EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 09.08.95

Int. Cl.: B26D 3/16, B26D 7/02

Application number: 90830144.3

Date of filing: 05.04.90

Cutting-off machine for cutting logs of paper material and the like.

Priority: 05.04.89 IT 939389

Date of publication of application: 10.10.90 Bulletin 90/41

Publication of the grant of the patent: 09.08.96 Bulletin 95/32

Designated Contracting States:
AT DE ES GB QR NL

References cited:
DE-A- 2 743 258
GB-A- 2 137 910
US-A- 3 213 734
US-A- 4 041 813
US-A- 4 462 287
US-E- 25 718
FR-A- 2 392 802
US-A- 3 905 260
US-A- 4 265 361
US-A- 4 584 317

Proprietor: FABIO PERINI S.p.A.
Via per Mugnano
I-55100 Lucca (IT)

Inventor: Biagiotti, Guglielmo
Via di Vorno No. 105
I-55012 Capannori,
Lucca (IT)

Representative: Mannucci, Gianfranco,
Dott.-Ing.
Ufficio Tecnico Ing. A. Mannucci
Via della Scala 4
I-50123 Firenze (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The invention refers to a log cutting machine. More in particular, the invention refers to a log cutting machine according to the preamble of claim 1. Such a machine is known from US-E-25718.

It is well-known in the art how to prepare long rolls of tissue paper or the like, generally called "logs" rewinding equipment. The sheets which may be as wide as 50 meters are wound on a cardboard core, and these 5 meter long "logs" generally have an external diameter of 4" to 5" (10.16 to 12.7 cm).

After the logs are prepared, it is necessary to cut them into discreet lengths of approximately 5" (12.7 cm), which is the customary width to fit in the standard toilet-roll dispensing device in bathrooms and the like.

Log saws have been shown in many patents as, for instance, in U.S. Patents 4,370,140; 3,213,734; 4,173,846 and 3,512,437.

Each of these devices have had one or more disadvantages which are overcome by the present invention, because the prior art fails to teach how, during the cutting operation, the logs can be guided, advanced, held during cutting, and then discharged, all while the rotary cutting saw or other cutting means moves back and forth on an arm provided with reciprocating or oscillating motion.

More importantly, and more recently, it has been desirable to produce rolls of toilet paper having a large external diameter.

In public premises, offices, industrial buildings and the like, there are frequently utilized paper rolls of large diameter, up to over 400 mm, for various uses, especially for sanitary use. These rolls are currently produced by unwinding a paper material from a long coil and by rewinding them onto a plurality of cores. The paper material unwinding from the coil is cut along lines parallel to the unwinding direction to form a plurality of strips of desired width. Each strip is rewound on a core thus forming a plurality of rolls.

During the unwinding, the cutting and the rewinding, the strips of paper material are disposed, side-by-side and, upon the simultaneous winding of more strips, there occur frequent overlappings between the edges of strips which are wound on adjacent cores. The formed rolls then overlap each other, are no longer detachable and, therefore, unusable.

Moreover, the production of rolls according to the above-mentioned technique implies the further disadvantage that the operation is discontinuous, that is to say, of start-stop type. This implies that the entire operation must be stopped upon the completion of a series of rolls in order to remove said rolls and replace them with empty cores in order to restart the production.

When it is desired to carry out an embossing, printing, or other working prior to the formation of the rolls so as to form a paper web having individual characteristics, all the element of the plant which perform the works on the web must cyclically be stopped and restarted. This is impossible in many cases owing to the high inertia of the embossing or printing rollers, for example. It thus follows that for rolls of large diameter produced according to the known technique, it is necessary to eliminate this type of personalization so that the finished roll is made up of a web lacking in impressions, embossments, decorations, personalizations, or other characteristics that might improve the commercial value thereof.

OBJECTS OF THE INVENTION

Thus an object of the invention is to provide an apparatus for the production of paper rolls of large diameter which does not exhibit the above-mentioned drawbacks, and which, in particular, is able to reduce waste, increase the productivity through a continuous working cycle, and carry out embossings, printings or the like, suitable for increasing the commercial value and the quality of the product. These objects are obtained by a machine according to claim 1.

The apparatus according to the invention comprises means for the support and longitudinal guiding of one or more logs to be cut, means for controlling the advancement of the log, a gripper or clamping group able to retain said log(s) during the cut, and cutting means mounted on an arm provided with reciprocating or oscillating motion.

Furthermore, the cutting means comprise a bandsaw blade with a smooth cutting edge, driven between two flywheels supported by said arm, with one of said flywheels driven into rotation by corresponding motor means in order to make the cut.

The gripper group comprises pressure means located at either sides of the operative zone of the cutting means; said gripper means compressing the log and retaining the log during the cutting.

In order to produce the rolls of paper material in web shape, the log is advanced under intermittent control along the guide, and stopped at a suitable position to allow said cutting means to perform the cutting of the log near said gripper means which, by compressing the log during the cut, allow a correct operation to be carried out.

With the above and other objects in view, more information and a better understanding of the present invention may be achieved by reference to the following detailed description. Further advantageous features of the present invention are set out
in the appended claims.

DETAILED DESCRIPTION

For the purpose of illustrating the invention, there is shown in the accompanying drawings a form thereof which is at present preferred, although it is to be understood that the several instrumentalities of which the invention consists can be variously arranged and organized, and that the invention is not limited to the precise arrangements and organizations of the instrumentalities as herein shown and described.

In the drawings, wherein like reference characters indicate like parts:

Figure 1 shows a diagrammatic plan view of the apparatus according to the invention.

Figure 2 shows a view taken on line II-II of Figure 1.

Figure 3 shows a side view taken on line III-III of Figures 1 and 2.

Figures 4A and 4B show a partial local view of the gripper group taken on line IV-IV of Figure 1, in two different embodiments.

Figure 5 shows a detail of the actuator for the opening and closing of the gripper group.

Figure 6 shows a local section taken on line VI-VI of Figure 4A.

Figure 7 shows a transverse section of the guides of the roll which is to be cut,

Figure 8 shows a longitudinal local section of the driven flywheel.

Figure 9 shows a plan view of the first blade-sharpening unit.

Figure 9A shows a local transverse section of the edge of the band blade.

Figure 10 shows a side view of the first sharpening unit of Figure 9.

Figure 11 shows a local section of a grinding wheel of Figure 9 and of the relevant motor.

Figure 12 shows a front view of the blade guiding group.

Figure 13 shows a section taken on line XIII-XIII of Figure 12.

Figure 14 shows a front view and partial section of the second sharpening unit.

Figure 15 shows a side view of the device for the discharge of cut rolls and of scrap ends.

Figure 16 shows a plan view taken on line XVI-XVI of Figure 15 of the device for rejecting scrap ends.

Figure 17 shows a front view of the device for controlling the log advancement.

Figure 18 shows a local and partial section taken on line XVIII-XVIII of Figure 17.

Figure 19 shows a modified embodiment of the buffer or link block for the blocking of the log in the gripper group.

