

Int. Cl.: H03J 5/24, H03D 5/00, H03D 7/16, H04N 7/20

Application number: 90201433.1

Date of filing: 05.06.90

Receiver for terrestrial AM and satellite FM-TV broadcasting signals.

Priority: 08.06.89 NL 8901460

Date of publication of application: 12.12.90 Bulletin 90/50

Publication of the grant of the patent: 12.01.94 Bulletin 94/02

Designated Contracting States: BE DE ES FR GB IT NL SE

References cited:
EP-A- 0 276 144
DE-A- 3 226 980

Inventor: Verheijen, Paulus Alexander Maria
C/o Int. OCTROOIBUREAU B.V., Prof. Holstlaan 6
NL-5656 AA Eindhoven (NL)

Inventor: Schiltmans, Ronald Petrus Andreas
C/o Int. OCTROOIBUREAU B.V., Prof. Holstlaan 6
NL-5656 AA Eindhoven (NL)

Representative: Schoonheijn, Harry Barend et al
INTERNATIONAAL OCTROOIBUREAU B.V.
Prof.Holstlaan 6
NL-5656 AA Eindhoven (NL)

Proprietor: N.V. Philips' Gloeilampenfabrieken
Groenewoudseweg 1
NL-5621 BA Eindhoven (NL)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Jouve, 18, rue Saint-Denis, 75001 PARIS
Description

The invention relates to a receiver for terrestrial AM and satellite FM-HF-TV signals in first and second frequency ranges, respectively, of mutually substantially equal dimensions, which succeed each other in frequency, comprising, arranged one after the other, a HF-AM/FM section, a mixing circuit common for the AM and FM-TV signals and an IF device, oscillator mixing signals being applied by a tuning oscillator to that mixing circuit for a frequency conversion of the AM and FM-TV signals into a first AM and an FM intermediate frequency signal, a first AM and an FM intermediate frequency, respectively, of which at least the first AM intermediate frequency is located above the first frequency range.

Such a TV receiver is disclosed in, for example, the European Patent Application no. 276,144.

Terrestrial AM-HF-TV broadcasting signals - abbreviated to AM-HF-TV signals hereinafter - are applied to the known TV receiver in a first frequency range of approximately 40 MHz to 850 MHz and satellite FM-HF-TV broadcasting signals - abbreviated to FM-HF-TV signals hereinafter - in a second frequency range of approximately 950 MHz to 1800 MHz. The AM and FM-HF-TV signals are applied to the said mixing circuit after a broadband HF selection and amplification in the HF AM/FM section. The frequency of the tuning oscillator is adjusted such that the mixing circuit converts the AM and the FM-HF-TV signals to the same intermediate frequency. This intermediate frequency is chosen to have a value above the first frequency range. Swing compression is used during tuning to a FM-HF-TV signals to make a common usage of the FM section possible for both the AM and the FM intermediate frequency. The tuning range of the tuning oscillator must be relatively large and the known TV receiver is provided with a number of frequency phase control loops, to realise an adequate frequency conversion and frequency swing compression in the said mixing circuit. Delay time phenomena may cause unwanted frequency-dependent interferences. Furthermore, the intermediate frequency chosen deviates from the now already customary value, at least as far as the EM-TV signal is concerned. This causes the cost of producing the known TV receiver to be high.

The invention has for its object to provide a receiver for terrestrial AM and satellite FM-HF-signal which obviates the said drawbacks.

According to the invention, a receiver of the type defined in the opening paragraph, is characterized in that the first AM intermediate frequency is of the order of magnitude of twice the highest frequency of the first frequency range and the FM intermediate frequency is of the order of half the lowest frequency of the second frequency range, which FM arrangement comprises an AM and a FM-IF section, inputs of which are coupled to an output of the mixing circuit for a separate selection and processing of the first AM and the FM intermediate frequency signal, respectively.

The Japanese Kokai 87-128690 describes a TV receiver, in which a mixing circuit is used which converts the AM and FM-HF signals into a FM and AM intermediate frequency which may be mutually divergent.

The invention is based on the recognition that a down conversion of the TV-HF broadcasting signals in the second frequency range, located higher, and an up conversion of the TV-HF broadcasting signals in the first frequency range, located lower, by means of the same mixing circuit results in the frequency control range of the tuning oscillator, necessary for tuning to a TV signal in the first frequency band - denoted FM frequency control range hereinafter - being at least partly identical to the control range necessary for tuning to a TV signal in the second frequency band - denoted AM frequency control range hereinafter.

