EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 26.04.95 Bulletin 95/17

Int. Cl.:\ G11B 17/035, G11B 15/675

Application number: 90305033.4

Date of filing: 10.05.90

Loading and unloading apparatus for a cartridge.

Priority: 18.05.89 JP 124996/89

Date of publication of application: 22.11.90 Bulletin 90/47

Publication of the grant of the patent: 26.04.95 Bulletin 95/17

Designated Contracting States:
DE FR GB

References cited:
EP-A-0 264 139
DE-A- 3 644 285

PATENT ABSTRACTS OF JAPAN, unexamined applications, P field, vol. 12, no. 271, July 28, 1988 THE PATENT OFFICE JAPANESE GOVERNMENT page 129 P 736

Proprietor: FUJITSU LIMITED
1015, Kamikodanaka
Nakahara-ku
Kawasaki-shi Kanagawa 211 (JP)

Inventor: Utsumi, Kenichi
1-893, Goten-Cho,
Kosugi,
Nakahara-Ku
Kawasaki-shi, Kanagawa 211 (JP)

Representative: Rackham, Stephen Neil et al
GILL JENNINGS & EVERY,
Broadgate House,
7 Eldon Street
London EC2M 7LH (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to a cartridge loading and unloading apparatus, in which a cartridge accommodating therein a recording medium, such as a recording magnetic tape, optical or magnetic disc or the like, is set on a carrier of the apparatus and moved to a loading position or is moved from the loading position to an unloading position. More particularly, this invention relates to a cartridge loading/unloading apparatus comprising an urging means which resiliently urges the carrier toward a stopper at the loading position, to stably retain the carrier at that position.

A known apparatus for loading and unloading a tape cartridge is disclosed in DE-A-3644285. Apparatus of this type comprises a base of the apparatus and a carrier into which the tape cartridge is inserted and set. The base has a pair of vertical side walls each having two substantially L-shaped guide slots. The carrier has side faces each having two pins, which are engaged with these two guide slots respectively, so that the carrier is movable in the horizontal direction while the pins are engaged with horizontal paths of the L-shaped guide slots, and movable in the vertical direction when the pins are engaged with vertical paths of the L-shaped guide slots.

A plate is extended between the above-mentioned pair of pins and is provided, at an intermediate position thereof, with another pin which is engaged with an elongated slot of a pivot arm, which is connected through a coil spring to an output shaft operatively connected to a drive motor via a suitable reduction means.

In the operation of this apparatus, first the carrier is in an upper or unloading position, and a tape cartridge is inserted and set in the horizontal direction into the carrier. When the setting of the cartridge is confirmed by a suitable sensor, the drive motor is rotated and the pivot arm is thus pivotally moved so that the carrier is guided along the vertical paths of the L-shaped guide slots until the carrier is lowered to come into contact with a stopper at a loading position.

Thereafter, the drive motor is rotated for a predetermined number of revolutions, so that the coil spring, via the pivot arm, exerts a resilient force on the carrier to urge the carrier downward against the stopper at the loading position. When the carrier is in the lower or loading position, the drive motor or the reduction means is locked by a suitable stopper to prevent a rotation of the drive motor by a counter-reaction force from the coil spring.

After the necessary information and data has been output from or input to the tape cartridge, the motor is then driven to rotate in the opposite direction, to move the carrier to the unloading position.

The above-mentioned known cartridge loading/unloading apparatus is relatively complicated, since a coil spring for urging the pivot arm toward the loading position, and a stopper for preventing a rotation of the drive motor by a reaction force from the coil spring, are necessary.

Another known apparatus is disclosed in EP-A-0264139. In this apparatus, one end of a pivot arm is pivotally mounted to the base of the loader, and the other end to a carrier which holds the cartridge. As the pivot arm is rotated, the cartridge held in the carrier is moved to the loading or unloading position. The rotation of the pivot arm is achieved by a system of gears connected to a drive means.