Figure 20 shows a front view of a cutting-off machine in a modified embodiment thereof.

A first embodiment of the apparatus according to the invention is schematically illustrated in Figs. 1 to 3, while the remaining figures show details of parts of the same apparatus and/or modified embodiments thereof.

With first reference to Figures 1 to 3, the apparatus according to the invention comprises a frame 1 on which a pair of guides 3 are mounted (as described below in greater details with reference to Figure 7) on which the logs B to be cut in rolls are supported. The logs B may be fed in the direction of FB or in the direction of FB' (in the latter case the logs are shown in broken lines and designated by B') according to the apparatus arrangement and to the requirements of the plant in which the apparatus is to be integrated.

Any log B, which is on the guides 3, is moved by a pusher 5 (or by other suitable means) towards a cutting station generally indicated by 7. The pushers 5 are carried by a flexible means 4, such as a chain, driven between wheels 6, one of which is driven into rotation by a motor 8. The advancement of the log may, however, be achieved in other suitable ways.

The cutting station comprises an arm 9 articulated about a horizontal axis A-A to oscillate through an arc in the directions of the double arrow f9. The arm 9 carries a pair of flywheels 11, 13 on which a band blade is driven. The flywheel 11 is the driven one, while the flywheel 13 is the driving one, the latter being actuated by a motor 17 or other suitable motor means. The oscillation of arm 9 is determined by an actuator 14 such as a cylinder-piston or the like.

The flywheel 13 and the relevant motor 17 are mounted on a dual L-shaped bracket 18, articulated at 19 to the arm 9 and able to oscillate around said articulation point 19 by a cylinder-piston actuator 20, or by other suitable means, anchored at 21 to said arm 9 and at 22 to the dual bracket 18. The oscillation about the pivot 19 of the flywheel 13 and of relevant motor 17, carried by the dual bracket 18, allows the band blade 15 to be suitably tensioned. On the arm 9, at a suitable position generally indicated by 10, guiding and sharpening means are mounted for the blade 15 which will be described later in greater details with reference to Figures 9 to 14.

To carry out the cutting, log B is made to advance intermittently in the direction of FA by the pusher 5 (Fig. 3) towards one of the branches of the band blade 15. Facing the guide means 3, between the loading zone and the band blade, means able to control the advancement of log B and to prevent the advancement of log B by inertia are disposed generally indicated by 24 in Figure 3.
and described in greater detail with reference to Figures 17 and 18.

Between one feeding stroke and the next, the arm 9 oscillates in the direction I9 to carry out the cutting of the log. In the operating zone of the band blade, a gripper group is provided, generally indicated by 23 and to be described later in more details with reference to Figures 4 to 6. The gripper group 23 holds the log during the cutting and releases it for the successive feeding stroke and also has means for guiding the band blade 15.

In Figure 2, 15X and 15Y indicate the positions of maximum lifting and maximum lowering of the cutting edge of blade 15, while the arm 9 is shown in a horizontal, intermediate position.

Figures 4A to 6 show the gripper group 23 in greater details. More particularly, Figure 4A shows, in a first embodiment, a front view of a first one of two gripper members which are separated from each other so as to leave a space sufficient for the band blade 15 to pass between. With reference to the gripper member of Figure 4A, it comprises a frame 25 solid to a plane 1A forming part of the apparatus frame 1. The frame 25 forms a circular seat for the transit of the log B to be cut.

On the frame 25 a first fixed ring 29 is applied by means of screws 27, which has an annular step 29A (Figure 6) forming a guiding seat for a second ring 31, movable with respect to frame 25, which is engaged to the same frame through an annular step 31A cooperating with the step 29A of the fixed ring 29.

Connected at 32 to the movable ring 31 is a stem 33 of a cylinder-piston system 34 (Figure 5). The cylinder-piston system 34 rotates the movable ring 31 in one direction or the other of double arrow 33. The cylinder piston system 34 is engaged to a plate 35 fixed to a slide 36 movable along suitable guides to be displaced in the directions of double arrow 33. The movement of slide 36 and thus of plate 35 and cylinder-piston 34 is operated by an actuator 37 which drives into rotation a threaded bar 38 engaged to plate 35. By making the cylinder pivot of said cylinder-piston system movable, it is possible to vary the end positions taken up by the movable ring 31 during its rotation operated by said cylinder-piston system 34. This allows the movement of the movable ring 31 and of the members driven thereby to be adapted to the various dimensions of the logs to be cut, as described below.

During its rotation, the movable ring 31 is guided, not only by the fixed ring 29, but also by one pair of rollers 30 located near the lower portion of the same movable ring 31. Both the movable ring 31 and the fixed ring 29 have a gap in their lower portion, to allow the passing of pusher 5 therethrough.

The rotation of the movable ring 31 in one direction or the other, actuated by the cylinder-piston 34, is limited to some degree, but is sufficient to operate the opening and the closing of the gripper means and hold the log B during the cutting operations. To this end, the movable ring 31 has a plurality of slots 41 disposed at an angle to the radius of the ring. The angle of the slots 41, with respect to the radius, is not the same around the circumference of the movable ring 31, for the purposes indicated below.

In each slot 41 is a follower 43 which is also fastened to a slide 45. Slide 45 is guided within suitable radial seats of the frame 25 and carries a buffer or link block 47 which engages the cylindrical surface of the log B to be cut. The buffers 47 face toward the center of the circular seat for the log transit and thus to the axis of the log to be cut. When the movable ring 31 is rotated by the cylinder-piston 34 in one direction or the other, the displacement of the inclined slots 41 causes the radial movement of the slides 45 within their seats and thus of buffers 47 which move against the cylindrical surface of the log B placed in the seat defined by the frame 25.

Figure 4A shows two logs of different diameters, indicated by B1 and B2, respectively. The diameter of said two logs corresponds approximately to the minimum and maximum diameter, respectively, of the logs that can be received into the transit seat defined by the frame 25.

As previously mentioned, in the embodiment of Figure 4A the angle of slots 41 relative to the radial direction differs along the circumferential development of the movable ring 31. This allows a correct movement of slides 45 and of buffers 47 which must simultaneously contact the cylindrical surface of the log B regardless of the diameter thereof, considering that the said log always rests on a pair of fixed guides 49 disposed in the lower part of the seat for the transit of the log. Figure 4A clearly shows the different positions of the various slides 45 according to their circumferential position around log B1 and B2 respectively.