When the measure according to the invention is applied, the FM control range largely corresponds to the AM frequency control range and the total control range amounts to less than one octave. As a result thereof, the tuning oscillator may be of a simple structure and is therefore relatively cheap. The circuit is less sensitive to interferences than the prior art receiver, because FM swing compression need not be applied because of the separate processing of the FM and FM intermediate frequency signals, so that the loops required therefor may be omitted.

The said value of the FM intermediate frequency of the TV receiver according to the invention allows of using its existing circuit for processing the FM-IF signal up to and inclusive of the display thereof.

A cheap realisation of the receiver according to the invention as one integral whole is therefore possible.

A further price reduction is possible in a preferred embodiment of such a receiver, wherein the AM-IF section is provided with an AM-IF filter, coupled to an output of the said mixing circuit which is characterized by a further mixing circuit, which is coupled to an output of the AM-FM filter, to which oscillator mixing signals are applied by a fixed oscillator for a further frequency conversion of the first AM-IF intermediate frequency signal into a second AM-IF intermediate frequency signal, having a second AM intermediate frequency, the dimension of which is of the order of the lowest frequency of the first frequency range.

Applying this measure renders it possible to use existing circuits in a simple manner for processing the second AM intermediate frequency signal up to and inclusive of display, which circuits are found in normal terrestrial TV superheterodyne receivers.

A further preferred embodiment of this receiver is characterized, in that the FM, the first and the second AM intermediate frequencies are of the order of 500
MHz, 1800 MHz and 40 MHz, respectively.

The invention will now be described in greater detail by way of example with reference to the sole Figure of the accompanying drawings.

This Figure shows a receiver according to the invention for terrestrial AM and satellite FM-HF-TV signals - denoted AM and FM-HF-TV signals hereinafter - in first and second frequency ranges of approximately 40-900 MHz, and 900-1800 MHz, respectively. The receiver shown has a HF-input 1, to which the said AM-HF-TV signals are applied directly from a terrestrial aerial arrangement TA and the said FM-HF-TV signals from a satellite aerial arrangement SA via an outdoor unit OU. For the sake of completeness, it should be noted that the outdoor unit OU is provided, coupled one after the other to SA, with: a first microwave filter F1 for a high-pass selection of the received satellite FM-HF-TV signals, located in a frequency band of 12 GHz, a block converter BC comprising a mixing circuit to which oscillator mixing signals having a fixed frequency are applied from a fixed oscillator for a block conversion of these last-mentioned FM-HF-TV signals to the said second frequency range, a second microwave filter F2 for a band-pass selection of the FM-KF-TV signals in the second frequency range.

The receiver shown is provided with a HF-AM/FM section 2-6, which is used in common for both the AM and the FM-HF-TV signals. This section comprises a parallel arrangement of four switchable HF input filters 2 to 5, coupled to the HF input 1, each having a passband of not more than one octave. The passbands of this HF input filter succeed each other in frequency, those of the HF input filters 2-4 together covering the first frequency range of 40-800 MHz and the HF input filters 5 covering the second frequency range of 900-1800 MHz. The HF input filters 2 to 5 are switchable from a tuning control circuit 7, still to be described hereinafter, in such a manner that not more than one of the HF input filters 2-5 is operative for selection. Higher order interferences as a result of non-linearities in the subsequent circuit are limited to a minimum, since each of the HF input filters has a passband of not more than one octave.

The HF-AM/FM section 2-6 also includes a gain-controlled amplifier 6 for controlling the amplitude of the AM or FM-HF-TV signal, selected by one of the AF input filters 2 to 5 to a fixed level. To that end a gain control signal is generated in a manner known per se, for example by derivation from the baseband video signal (not shown) and is applied to a control input of the amplifier 6 (not shown).

The AM or FM-HF-TV signals thus selected and whose levels are stabilised are subsequently applied to a mixing circuit 8 which is used in common for both AM and FM signals, is coupled to an output of the amplifier 6 and to which tunable oscillator mixing signals are applied from a local tuning oscillator 9. The frequency of a desired AM-HF-TV signal in the said first frequency range is converted in the mixing circuit 8 into a first AM-intermediate frequency (AM-IF) of the order of 1800 MHz, i.e. of the order of twice the highest frequency of the first frequency range, by an appropriate tuning of the oscillator frequency in a frequency range of approximately 1900 MHz to 2700 MHz. The AM-IF-TV signal a:- the said first AM intermediate frequency thus obtained is designated, for the sake of brevity, the first AM-IF-TV signal in the sequel of this description. A desired FM-HF-TV signal in the said second frequency range is converted into a EM intermediate frequency (FM-IF), of the order of 480 MHz, i.e. of the order of half the lowest frequency (900 MHz) of the second frequency range, by an appropriate tuning of the oscillator frequency in a frequency range of approximately 1420-2300 MHz. The overall tuning range of the tuning oscillator 9 necessary to enable tuning to a frequency in both the first and second frequency ranges, is located between approximately 1400 MHz and 2700 MHz and consequently amounts to less than one octave. The tuner oscillator may consequently be of a simple structure.