According to the present invention, there is provided a cartridge for a loading/unloading apparatus comprising a base means; a carrier movably supported on the base and able to carry a cartridge accommodating therein a recording medium, the cartridge being able to be set into or removed from the carrier; and means for moving the carrier, with the cartridge set therein, between an unloading position and a loading position, said moving means comprising a drive source and a pivot arm having one end pivotally connected to the base and a free end operatively connected to the carrier; characterised in that: the moving means further comprises a cam member rotatably mounted on the base and operatively connected to the drive source; a flexible arm having a first part rigidly connected to the pivot arm and a second part remote from the first part; a stopper means for retaining the carrier at the loading position; and an engaging means for engaging the second part of the flexible arm with the cam member in such a manner that the carrier is moved between the unloading and loading positions by the drive source via the cam member, the engaging means, the flexible arm, and the pivot arm, and that the carrier is urged against the stopper by a deformation of the flexible arm at the loading position.

In the apparatus of this invention, the carrier is moved until it comes into contact with the stopper, and thereafter, the drive source continues to operate to resiliently deform the flexible arm to thereby urge the carrier against the stopper, whereby the carrier is stably retained at the loading position. While at the loading position, the cam member prevents a rotation of the drive source by a counterreaction force from the flexible arm, since the engaging means is located at a position with respect to the cam member such that the counterreaction force from the flexible arm is no longer transmitted to the drive source.

Therefore, a coil spring for urging the carrier toward the loading position and a special stopper for preventing an undesired rotation of the drive motor, as required in the above-mentioned known apparatus, are no longer necessary according to the present invention, and thus a cartridge loading/unloading apparatus having a relatively simple construction and lower cost is obtained.

A particular example of a loading and unloading
apparatus in accordance with this invention will now be described with reference to the accompanying drawings; in which:

Figure 1 is a schematic illustration of an apparatus for loading and unloading a cartridge according to the present invention;

Figure 2 is a side elevational view of an embodiment of the cartridge loading/unloading apparatus of this invention;

Figure 3 is a plan view of the embodiment shown in Figure 2;

Figure 4 is a front view of an eject member used in the apparatus shown in Figure 2;

Figure 5 is a plan view of the eject member shown in Figure 4;

Figure 6 is a left side view seen from an arrow VI in Figure 4;

Figure 7 is a right side view seen from an arrow VII in Figure 4;

Figure 8 is a bottom view seen from an arrow VIII in Figure 4;

Figure 9 is a plan view similar to Figure 3, wherein the carrier has been moved to a loading position;

Figure 10 is a perspective view illustrating a block and an engaging member used in the apparatus shown in Figure 3; and,

Figures 11A, 11B and 11C are views illustrating the operations of the block and the engaging member shown in Figure 10.

Referring now to the drawings, wherein Figure 1 schematically illustrates an apparatus for loading and unloading a cartridge according to the present invention, the apparatus comprises a carrier 20 to which a tape cartridge is inserted, a cam gear 21 rotated by a drive motor, a pin 22 projected from a side surface of the cam gear 21, an arm bar 23 defining an elongated hole 23a with which the pin 22 is freely engaged, and a pivot arm 24 to which the base end of the arm bar 23 is fixed, the pivot arm 24 being connected to the carrier 20 to move it upward and downward.

In the apparatus as shown in Fig. 1, when the cam gear 21 is rotated, the carrier 20 is moved upward or downward. Namely, at a cartridge loading position, the pin 22 is at its lowermost position, or in the vicinity thereof, and the arm bar 23 is resiliently deformed to push the carrier 20 downward.

Figure 2 is a side elevational view of an embodiment of the cartridge loading and unloading apparatus according to the present invention, and Fig. 3 is a plan view of this embodiment. The apparatus comprises a base 30 provided at the respective sides thereof with side bases 31, and each of the side bases 31 is provided with a vertically elongated slot 31a. A carrier 32, to which a tape cartridge 33 can be inserted, has respective side walls each provided with pins 34 and 35 which are engaged with the elongated slots 31a, respectively, so that carrier 32 is prevented from moving in a direction other than the vertical direction, i.e., the direction of the elongated vertical slot 31a.

A drive motor 36 is mounted on the bottom surface of the base 30, and a reduction means 37 is connected to an output shaft of the drive motor 36. A first gear 38 is rigidly mounted on an output shaft of the reduction means 37, a shaft 39 is rotatably supported on the respective side bases 31, a second gear 40 is rigidly mounted on the shaft 39 at an intermediate portion thereof and engaged with the first gear 38, third gears 41 are mounted on the respective ends of the shaft 39, cam gears 42 are rotatably mounted on the respective side bases 31, and counter gears 43 also rotatably mounted on the respective side bases 31 are engaged with the respective third gears 41 and with the respective cam gears 42. Accordingly, the respective cam gears 42 are simultaneously rotated by the drive motor 36.