In Figure 4A, link blocks 47 are fastened to the corresponding slides 45 by screws 48 (Figure 6). Thus they can be changed according to the dimensions of the logs to be cut. For example, for logs of smaller diameter, there may be provided buffers 47 of greater length—that is to say, protruding to a greater extent towards the center of the log transfer seat. Moreover, various sets of buffers or link blocks may be provided in which the surface in contact with the log can take different profiles to better fit the shape thereof. In a modified embodiment, the buffers can be pivotally fastened to the respective slides so as to better fit the profile of the log to be engaged.
As logs of significantly different diameter can be cut by the same cutting-off machine, it is appropriate that the travel of the slides 45 and of buffers 47 be adjustable according to the diameter of the log to be cut. This minimizes the time necessary for the clamping of the buffers or link blocks 47 onto the log. The modification of the travels of slides 45 is made possible by adjusting the position of the cylinder-piston system 34 engaged to plate 35. In fact, as the stroke of stem 33 of the cylinder-piston system 34 is constant, the variation of the position of the cylinder causes the variation of the end positions taken up by the stem 33 and thus the positions of the movable ring 31 rotated by the same cylinder-piston system 34. It thus follows that, by varying the position of the cylinder-piston system 34 by means of actuator 37, it is possible to vary the opening positions of slides 45 and of buffers or link blocks 47 by adapting them each time to the dimensions of the logs to be cut, thereby reducing the stroke as well as the time required for the opening.

As shown in Figure 6, the gripper group 23 comprises a pair of frames 25 disposed one opposite the other and equipped with similar log-gripping members spaced apart sufficiently to allow the passing of the band blade 15 which has to perform the cutting of log B. During the cutting, the band blade 15 is guided by two fixed rings 51 facing each other and fastened by screws 53 to the adjacent frames 25. During the cutting of the log, the buffers 47 associated to the two frames 25 clamp the log B at the two areas immediately before and immediately after the zone in which the cutting is to be performed.

To carry out the cutting of each roll, the log is moved in the direction IA until the section thereof in which the cut is to be performed is in alignment with the band blade, that is to say, in the slit defined by the two facing rings 51. At this point, the buffers 47 are moved against the cylindrical surface of log B. To accomplish this, the movable ring 31 is moved counterclockwise by the cylinder-piston 34 from the position shown in Figure 4A up to the position in which the buffers 47 come simultaneously in contact with the surface of the log and, by pressing against the latter, allow the correct and precise execution of the cut.

When the log B is firmly clamped by the buffers 47, the band blade 15 moves through its cycle, thereby cutting the log B. When the band blade has carried out the cut and has been moved away from the cutting zone defined by the two facing rings 51, the buffers 47 are moved away in a radial outward direction by rotating the movable ring 31 clockwise. The subsequent advancement of log B determined by the pusher 5 allows the discharge of the cut roll and the positioning of the same log between the two frames 25 for a successive cutting operation.

Figure 4B shows an embodiment of the gripper group in which buffers 240 are movable in a self-centering way on slides 241. In order to control the radially inward motion of slides 241 and of relevant buffers or link blocks 240, each slide 241 is fastened to a respective follower 243 sliding within a corresponding inclined slot 244 of a ring 245 angularly movable in an oscillating manner. The movable ring 245 is guided on a fixed structure 246 by a fixed ring 247 forming a guide similar to the one formed by the fixed ring 29 of the embodiment of Figure 4A. To further guide the movable ring 245, fixed pivots 248 are provided on structure 246 which engage within sliding slots 249 formed in the movable ring 245.

The opening and closing of the gripper group is operated by a cylinder-piston actuator 250 connected at 251 to the movable ring 245 and at 253 to a slide 255 vertically adjustable according to the double arrow 255 for the purpose already indicated with reference to the embodiment of Figure 4A. The means for adjusting the position of slide 255 may be similar to those described with reference to Figure 5 and are not indicated in Figure 4B.

To keep the center of convergency of slides 241 in alignment with the logs of different diameter which are to be cut, the fixed structure 246, and thus the set of slides 241 and relevant buffers and link blocks 240, can be moved vertically by an adjustment handwheel 256. In this way, the axis of the gripper group may be brought into alignment with the axis of the log to be cut, whatever the dimension of the log. The buffers or link blocks 240 may be made according to any of the embodiments discussed with reference to Figure 4A.

Figure 7 shows a transverse section of guides 3 for the log B to be cut. Said guides comprise, according to the example illustrated in said Figure 7, a pair of supports 71, 73 suitably shaped to allow both the side movement of log B in the direction FB, and a correct guiding of the log during its intermittent longitudinal feeding movement through the cutting means. More particularly, the support 71, facing the feeding side of the logs, has a low profile, while the support 73 has a portion 73A upwardly inclined to form a side member which stops the log B as it is discharged onto the guidies 3 in the direction FB. Between the supports 71, 73, a passage 75 is provided for the transit of pusher 5 driven by the chain means 4. The pusher 5 is guided by suitable side guides 77 and 79, and, at the bottom, by a central guide 81.

Figure 8 shows a longitudinal section of the support of the driven flywheel 11, mounted on a shaft 53 supported by a pair of adjustable bearings.
55, 57. The first of said bearings 55 is mounted in a counter-flange 59 which is non-movably fixed on the oscillating arm 9, while the second bearing 57 is mounted in a counter-flange 61 which is fitted in an adjustable position on the oscillating arm 9. It is thereby possible to orient the axis of shaft 53 in an optimal position to allow the correct guiding of said band blade 15. To adjust the position of the counter-flange 61 and thus of the bearing 57 with respect to the oscillating arm, said counter-flange 61 is fastened to a main flange 63 which is firmly fixed to the oscillating arm 9 by means of screws 65 going through slotted holes 67 formed into said main flange 63. The position of the counter-flange 61 with respect to the main flange 63 is determined by adjusting screw means 69 engaged to said main flange 63, symmetrically disposed with respect to the axis of shaft 53 and cooperating with the outer cylindrical surfaces of said counter-flange 61. By adjusting the screw means 69, it is possible to vary the position of the counter-flange 61 and thus of the shaft 53 to meet the specific working requirements.

Figures 9 to 11 show in greater detail the sharpening unit of the band blade 15, located in the zone 10 as indicated in Figure 1. In the illustrated example, the sharpening unit comprises a first pair of grinding wheels 83, 85 mounted on relevant mandrels 87 (Figure 11) having skew axes and rotated by pneumatic motors 89, 91 or the like.

Each of the two motors 89, 91 with its grinding wheels 83, 85 is mounted on a respective support 92 fastened to a further support 94 by means of a rotary pivot 93 and by a screw 95 which is engaged to said support 94 through a slot 96 of said first support 92. This allows, when the screw 95 is loose, the adjustment of the relative angular position of the two supports 92, 94 and thus of the axis of the respective grinding wheel. Support 94 is, in turn, connected by screws 97 to the oscillating arm 9. The screws 97 engage the support 94 through slots 99 which allow a relative displacement between the same support 94 and the bracket 98 and thus between the respective grinding wheel and the band blade 15.

The position of support 94 with respect to bracket 98 is adjusted by screw means 100. The oscillation of the support 92 about the pivot 93 and the displacement of support 94 with respect to bracket 98 allow the correct adjustment of the position of the respective grinding wheel as the grinding wheel wears down.

The axes of the grinding wheels 83, 85 have a rather limited inclination to the horizontal so as to form a cutting edge defined by sides 105 (Figure 9A) forming a relatively narrow angle. The extremely thin and sharp cutting edge which is thus formed does not have a resistance sufficient to carry out the cutting of the logs and would become rapidly damaged from the impurities of the paper to be cut. To avoid this, a further pair of idle grinding wheels are provided downstream of grinding wheels 83 which are mounted at such an angle as to chamfer the cutting edge of the blade 15 formed by the sides 105 ground by wheels 83, 85. In Figure 9A, the chamfer obtained with these grinding wheels is indicated by 107.