Tuning of the tuning oscillator 9 is obtained by deriving, via the said tuning control circuit 7, a tuning control signal from a tuning datum applied to a control input TC of the circuit 7. A switching signal is also derived from this tuning datum, which signal switches that filter of the HF-input filters 2-5 to a state active for selection whose passband contains the desired HF-TV signal. The tuning control circuit 7, having circuit inputs of the HF-input filters 2 to 5, serves for this purpose.

The FM and AM-IF-TV signals are separately processed in a FM-IF section 10, 11 and an AM-IF section 13-19, respectively, after frequency conversion in the mixing circuit 8. The FM-IF section 10, 11 includes a FM-IF filter 10 and a FM-IF amplifier 11 for an IF selection and amplification of the FM-IF signal. The FM-IF amplifier 11 is coupled to a FM-demodulator circuit 12 for demodulating the FM-IF-TV signal to the baseband.

The AM-IF section 13-19 includes a first AM-IF amplifier 13, followed by a first AM-IF filter 14 and a second AM-IF amplifier 15, in which an IF selection and an amplification of the last-mentioned AM-IF signal, respectively, occurs. The second AM-IF amplifier 15 is coupled to a mixer stage 16, to which oscillator mixing signals having a fixed frequency are applied from a fixed oscillator 17. The frequency of the fixed oscillator is chosen such that the first AM-IF-TV signal of the said first AM-intermediate frequency (1800 MHz) is converted to a lower second AM intermediate frequency which results in a second AM-IF signal. The second AM intermediate frequency is preferably chosen to have a value of 38.9 MHz, which is a normal value for TV receivers, so that existing circuits may be used for the subsequent AM signal processing oper-
ation.

The mixer stage 16 is connected to a second AM-IF filter 18, which is followed by a third AM-IF amplifier 19 for an AM-IF selection and amplification of the second AM-IF-TV signal. The third AM-IF amplifier 19 is coupled to an AM-demodulation circuit 20 for demodulating the second AM-IF-TV signal to the baseband. The AM-demodulation circuit 20 and the FM-demodulation circuit 12, mentioned in the foregoing, are both mutually coupled to inputs of a video and an audio signal processing section 21 and 22 via picture display and sound reproducing devices 23 and 24, respectively, for a processing of the video and audio signal components in the baseband TV signals applied thereto by one of the demodulation circuits 12 and 20.

It will be obvious that the use of the inventive idea is not limited to the embodiment shown. Thus, it is equally possible to use, for example, more or less parallel filters having a smaller or a larger passband, respectively, instead of the parallel arrangement of HF input filters 2-5 each having a passband of one octave, to apply both the AM and FM-IF-TV signals via mutually separate inputs to the HF input filters 2-3 and the HF input filter 5 respectively, instead of via a common HF signal input and to apply a single superheterodyne AM signal processing operation, whereby the first AM-IF signal is demodulated directly, instead of the double heterodyne signal processing of the AM-TV signal shown.

Claims

1. A receiver for terrestrial AM and satellite FM-HF-TV signals in first and second frequency ranges, respectively, of mutually substantially equal dimensions, which succeed each other in frequency comprising, arranged one after the other, a HF-AM/FM section, a mixing circuit common for the AM and FM-TV signals and an IF device, oscillator mixing signals being applied from a tuning oscillator to that mixing circuit for a frequency conversion of the AM and FM-HF-TV signals into a first AM and an FM intermediate frequency signal, respectively, having a first AM and an FM intermediate frequency, of which at least the first AM intermediate frequency is located above the first frequency range, characterized in that the first AM intermediate frequency is of the order of magnitude of twice the highest frequency of the first frequency range band and the FM-intermediate frequency is of the order of magnitude of half the lowest frequency of the second frequency range, which IF device comprises an AM and a FM-IF section, inputs of which are coupled to an output of the mixing circuit for a separate selection and processing of the first AM and the FM intermediate frequency signal, respectively.

2. A receiver as claimed in Claim 1, the AM-IF section being provided with an AM-IF filter which is coupled to an output of the said mixing circuit, characterized by a further mixing circuit which is coupled to an output of the AM-IF filter, to which oscillator mixing signals are applied from a fixed oscillator for a further frequency conversion of the first AM-intermediate frequency signal into a second AM intermediate frequency which is of the order of magnitude of the lowest frequency of the first frequency range.