Pivot arms 44 arranged along the respective side bases 31 have base ends each pivotably connected to the side base 31 by a pin 45. Each of the pivot arms 44 is provided at a free end thereof with an elongated slot 44a with which the above-mentioned pin 35 is freely engaged, whereby the carrier 32 is moved upward and downward when the pivot arms 44 are pivotably moved about the pin 45.

Flexible arm bars 46 are secured to the respective free ends of the pivot arms 44, each arm bar 46 comprising a flexible in-shaped member which defines an elongated slot 46a. An upper portion of the U-shaped arm bar 46 is rigidly fixed to the pivot arm 44, while a lower portion of the arm bar 46 is slidably guided as an arrow C by a mounting member 61. A pin 47 is rigidly mounted on the side surface of the respective cam gear 42 and engaged with the elongated slot 46a.

A pin 48 is rigidly mounted on the upper wall of the carrier 32. An eject member or plate 49 is provided with an elongated slot 49a extending in the direction in which the tape cartridge 33 is loaded or unloaded. The elongated slot 49a is freely engaged with the pin 48 so that the eject member 49 is movably supported in the loading/unloading direction of the cartridge 33. As shown in Fig. 4, a block 50 is rigidly connected to one end of the eject member 49 by a screw 51.

As shown in Fig. 10, an engaging member 52 is mounted on the base 30, and comprises a vertical guide portion 52a and an inclined guide portion 52b.

The eject member 49 and the block 50 integrally connected to the eject member 49 will now be described in more detail with reference to Figs. 4 through 8 and 10. The block 50 is provided at one end face thereof with a guide slit 50a slidably engageable with a guide portion 32a formed on the top wall of the carrier 32, and a first engaging recess 50b adjacent to the guide slit 50a and deeper than the latter in the horizontal direction, to engage with an end of the guide 32a of the carrier 32. The block 50 is also provided at the lower part thereof with a second engaging recess.
50C which comes into contact with a vertical guide portion 52a of the engaging member 52 when the carrier 32 is lowered. The eject member 49 is provided at the one end thereof with an upper projection 49b, with which one end of a spring 53 is engaged. The other end of the spring 53 is engaged with the top wall of the carrier 32, so that the eject member 49 is always urged in the unloading direction of the tape cartridge 33, i.e., the direction in which the guide slit 50a of the block 50 is pushed toward the guide portion 32a of the carrier 32.

A stopper 54 (Fig. 2) is mounted on the base 30, to stop the carrier 32 from moving downward beyond the loading position thereof.

An operation of the cartridge loading/unloading apparatus according to the present invention will now be described. In Fig. 3, the tape cartridge 33 is inserted into the carrier 32 as shown by an arrow A, and thus a leading face of the tape cartridge 32 pushes against the block 50 of the eject member 49 so that the eject member 49 is moved in the loading direction against the spring 53. Then, the first engaging recess 50b of the block 50 is engaged with the guide portion 32a of the carrier 32 by the spring 53 and, therefore, the eject member 49 is prevented from moving backward in the unloading direction, by the spring 53. Fig. 2A shows this position.

Thereafter, the drive motor 36 is operated to rotate in one direction, so that the drive force is transmitted through the reduction means 37, the first gear 38, the second gear 40, the respective third gears 41, and the respective counter gears 43, to simultaneously rotate the cam gears 42, whereby the pivot arms 44 are turned about the pins 45, and thus the carrier 32 is moved downward along the vertical elongated slot 31a. When the carrier 32 is lowered, the bottom edge portion of the block 50 comes into contact with the inclined guide portion 52b of the engaging member 52 (Fig. 11A), so that the block 50 is transversely guided in such a manner that the first engaging recess 50b thereof is disengaged from the guide portion 32a of the carrier 32. When the first engaging recess 50b is disengaged from the guide portion 32a of the carrier 32, although the eject member 49 accompanying the block 50b is apt to move in the unloading direction due to the spring 53, the second engaging recess 50c of the block 50 comes into contact with the vertical guide portion 52a of the engaging member 52 to prevent a further movement thereof in the unloading direction (Figs. 11B and 11C).