Figure 14 shows a view and partial section of a pair of idle grinding wheels which form the chamfer of the cutting edge of band blade 15. Said idle grinding wheels, indicated by 106, are each mounted through two elastic laminae 107 carried by respective brackets 108. Each bracket is fastened to the support plate 109 through a pivot 110 about which the relevant bracket 108 can be oriented before being locked in place by a screw 112 which engages a corresponding slot 114 of the relevant bracket 108. The grinding wheels 106 are urged against the edge of the blade 15 by pneumatic pistons 116 cooperating with arms 118 fixed to the respective grinding wheels 106. The group of the idle grinding wheels 106 is placed downstream from the group of motorized grinding wheels 83, 85. If desired, additional sharpening units may be disposed along the band blade 15 at suitable positions.

On the arm 9, in correspondence of the sharpening unit, means are provided for guiding the band blade 15 which have the purpose to keep the blade in position by counteracting its tendency to move upwards due to the resistance of the material being cut. Figures 12 and 13 show said guide means in front view and in side view. In the illustrated example, said guide means comprise a series of rollers 111 idly mounted onto a unit 113. The upper edge 15A of the band blade 15 rests on the rollers as indicated by a dash-dot line in Figure 12. The unit 113 is carried by a plate 115 fastened to the oscillating arm 9, and is adjustable into position by a pivot 117 having a threaded portion 119 which engages a corresponding threaded hole of the unit 113. By rotating the pivot 117, which is housed in a seat formed in a block 121, the unit 113, together with relevant idle rollers 111, can be moved in the directions of double arrow 113 up to the desired position. As the band blade 15 becomes worn, the unit 113 and relevant rollers 111 are lowered by the adjustment system as above described, so as to maintain the cutting edge of the blade at the correct position all the time. The unit 113 is provided with two slots 123 for two threaded pins 125 which are engaged in plate 115. The pins 125 press a member 129, by means of Belleville washer 127, against the unit 113, in order to retain the latter against the plate 115, allowing at the same time adjustment by the pivot 117.
Beneath rollers 111 two facing and slightly spaced L-shaped sections 131 are provided to form a slit between them for the passing of the blade 15. The distance between the facing surfaces of the L-shaped sections 131 is such as to prevent the band blade 15 from twisting.

The described guide system keeps the band blade 15 in the correct position even when meeting the resistance of the paper material to be cut. The reaction of the rolls 111 on the edge 15A of the band blade 15 adds up to the reaction determined by the inclination of the axis of flywheel 11 on which the band blade is driven. The two reactions ensure a perfect positioning of the blade even in presence of heavy forces tending to move it upwardly with respect to the flywheels 11, 13. The described guide system may be positioned at any point of the path of the band blade 15 and does not necessarily need to be disposed in correspondence of the active branch. On the contrary, as illustrated in Figure 1, the guide system may be positioned also in correspondence of the non-active branch of the blade—that is to say, in a position in which there is more space available for the assembling. In practice, more guide systems may be disposed at suitable positions along the band blade 15. It is, however, suitable that at least one of said guide systems be positioned near the sharpening unit(s).

Figures 15 and 16 show a device for the discharge and removal of the cut rolls and the rejection of scrap ends. The device is disposed downstream of gripper group 23 and is omitted in Figures 1 to 3 for sake of clarity. Downstream of said gripper group 23, diagrammatically shown in Figure 15, a shelf 140 is provided, on which the rolls R1, R2, R3 formed by cutting log B are supported. Rolls R1, R2, R3 are pushed into the direction FR by the same pusher 5 which causes the feeding of log B. The shelf 140 is made to oscillate about a pivot 141 and its oscillation is driven, for the purposes to be described below, by an actuator 142 which, in the illustrated example, is in the form of a cylinder-piston system. The cylinder of said cylinder-piston system is engaged at 143 to a slide 144 adjustable along the vertical direction, while the stem of said cylinder-piston system is pivotally fastened at 145 to the shelf 140 to move the shelf in the directions of double arrow 1140. To unload the cut rolls R1, R2, R3 and/or the scrap end RO towards conveyor means to be described hereafter, the actuator determines, at a suitable instant, the pivoting of shelf 140 about the pivot 141 and thus the discharge of rolls and/or scrap ends onto a chute 146, whose inclination can be adjusted by means of a bracket 147, for the laying of the rolls onto a belt conveyor 148. To avoid accidental overturning of rolls R1, R2, R3 and of scrap ends RO out of shelf 140 onto chute 145, an elastic lamina 148 is provided engaged to an arm 148A fixed to a sleeve 150 sliding on a horizontal stem 152 and stopped thereon at a suitable position by means of a screw knob 154.

The belt conveyor 149, which moves the cut rolls in the direction 1149 towards the next work stations, travels between the two rolls 151, one of which is driven into rotation by a geared motor 153.

When a whole log B is cut, the scrap ends are thrown away. To this purpose, the log B is initially located in the gripper group 23 so that the band blade 15 will cut a thin "slice" of the log no thicker than the bare minimum necessary to eliminate the useless scrap ends of the log. The scrap end indicated by RO in Figure 15, must be rejected. Similarly, the scrap end formed after the last cutting operation must also be rejected. To this end, at a suitable position of the belt conveyor 149, a device is provided generally indicated by 155 which ejects the scrap ends so that they are not conveyed towards the rolls collection zone.

Said device 155 comprises an actuator 157 connected through a stem 159 and a linkage 161 to a bracket 163 fixed to a portion 165 of the side member 166, which is parallel to the belt conveyor 149. The portion 165 of the side member is pivoted at 167 and can be made to move through the actuator 157 in the direction 1165 so as to place itself in a position substantially across the belt conveyor 149 (indicated with a dash-dot line at 165X in Figure 16).

When a scrap end RO is on the belt conveyor 149, the actuator 157 moves the side member portion 165 in the direction 1165 so that such scrap end is ejected in the direction FR until it falls off the belt conveyor 149 into a storage container or onto another conveyor suitably positioned near an aperture in the side member on the other side of the same belt conveyor 149. The whole apparatus may be programmed, according to the length of the logs to be cut and to the height of rolls to be obtained, in order to automatically put the device 155 into operation whereby to discharge the scrap ends.

The discharge of the scrap ends may be carried out also without using movable members and relevant actuators. In fact, the scrap ends are always less high than the rolls. It is thus possible to provide a cross-piece disposed above the belt conveyor 149 at such a height (possibly adjustable to fit the different heights of rolls and scrap ends) as to divert the rolls into a pre-determined direction, while allowing the scrap ends to pass underneath towards a collection zone.