3. A receiver as claimed in Claim 2, the terrestrial AM and satellite FM-HF-TV signals being predominantly located between the frequency values of 40 MHz and 850 MHz and the frequency values of 950 MHz and 1800 MHz, respectively, characterized in that, the FM, the first and the second AM intermediate frequencies have dimensions in the respective orders of magnitude of 500 MHz, 1800 MHz and 40 MHz.

4. A receiver as claimed in any one of the preceding Claims, characterized in that, the HF-AM/FM section includes a parallel arrangement of n switchable bandpass filters, having n consecutive bandpass frequency ranges, each of not more than one octave, which together cover the first and second frequency ranges, of which always one is switched to an operative state.

Patentansprüche

sten AM- bzw. FM-ZF-Signals.

2. Empfänger nach Anspruch 1, wobei der AM-ZF-Teil mit einem AM-ZF-Filter versehen ist, das mit einem Ausgang der genannten Mischstufe gekoppelt ist, die durch eine weitere Mischstufe gekennzeichnet ist, die mit einem Ausgang des AM-ZF-Filters gekoppelt ist, dem aus einem festen Oszillator Oszillatorfrequenz Signale zugeführt werden für eine weitere Frequenzumsetzung des ersten AM-ZF-Signals in ein zweites AM-ZF-Signal mit einer zweiten AM-Zwischenfrequenz, die von der Größenordnung der niedrigsten Frequenz des ersten Frequenzbereiches ist.

3. Empfänger nach Anspruch 2, wobei die terrestrischen AM- und Satelliten-FM-HF-Fernsehsignale zwischen den wesentlichen den Frequenzwerten 40 MHz und 850 MHz bzw. den Frequenzwerten 950 MHz und 1800 MHz liegen, dadurch gekennzeichnet, daß die FM-, die erste AM- und die zweite AM-Zwischenfrequenzen von der Größenordnung von 500 MHz, 1800 MHz bzw. 40 MHz sind.


Revidications

1. Récepteur de signaux de télédiffusion AM terrestres et FM-HF par satellite dans le premier et le deuxième domaine de fréquences, respectivement, de dimensions sensiblement égales, qui se succèdent l’un l’autre en fréquence, comprenant, agencés l’un après l’autre, une section HF-AM/FM, un circuit de mélange commun pour les signaux de télédiffusion AM et FM et un dispositif IF, des signaux de mélange d’oscillateurs étant appliqués par un oscillateur de syntonisation à ce circuit de mélange pour une conversion de fréquence des signaux de télédiffusion AM et FM en un premier signal de fréquence intermédiaire AM et en un signal de fréquence intermédiaire FM, présentant une première fréquence intermédiaire AM et une fréquence intermédiaire FM, respectivement, dont au moins la première fréquence intermédiaire AM est située au-dessus du premier domaine de fréquences, caractérisé en ce que la première fréquence intermédiaire AM est de l’or-

dre du double de la fréquence la plus élevée du premier domaine de fréquences et la fréquence intermédiaire FM est de l’ordre de la moitié de la fréquence la plus basse du deuxième domaine de fréquences, le dispositif IF comprenant une section AM et une section FM-IF, dont les entrées sont couplées à une sortie du circuit de mélange pour une sélection et un traitement séparés du premier signal de fréquence intermédiaire AM et du signal de fréquence intermédiaire FM, respectivement.

2. Récepteur selon la revendication 1, dans lequel la section AM-IF est pourvue d’un filtre AM-IF couplé à une sortie dudit circuit de mélange, caractérisé par un autre circuit de mélange qui est couplé à une sortie d’un filtre AM-IF, auquel des signaux de mélange d’oscillateurs sont appliqués par un oscillateur fixe pour une autre conversion de fréquence du premier signal de fréquence intermédiaire AM en un deuxième signal de fréquence intermédiaire AM, dont la dimension est de l’ordre de la fréquence la plus basse du premier domaine de fréquences.

3. Récepteur selon la revendication 2, dans lequel les signaux de télédiffusion terrestres AM-HF et par satellite FM-HF sont situés de manière prédominante entre les valeurs de fréquences de 40 et 850 MHz et les valeurs de fréquences de 950 et 1800 MHz, respectivement, caractérisés en ce que la fréquence FM, la première et la deuxième fréquence intermédiaire AM sont de l’ordre de 500 MHz, 1800 MHz et 40 MHz, respectivement.

4. Récepteur selon l’une quelconque des revendications précédentes, caractérisé en ce que la section HF-AM/FM comprend un agencement en parallèle de n filtres passe-bande commutables, ayant n plages de fréquences passe-bande consécutives, chacune non supérieure à une octave, qui couvrent ensemble le premier et le deuxième domaine de fréquences dont l’un seul est toujours commuté dans un état actif.