Under such conditions, the carrier 32 is further lowered until the bottom thereof comes into contact with the stopper 54 (Fig. 2B), and thereafter, the drive motor 36 is operated for a predetermined number of revolutions, to resiliently deform the arm bar 46 and thereby urge the carrier 32 downward (Fig. 2C).

After the necessary information and data are output from or input to the recording media of the tape cartridge 33, the motor 36 is driven in the opposite direction. Accordingly, the second engaging recess 50c of the block 50 is disengaged from the vertical guide portion 32a of the engaging member 52 and, therefore, the eject member 49 accompanying the block 50b is moved in the unloading direction by the spring 53. During this movement, the block 50 pushes against the leading end face of the tape cartridge 33 to remove it from the carrier 32 in the unloading direction.

Claims

1. A cartridge loading/unloading apparatus comprising a base means (30); a carrier (20,32) movably supported on said base and suitable for carrying a cartridge (33) accommodating therein a recording media, said cartridge (33) being able to be set into or removed from the carrier (20,32); and means for moving said carrier with said cartridge set therein between an unloading position and a loading position; characterised in that:

said moving means comprising:

a drive source (36), and a pivot arm (24,44) having one end (45) pivotally connected to said base (30) and a free end operatively connected to said carrier (20,32), said moving means further comprises:

a cam member (21,42) rotatably mounted on said base (30) and operatively connected to said drive source (36);

a flexible arm (23,46) having a first part rigidly connected to said pivot arm and a second part remote from said first part;

a stopper means (54) for retaining said carrier (20,32) at the loading position; and,

engaging means (22,47) for engaging said second part of the flexible arm (23,46) with said arm member in such a manner that said carrier (20,32) is moved between the unloading and loading positions by said drive source (36) via said cam member (21,42), said engaging means (22,47), said flexible arm (23,46), and pivot arm (24,44), and that said carrier (20,32) is urged against said stopper (54) by a deformation of said flexible arm (23,46) in the loading position.

2. An Apparatus as set forth in claim 1, wherein said flexible arm (23,46) is rigidly connected to said free end of the pivot arm (24,44), to form an extended part of it.

3. An apparatus according to claim 1 or 2, in which the engaging means comprises a first engaging means (22,47) formed on said cam member (21,42) and,

a second engaging means (46a) formed
on said second part of said flexible arm (46), said second engaging means (46a) being engaged with said first engaging means (21,42).

4. An apparatus according to claim 1 or 2, wherein said flexible arm (23,46) comprises a U-shaped bar surrounding an elongated slot (46a), said cam member (21,42) having a pin (22,47) projecting from its side surface, and said engaging means comprises said pin (22,47) engaged with said elongated slot and movable along it.

5. An apparatus according to claim 4, wherein the loading and unloading positions are the lowest and uppermost position, respectively, of said carrier (20,32), and at the loading position, said cam member (21,42) is in a state such that said pin (22,47) is at its lowest position, or near it, to resiliently deform said flexible arm (23,46) to urge the carrier (20,32) against the stopper means (56).

6. An apparatus according to any one of the preceding claims, in which the drive source comprises a drive motor (36) mounted on said base and connected to the cam member (21,42) via reduction means (38,41,43).

7. An apparatus according to any one of the preceding claims, wherein said base (30) has a pair of side walls (31);
 a pair of said cam members (21,42) are rotatably mounted on said respective side walls (31);
 a pair of said pivot arm (24,44) each having one end pivotably connected to said respective side wall (31), and a free end operatively connected to said carrier (20,32); and,
 a pair of resiliently flexible arms (23,46) each having a first part rigidly connected to said free end of the respective pivot arm (24,44) and a second part remote from said first part; and,
 said pairs of cam members (21,42), pivot arms (24,44), and flexible arms (23,46) being arranged symmetrically with respect to the base (30).