When the pusher 5 moves the log B forward and then stops after a displacement corresponding to the size of the roll or of the scrap end to be cut, it is necessary for the log to stop almost instanta-
neously to avoid inertia-operated feeding travel which would cause the cut rolls to be of non-
uniform size. To this end, according to the ill-
sutated example, means are provided to stop the
log B, thereby preventing the advancement of the
latter by inertia when the pusher 5 comes to a
stop. Figures 17 and 18 show a partial front view
and a local section of a device able to stop the
advancing log. Said device is located in the posi-
tion schematically illustrated at 24 in Figure 3 and
comprises a pair of posts 170 forming a side
support for a bracket 171 vertically movable on
said posts. To allow the adjustment in height of
bracket 171, this is engaged to a threaded pivot
173 which fits into a threaded bush 175 fixed to a
handwheel 177 and housed in a seat formed in a
fixed cross-piece 179 fastened to the posts 170.
Supports 181 are provided on bracket 171 and
symmetrically disposed to the plane of symmetry
of same bracket 171. Each support carries a pair of
pushers 183 represented in partial longitudinal sec-
tion in Figure 17 which, by means of compression
springs 185, urge a stem 189 towards the log B.
Said stem carries a block of elastic material 191 at
its lower end, acting as a damper.

Fastened to the blocks 191 of each pair of
pushers 183 is a skid 193 having a bevelling 193A
on the side facing the part opposite the cutting
zone. The two skids 193 (only one of which can be
seen in Figures 17 and 18) are urged by the
respective springs 185 towards the cylindrical sur-
face of the log B and, by pressing against it,
prevent the advancement by inertia of same log.
The supports 181 can be moved in the directions
of double arrow f181 along the bracket 171, this
adjustment, together with the adjustment that can
be obtained through the handwheel 177, allowing
the position of skids 193 to be adjusted to the
various diameters of the logs that may be cut by
the cutting-off machine.

When the log has been almost completely cut,
its terminal portion is no longer in contact with the
skids 193 and is no longer stopped by them. To
avoid that even the last portion of the log to be cut
is moved forwards by inertia, braking means may
be located near the gripper group. In particular, to
this end, provision may be made that some of the
buffers or link blocks 47, associated with the grip-
ner member upstream of the cutting zone with
respect to the log feeding direction, be equipped
with braking means able to brake the log portion
which is inside said gripper member. This is the
case also when the buffers 47 are in retracted
position—that is to say, when they do not clamp the
log.

Figure 19 shows a section of a buffer 195 on
which, by means of a plate 194 and of screw
means 196, a leaf spring 197 is anchored, projec-
ting towards the center of the transit seat of the
log, to cause the braking thereof by friction. By
providing a certain number of buffers 195 supplied
with springs 197 and symmetrically disposed in
place of buffers 47 on the gripper member up-
stream of the cutting zone, it is possible to prevent
also the inertia advancement of the last portion of
the log.

Figure 20 shows, similarly to Figure 2, a front
view of a cutting-off machine according to the
invention in a modified embodiment thereof. In this
Figure, like numbers indicate corresponding parts
of the embodiment previously described. This em-
bodyment differs from the previous one because of
the different configuration of the guide for the logs
to be cut and of the gripper group. In the embodi-
ment shown in Figure 20, the cutting-off machine is
able simultaneously to cut two logs B11, B12 of
smaller diameter, which rest onto guide means
formed by two fixed supports 201, 203 and by two
movable supports 205, 207. The supports 205, 207
are fastened to two connecting rods 209, 211
hinged to a stem of a cylinder-piston actuator 213
which can move said supports 205,207 between
the position shown in Figure 20 and a position in
which they form a single cradle with the fixed
supports shapes 201 and 203. This allows the
loading of both logs B11, B12 from the same side
by placing the intermediate supports 209, 211 in
such a position as to form a single cradle with the
fixed supports 201, 203 and then move away,
that is to say, spread apart the so-loaded logs thereby
forming two separate cradles or guides, as shown
in Figure 20. This allows two distinct pushers (not
shown) similar to pusher 5 to feed the logs towards
the blade 15.

The clamping of logs B11, B12 during the
cutting takes place by means of respective flexible
laminae generally indicated by 215 and 217 and
anchored to a fixed central element 219 and to the
stems of two cylinder-piston actuators 221, 223
capable of tensioning the laminae 215, 217 to
clamp the logs B11, B12 during the cutting. In
practice, for each log B11, B12 there is provided a
lamina both upstream and downstream of the oper-
ative zone of the band blade 15, with a disposition
operatively corresponding to that of the two clamp-
ing members illustrated in Figures 4A, 4B, 5 and 6.

With the arrangement illustrated in Figure 20,
the cutting-off machine is able to cut two logs at
one time, but it is evident that, with small vari-
ations, it is possible to cut also more logs simulta-
necessarily. The previously-described elements, es-
pecially the braking means intended to prevent the
advancement of the log by inertia, the devices for
the discharge of the rolls and of the scrap ends
and the sharpening and guiding means for the
band blade, may be used on the cutting-off ma-
chne of Figure 20, this being different from the preceding solution merely because of the configuration of the log guide and the gripping means. By simply replacing the gripping means, the cutting-off machine of Figure 20 can be adapted for a single log B13 of greater diameter (hatch drawn in Figure 20). In this case, the log guiding system may remain the same and be formed by the structural shapes 201, 203, 205, 207 with the intermediate structural shapes 205, 207 being in lowered position to form a single cradle. The dual pushers may be used to advance the single log B13 of greater diameter.

Accordingly, a single cutting-off machine may be used for all the range of log diameters by simply replacing the gripping group. The latter, in case of a single log, can take the form illustrated either in Figure 4A or 4B or 20 according to requirements. The gripper group with flexible lamina, of the type illustrated in Figure 20, may be obviously used for a single log only, also in the embodiment of Figure 1 in which the cutting-off machine is provided with the roll guide having a fixed configuration.

The embodiment of Figure 20, which is able to cut two logs simultaneously, allows the productivity of the cutting-off machine to be suited to the productivity of a rewinder for the production of logs having a small diameter, which would have otherwise too high a throughput to be absorbed by a cutting-off machine able to cut one log at a time.

Claims

1. Apparatus for cutting logs (B) of paper material or the like into a plurality of rolls (R1, R2, R3) of desired height, said apparatus including:
 - means (3) for the longitudinal support and guidance of one or more logs (B) to be cut,
 - means (4, 5) for the advancement of said log(s),
 - means for controlling the advancement of the log(s),
 - a gripper group (23) able to retain said log(s) during the cutting,
 - cutting means (15) mounted on an arm (9) provided with reciprocating or oscillating motion, said cutting means (15) including a band blade (15) with a smooth cutting edge, driven between two flywheels (11,13) supported by said arm (9), and a motor 17 to drive one of said flywheels;
 - characterized in that at least one of said flywheels (11,13) is supported on a shaft (53) having adjustable inclination means (65, 67, 68) being provided to adjust and stabilize the angular position of said shaft.

2. Apparatus according to Claim 1, wherein said gripper group (23) includes means (45, 47; 215, 217) disposed on the two sides of the operating zone of said cutting means (15), said pressure means (45, 47) radially pressing the log during cutting and retaining the roll during said cutting.