Patentansprüche

1. Kassetten-Lade/Entlade-Vorrichtung, die aufweist eine Basineinrichtung (30), einen Träger (20,32), der bewegbar an der Basis gelagert ist und für das Tragen einer Kassette (33), in der ein Aufzeichnungsmedium untergebracht ist, geeignet ist, wobei die Kassette (33) dazu in der Lage ist, in den Träger gesetzt zu werden oder von dem Träger (20,32) entfernt zu werden, und eine Einrichtung zum Bewegen des Trägers mit darin eingesselter Kassette zwischen einer Entladeposition und einer Ladeposition, dadurch gekennzeichnet,
 daß die Bewegungseinrichtung aufweist:
 eine Antriebsquelle (36) und einen Dreharm (24,44), der ein Ende (45), drehbar verbunden mit der Basis (30), und ein freies Ende, betriebmäßig verbunden mit dem Träger (20,32), hat,
 die Bewegungseinrichtung weiterhin aufweist:
 ein Nockenteil (21,42), das drehbar an der Basis (30) angebracht ist und betriebsmäßig mit der Antriebsquelle (36) verbunden ist,
 einen flexiblen Arm (23,46), der einen ersten Abschnitt, der starr mit dem Dreharm verbunden ist, und einen zweiten Abschnitt, der von dem ersten Abschnitt entfernt ist,
 eine Anschlagseinrichtung (54) zum Halten des Trägers (20,32) an der Ladeposition, und
 eine Eingriffseinrichtung (22,47) zum Eingriff in den zweiten Abschnitt des flexiblen Arms (23,46) mit dem Nockenteil in solcher Art und Weise, daß der Träger (20,32) zwischen der Entladeposition und der Ladeposition durch die Antriebsquelle (36) über das Nockenteil (21,42), die Eingriffseinrichtung (22,47), den flexiblen Arm (23,46) und den Dreharm (24,44) bewegt wird, und daß der Träger (20,32) gegen den Anschlag (54) durch eine Deformation des flexiblen Arms (23,46) in der Ladeposition gedrängt wird.

2. Vorrichtung, wie in Anspruch 1 dargestellt, worin der flexible Arm (23,46) starr mit dem freien Ende des Dreharms (24,44) verbunden ist, um einen erweiterten Abschnitt davon zu bilden.

3. Vorrichtung gemäß Anspruch 1 oder 2, in die Eingriffseinrichtung eine erste Eingriffseinrichtung (22,47), die an dem Nockenteil (21,42) ausgebildet ist, und
 eine zweite Eingriffseinrichtung (46a) aufweist, die an dem zweiten Abschnitt des flexiblen Arms (46) ausgebildet ist, wobei die zweite Eingriffseinrichtung (46a) in die erste Eingriffseinrichtung (21,42) eingreift.

4. Vorrichtung nach Anspruch 1 oder 2, worin der flexible Arm (23,46) eine U-förmige Stange aufweist, die einen langgestreckten Schlitz (46a) umgibt, wobei das Nockenteil (41,42) einen Stift (22,47) hat, der von seiner Seitenoberfläche abstehst, und wobei die Eingriffseinrichtung den Stift (22,47) aufweist, der in den langgestreckten Schlitz eingreift und entlang ihm bewegbar ist.
5. Vorrichtung gemäß Anspruch 4, worin die Lade-
position und Entladeposition die unterste bzw.
die oberste Position des Trägers (20,32) sind, und
5 wobei an der Ladeposition das Nockenteil
(21,42) in einem solchen Zustand ist, daß der
Stift (22,47) an seiner niedrigsten Position ist
oder nahe dieser ist, um elastisch den flexiblen
Arm (23,46) zu deformer, um den Träger
(20,32) gegen die Anschlageinrichtung (56) zu
drängen.

6. Vorrichtung gemäß einem der vorhergehenden
Ansprüche, in der die Antriebsquelle einen An-
triebsmotor (36) aufweist, der an der Basis ange-
bracht ist und mit dem Nockenteil (21,42) über die
Reduktionseinrichtung (38,41,43) verbunden ist.

7. Vorrichtung gemäß einem der vorhergehenden
Ansprüche, worin die Basis (30) ein Paar von Sei-
tenwänden (31) hat,

20 ein Paar von Nockenteilen (21,42) drehbar
an den jeweiligen Seitenwänden (31) angebracht ist,
ein Paar von Dreharmen (24,44) jeweils
ein drehbar mit der jeweiligen Seitenwand (31)
verbundenes Ende, und ein freies Ende hat, das
betriebsmäßig mit dem Träger (20,32) verbunden
ist, und
ein Paar von elastisch flexiblen Armen
(23,46) jeweils einen ersten Abschnitt hat, der
30 starr mit dem freien Ende des jeweiligen Dreh-
arms (24,44) verbunden ist, und einen zweiten
Abschnitt, der von dem ersten Abschnitt entfernt
9 ist, und
wobei die Paare von Nockenteilen (21,42),
35 von Dreharmen (24,44) und von flexiblen Armen
(23,46) symmetrisch mit Bezug auf die Basis (30)
angeordnet sind.