3. Apparatus according to one of the preceding claims, wherein said gripper group (23) includes, on each side of the cutting zone, a frame (25) supporting a plurality of slides (45), buffers (47) to act upon the cylindrical surface of the log (B1, B2) during the cutting, means (31-43) to simultaneously move said slides (45) against the cylindrical surface of the log (B1, B2) to be cut.

4. Apparatus according to Claim 3, wherein said means for simultaneously moving said slides (45) includes a ring (31) surrounding the transit zone of the log (B1, B2) to be cut, a plurality of slots (41) inclined to the radial direction, a pivot (43) in each of said slots being engaged, connected to a corresponding slide (45), and an actuator (34) rotating said ring (31) in one direction or the other.

5. Apparatus according to Claim 3 or 4, wherein two of said buffers (49) are fixed, and the remaining buffers (47) are movable towards the axis of the log (B1, B2) to be cut, the movement of said buffers vary according to their position around the log (B1, B2) to be cut.

6. Apparatus according to Claim 3 or 4, wherein said buffers are self-centering, the position of the center of convergency of said buffers being adjustable according to the diameter of the log to be cut.

7. Apparatus according to any one of Claims 3 to 6, wherein said buffers (47) can be replaced to fit the machine to the cutting of logs of different diameters.

8. Apparatus according to any one of Claims 3 to 7, wherein said buffers (47) have a surface in contact with the log (B) to be clamped which is curved to fit the profile of the same log.

9. Apparatus according to any one or more of Claims 3 to 8, wherein said buffers (47) are pivotally mounted for the oscillation on the respective slides (45).
10. Apparatus according to any one of Claims 3 to 9, wherein at least some of said buffers (195) are provided with friction means (197) for braking the log (B) to be cut.

11. Apparatus according to any one of Claims 1 to 10, wherein the center distance between said two flywheels (11, 13) can be adjusted to change the tension on said band blade (15).

12. Apparatus according to Claim 11, wherein the shaft of one of said flywheels is supported by a double, L-shaped bracket (18) articulated (at 19) to said arm (9), an actuator (20) being provided to allow the oscillation of said double bracket about the articulation point (19) on the arm (9).

13. Apparatus according to any one of the preceding Claims, wherein said arm (9) means (83, 85) are associated for the sharpening of said cutting means (15).

14. Apparatus according to Claim 13, wherein said sharpening means comprise at least a first pair of grinding wheels (83, 85) having inclined axes and disposed on two sides of said band blade (15), said grinding wheels being rotated by corresponding motors (89, 91).

15. Apparatus according to Claim 13 or 14, wherein said sharpening means comprise at least a second pair of idly mounted grinding wheels (106), the inclination of said further grinding wheels being such as to provide a chamfer (107) of the cutting edge (105) generated by the previous pair of grinding wheels (83, 85).

16. Apparatus according to any one of Claims 13 to 15, wherein said sharpening means can be adjusted to change the sharpening angle and to compensate for the wear of the grinding wheels.

17. Apparatus according to any one of Claims 1 to 16, wherein said arm (9) guiding means (11, 113, 131) are associated for guiding said band blade (15).

18. Apparatus according to Claim 17, wherein said guide means comprise a plurality of idle-rolls (111) cooperating with the upper edge (15A) of said band blade (15).

19. Apparatus according to Claim 18, wherein said idle-rolls (111) are carried by a unit (113) that can be adjusted in position to make up for the wear of said band blade (15).

20. Apparatus according to any one of the preceding claims, wherein conveyor means (146, 149) are provided downstream of the cutting zone for picking up and moving away the cut rolls (R1, R2, R3).

21. Apparatus according to Claim 20, wherein said conveyor means comprise a chute (146) able to transfer the cut rolls from the gripper group (23) to a belt conveyor (149) for their removal.

22. Apparatus according to Claim 20 or 21, wherein a device (155) is associated to said conveyor means able to move the scrap ends (RO) from the conveyor.

23. Apparatus according to Claim 22, wherein said device (155) able to remove the scrap ends comprises a cross-piece disposed above the conveyor for said cut rolls, at such a height from the plane of said belt conveyor as to allow the scrap ends to pass below said cross-piece, while the cut rolls are diverted by the said cross-piece to further conveyor or collection means.

24. Apparatus according to Claim 22, wherein said device (155) comprises an actuator (157) able to control the oscillation of a member (185) capable of intercepting the scrap ends (RO) which are on the conveyor means (149) and divert them out of the path of rolls (R1, R2, R3).

25. Apparatus according to any one of the preceding claims, wherein means (170-193) are provided upstream of the cutting zone of the log for braking the advancing log.

26. Apparatus according to Claim 25, wherein said means for braking the log comprise skids (193) elastically urged against the cylindrical surface of the log (B) to be cut, the position of said skids (193) being adjustable according to the dimensions of said log (B).

27. Apparatus according to any one of the preceding claims, wherein at least two parallel guides (202, 203, 205, 207) and at least two gripper groups are provided for the advancement and the simultaneous cutting of two logs (B11, B12).

28. Apparatus according to Claim 27, wherein said gripper groups comprise flexible laminae (215, 217) for the clamping of said logs during the

30. Apparat nach Anspruch 2, in welcher die Greifergruppe (23) auf jeder Seite der Schneidzone einen Rahmen (25) mit mehreren Schlitten (45), auf die zylindrische Oberfläche des Stammes (B1, B2) während des Schneidens einwirkende Puffer (47) sowie Mittel (31-43) umfassen, die die Schlitten (45) gleichzeitig gegen die zylindrische Oberfläche des zu schneidenden Stammes (B1, B2) bewegen.

31. Method of using the apparatus of claim 1, führende Rolle (R1, R2, R3) von der zylindrische Oberfläche des Stammes (B1, B2) während des Schneidens einwirkende Puffer (47) sowie Mittel (31-43) umfassen, die die Schlitten (45) gleichzeitig gegen die zylindrische Oberfläche des zu schneidenden Stammes (B1, B2) bewegen.

32. Method according to Claim 31, in welcher die zwei Schlitte (45) um die Übergangszone des zu schneidenden Stammes (B1, B2) umgebenden Ring (31), mehrere, zur radialen Richtung geneigte Schlitzte (41), einen in jedem der Schlitze eingefangenen und mit einem entsprechenden Schlitten (45) verbundenen Zapfen (43) sowie einen Abschluß (34) umfassen, der den Ring (31) in einer oder der anderen Richtung dreht.

Patentansprüche

1. Vorrichtung zum Schneiden von Stämmen (B) aus Papier oder dergleichen Material in mehrere Rollen (R1, R2, R3) von gewünschter Höhe, welche aufweist:
 - Mittel (3) zur Längsunterstützung und Führung eines oder mehrerer zu schneidender Stämme (B),
 - Mittel (4, 5) zum Vorschub des Stammes oder der Stämme,
 - Mittel zum Steuern des Vorschubs des Stammes oder der Stämme,
 - eine Greifergruppe (23), die den Stamm oder die Stämme während des Schneidens halten kann,
 - auf einem hin- und hergehenden oder oszillierenden Arm (9) befestigte Schneidmittel (15), welche ein Bandmesser (15) mit glatter Schneidkante, das zwischen zwei von dem Arm (9) getragenen Schwingrädern (11, 13) angetrieben ist, und einen Motor (17) aufweisen, welcher eines der Schwingräder treibt; dadurch gekennzeichnet, daß wenigstens eines der Schwingräder (11, 13) auf einer Welle (53) mit einstellbaren Neigmitteln (65, 67, 69) zum Einstellen und Stabilisieren der Winkelstellung der Welle gelagert ist.

2. Vorrichtung nach Anspruch 1, in welcher die Greifergruppe (23) Mittel (45, 47, 215, 217) umfaßt, die auf den beiden Seiten der Arbeitszone der Schneidmittel (15) angeordnet sind, wobei Preßmittel (45, 47) den Stamm während des Schneidens radial pressen und die Rolle während des Schneidens halten.

3. Vorrichtung nach einem der vorstehenden Ansprüche, bei der die Greifergruppe (23) auf jeder Seite der Schneidzone einen Rahmen (25) mit mehreren Schlitten (45), auf die zylindrische Oberfläche des Stammes (B1, B2) während des Schneidens einwirkende Puffer (47) sowie Mittel (31-43) umfassen, die die Schlitten (45) gleichzeitig gegen die zylindrische Oberfläche des zu schneidenden Stammes (B1, B2) bewegen.

4. Vorrichtung nach Anspruch 3, in welcher die Mittel zum gleichzeitigen Bewegen der Schlitten (45) eine die Übergangszone des zu schneidenden Stammes (B1, B2) umgebenden Ring (31), mehrere, zur radialen Richtung geneigte Schlitzte (41), einen in jedem der Schlitze eingefangenen und mit einem entsprechenden Schlitten (45) verbundenen Zapfen (43) sowie einen Abschluß (34) umfassen, der den Ring (31) in einer oder der anderen Richtung dreht.

5. Vorrichtung nach Anspruch 1, in welcher die Greifergruppe (23) Mittel (45, 47) feststehen und die übrigen Puffer (47) zur Achse des zu schneidenden Stammes (B1, B2) beweglich sind, wobei die Bewegung der Puffer entsprechend ihrer Position um den zu schneidenden Stamm (B1, B2) variert.

6. Vorrichtung nach Anspruch 1, in welcher die Greifergruppe (23) Mittel (45, 47) feststehen und die übrigen Puffer (47) zur Achse des zu schneidenden Stammes (B1, B2) beweglich sind, wobei die Bewegung der Puffer entsprechend ihrer Position um den zu schneidenden Stamm (B1, B2) variert.

7. Vorrichtung nach Anspruch 1, in welcher die Greifergruppe (23) Mittel (45, 47) feststehen und die übrigen Puffer (47) zur Achse des zu schneidenden Stammes (B1, B2) beweglich sind, wobei die Bewegung der Puffer entsprechend ihrer Position um den zu schneidenden Stamm (B1, B2) variert.

8. Vorrichtung nach Anspruch 1, in welcher die Greifergruppe (23) Mittel (45, 47) feststehen und die übrigen Puffer (47) zur Achse des zu schneidenden Stammes (B1, B2) beweglich sind, wobei die Bewegung der Puffer entsprechend ihrer Position um den zu schneidenden Stamm (B1, B2) variert.
9. Vorrichtung nach einem oder mehreren der Ansprüche 3 bis 8, in der die Puffer (47) zur Oszillation der entsprechenden Schlitten (45) schwenkbar befestigt sind.

10. Vorrichtung nach einem der Ansprüche 3 bis 9, in der wenigstens einige der Puffer (195) mit Reibungsmitteln (197) versehen sind, um den zu schneidenden Stamm (B) zu bremsen.

11. Vorrichtung nach einem der Ansprüche 1 bis 10, in welcher der Mittenabstand zwischen den beiden Schwungradern (11, 13) einstellbar ist, um die Spannung des Bandmessers (15) zu verändern.

12. Vorrichtung nach Anspruch 11, in welcher die Welle eines der Schwungraden von einer doppelten, L-förmigen Klammer (18) getragen ist, die an den Arm (9) angelenkt ist (bei 19), wobei ein Auslöser (20) vorgesehen ist, der die Schwingung der Doppelklammer um den Anlenkpunkt (19) am Arm 9 ermöglicht.

13. Vorrichtung nach einem der vorstehenden Ansprüche, in welcher dem Arm (9) Mittel (83, 85) zugeordnet sind, um die Schneidmitten (15) zu schärfen.

14. Vorrichtung nach Anspruch 13, in welcher die Schärfmittel wenigstens ein erstes Paar von Schleifräder (83, 85) aufweisen, die geneigte Achsen haben und auf zwei Seiten des Bandmessers (15) angeordnet sind, wobei die Schleifräder durch entsprechende Motoren (88, 91) in Drehung versetzt sind.

16. Vorrichtung nach einem der Ansprüche 13 bis 15, in welchem die Schärfmittel zur Veränderung des Schärfwinkels und zur Kompensation der Abnutzung der Schleifräder eingestellt werden können.

17. Vorrichtung nach einem der Ansprüche 1 bis 16, in der dem Arm (9) Führungsmittel (11, 113, 131) zugeordnet sind, um das Bandmesser (15) zu führen.

18. Vorrichtung nach Anspruch 17, in der die Führungsmittel mehrere freilaufende Rollen (111) aufweisen, die mit der oberen Kante (15A) des Bandmessers (15) zusammenwirken.

19. Vorrichtung nach Anspruch 18, in der die leerlaufenden Rollen (111) von einer Einheit (113) getragen werden, deren Position zum Ausglich der Abnutzung des Bandmessers (15) eingestellt werden kann.

20. Vorrichtung nach einem der vorstehenden Ansprüche, in welcher auf der Abstromseite der Schneidzone Fördermittel (146, 149) vorgesehen sind, um die geschnittenen Rollen (R1, R2, R3) aufzunehmen und wegzubefördern.

22. Vorrichtung nach Anspruch 20 oder 21, in welcher den Fördermitteln ein Gerät (155) zugeordnet ist, das die Abfallenden (RO) von dem Förderer wegbewegt.

23. Vorrichtung nach Anspruch 22, in der das die Abfallenden wegbefördernde Gerät (155) ein über dem Förderer für die geschnittenen Rollen angeordnetes Kreuzstück in solcher Höhe über der Ebene des Fördergurtes aufweist, daß die Abfallenden unter dem Kreuzstück hindurchlaufen können, während die geschnittenen Rollen durch das Kreuzstück zu weiteren Förder- oder Sammelmitteln gelenkt werden.

24. Vorrichtung nach Anspruch 22, in der das Gerät (155) einen Auslöser (157) aufweist, der die Schwingung eines Bauteils (165) steuert, welches die Abfallenden (RO), die auf den Fördermitteln (149) sich befinden, auffangen und sie aus dem Weg der Rollen (R1, R2, R3) weglösen kann.