Reclamations

1. Appareil de chargement-déchargement de car-
touche comprenant un dispositif de base (30), un
support (20,32) qui est supporté afin qu'il soit
40 mobile sur la base et destiné à transporter une
cartouche (33) qui contient un support d'enregist-
rement, la cartouche (33) pouvant être fixée
dans le support (20,32) ou retirée de celui-ci, et
un dispositif de déplacement du support avec la
cartouche fixée à l'intérieur, entre une position de
déchargement et une position de chargement,
caractérisé en ce que :

le dispositif de déplacement comprend :

- une source motrice (36) et un bras
pivotant (24,44) ayant une première extrémité
(45) raccordée de manière pivotante à la base
(30) et une extrémité libre raccordée pendant le

fonctionnement au support (20,32),

- un dispositif de déplacement comprenant
en outre :

un organe à came (21,42) monté
afin qu'il puisse tourner sur la base (30) et raccor-
dé à la source motrice (36),

un bras flexible (23,46) ayant une
première partie qui est raccordée rigidement au
bras pivotant et une seconde partie qui est distan-
te de la première partie,

un dispositif à organe d'arrêt (54)
destiné à retenir le support (20,32) en position de
chargement, et

un dispositif (22,47) de mise en
coopération de la seconde partie du bras flexible
(23,46) avec l'organe à came d'une manière telle
que le support (20,32) est déplacé entre les poin-
tions de déchargement et de chargement par la
source motrice (36) par l'intermédiaire de l'orga-
ne à came (21,42), du dispositif (22,47) de mise
en coopération, du bras flexible (23,46) et du
bras pivotant (24,44), et que le support (20,32)
est repoussé contre l'organe d'arrêt (54) par une
déformation du bras flexible (23,46) dans la po-

2. Appareil selon la revendication 1, dans lequel le
bras flexible (23,46) est raccordé rigide à l'
extrémité libre du bras pivotant (24,44) pour la
formation d'une partie de prolongement de celle-

3. Appareil selon la revendication 1 ou 2, dans le-
quel le dispositif de coopération comprend un
premier dispositif (22,47) de mise en coopération
formé sur l'organe à came (21,42), et
un second dispositif (46a) de mise en coo-
pération formé sur la seconde partie du bras
flexible (46), le second dispositif de mise en coo-
pération (46a) étant en prise avec le premier dis-
positif de mise en coopération (21,42).

4. Appareil selon la revendication 1 ou 2, dans le-
quel le bras flexible (23,46) comporte une barre
en U qui entoure une fente allongée (46a), l'orga-
ne à came (21,42) ayant une broche (22,47) qui
dépasse de sa surface latérale, et le dispositif de
mise en coopération comprend la broche (22,47)
qui coïncide avec la fente allongée et qui est mo-
bile le long de celle-ci.

5. Appareil selon la revendication 4, dans lequel les
positions de chargement et de déchargement
sont les positions la plus basse et la plus haute
respectivement du support (20,32) et, dans la po-

634
ci, de manière que le bras flexible (23, 46) soit déformé élastiquement et repousse le support (20, 32) contre le dispositif à organe d’arrêt (56).

6. Appareil selon l’une quelconque des revendications précédentes, dans lequel la source motrice comprend un moteur d’entraînement (36) monté sur la base et raccordé à l’organe à came (21, 42) par l’intermédiaire du dispositif de réduction (38, 41, 43).

7. Appareil selon l’une quelconque des revendications précédentes, dans lequel la base (30) a deux parois latérales (31), deux organes à came (21, 42) sont montés afin qu’ils puissent tourner sur les parois latérales respectives (31), deux bras pivotants (24, 44) ont chacun une première extrémité raccordée de manière pivotante à la paroi latérale respective (31) et une extrémité libre raccordée au support (20, 32), et deux bras élastiquement flexibles (23, 46) ont chacun une première partie raccordée rigide-ment à l’extrémité libre du bras pivotant respectif (24, 44) et une seconde partie distante de la première partie, et les organes à came (21, 42), les bras pivotants (24, 44) et les bras flexibles (23, 46) sont placés symétriquement par rapport à la base (30).
Fig. 10

A (LOADING)

TRANSVERSE MOVEMENT