26. Vorrichtung nach Anspruch 25, in welcher die Mittel zum Bremsen des Stammes Kufen (193) aufweisen, die gegen die zylindrische Fläche des zu schneidenden Stammes (B) elastisch gedrückt werden, wobei die Position der Kufen (193) entsprechend den Abmessungen des Stammes (B) einstellbar ist.
27. Vorrichtung nach einem der vorstehenden Ansprüche, in welcher wenigstens zwei parallele Führungen (202, 203, 205, 207) und wenigstens zwei Greifergruppen zum Vorschub und gleichzeitigen Schneiden von zwei Stämmen (B11, B12) vorgesehen sind.

29. Vorrichtung nach Anspruch 27 oder 28, in der Mittel (205, 207, 209, 211, 213) zur Veränderung der Anpassung der beiden Führungen vorgesehen sind, um von einer Zweiführungskonfiguration zu einer Einführungskonfiguration und umgekehrt übergehen zu können.

30. Vorrichtung nach Anspruch 2, in welcher die Greifermittel auf jeder Seite der Schneidzone eine flexible Lamelle zum Erfassen des zu schneidenden Stammes aufstromseitig und abstromseitig der Messerarbeitszone aufweisen.

31. Verfahren zur Verwendung der Vorrichtung nach Anspruch 1 zur Herstellung von Rollen (R1, R2, R3) großen Durchmessers aus Papier, dadurch gekennzeichnet, daß ein Stamm (B) mit einem dem Durchmesser der herstellenden Rollen (R1, R2, R3) entsprechenden Durchmesser längs mehreren Ebenen senkrecht zur Achse des Stammes geschnitten wird, wobei die Ebenen einen Abstand voneinander aufweisen, der der Höhe der Rollen entspricht.

32. Verfahren nach Anspruch 31, wobei zwei Schnitte auf dem Stamm in der Nähe seiner Enden zum Abtrennen der Abfallenden ausgeführt werden.

Revendications

1. Appareil pour couper des billes (B) de matériaux en papier ou analogues en une pluralité de rouleaux (R1,R2,R3) de hauteur désirée, l'appareil comprenant:
 - des moyens (3) pour soutenir et guider longitudinalement une ou plusieurs billes (B) à couper,
 - des moyens (4.5) pour faire avancer la/les bille(s),
 - des moyens pour contrôler l'avancement de la/des bille(s),
 - un groupe de saisie (23) pouvant retenir la/les bille(s) durant la coupe,
 - des moyens de coupe (15) montés sur un bras (9) possédant un mouvement de va-et-vient et d'oscillation, les moyens de coupe (15) comprenant une lame à bande (15) présentant un bord de coupe doux et conduite entre deux volants (11,13) soutenus par le bras (9), et un moteur (17) pour entraîner un des volants; caractérisé en ce qu'au moins un des volants (11,13) est soutenu par un arbre (53) présentant des moyens d'inclinaison ajustables (65,67,69) de façon à pouvoir ajuster et stabiliser la position angulaire de l'arbre.

2. Appareil selon la revendication 1, dans lequel le groupe de saisie (23) comprend des moyens (45,47 ; 215,217) placés sur les des côtés de la zone d'action des moyens de coupe (15), ces moyens de pression (45,47) pressant radialement la bille durant la coupe et retenant le rouleau durant cette coupe.

3. Appareil selon l'une des revendications précédentes, dans lequel le groupe de saisie (23) comprend, sur chaque côté de la zone de coupe, un cadre (25) supportant une pluralité de coulisses (45), des amortisseurs (47) qui agissent sur la surface cylindrique de la bille (11,B2) durant la coupe et des moyens (31-43) pour déplacer simultanément les coulisses (45) contre la surface cylindrique de la bille (11,B2) à couper.

4. Appareil selon la revendication 3, dans lequel les moyens pour déplacer simultanément les coulisses (45) comprennent un anneau (31) enroulant la zone de transit de la bille (11,B2) à couper, une pluralité d'entailles (41) inclinées en direction radiale, un pivot (43) étant engagé dans chacune des entailles, relié à la coulisse correspondante (45), et une commande (34) faisant tourner l'anneau (31) dans une direction ou l'autre.

5. Appareil selon la revendication 3 ou 4, dans lequel deux des amortisseurs (49) sont fixes et les amortisseurs restants (47) sont déplaçables en direction de l'axe de la bille (11,B2) à couper, le mouvement des amortisseurs pouvant varier en fonction de leur position autour de la bille (11,B2) à couper.

6. Appareil selon la revendication 3 ou 4, dans lequel les amortisseurs sont auto-centreurs, la position du centre de convergence des amortisseurs étant ajustable selon le diamètre de la bille à couper.
7. Appareil selon l'une des revendications 3 à 6, dans lequel les amortisseurs (47) peuvent être remplacés afin d'adapter la machine à la coupe de bille de différents diamètres.

8. Appareil selon l'une des revendications 3 à 7, dans lequel les amortisseurs (47) ont une surface de contact avec la bille (B) à serrer incurvée afin de s'adapter au profil de la bille.

9. Appareil selon une ou plusieurs des revendications 3 à 8, dans lequel les amortisseurs (47) sont montés en pivotement pour permettre l'oscillation des coulisses respectives (45).

10. Appareil selon l'une des revendications 3 à 9, dans lequel au moins certains des amortisseurs (195) sont équipés de moyens de friction (197) pour freiner la bille (B) à couper.

11. Appareil selon l'une des revendications 1 à 10, dans lequel la distance entre le centre des deux volants (11,13) peut être ajustée pour changer la tension sur la lame en bande (15).

12. Appareil selon la revendication 11, dans lequel l’arbre d’un volant est soutenu par une patte en forme de L (18) articulée (en 19) sur le bras (9), une commande (20) étant prévue pour permettre l'oscillation de la double patte sur le bras (9) au point d'articulation (19).

13. Appareil selon l'une des revendications précédentes, dans lequel les moyens (83,85) du bras (9) sont associés pour affuter les moyens de coupe (15).

14. Appareil selon la revendication 13, dans lequel les moyens d'affûtage comprennent au moins une première paire de meules circulaires (83,85) présentant des axes inclinés et disposées des deux côtés de la lame en bande (15), les meules circulaires étant mises en rotation par des moteurs correspondants (89,91).

15. Appareil selon la revendication 13 ou 14, dans lequel les moyens d'affûtage comprennent au moins une deuxième paire de meules circulaires (106) montées folles, l'inclinaison de ces autres meules circulaires étant telle qu'elles produisent un biseau (107) sur le bord de coupe (105) généré par la patte précédente de meules circulaires (83,85).

16. Appareil selon l'une des revendications 13 à 15, dans lequel les moyens d'affûtage peuvent être ajustés pour changer l'angle d'affûtage et pour compenser l'usure des meules circulaires.

17. Appareil selon l'une des revendications 1 à 16, dans lequel les moyens de guidage (11,113,131) du bras (9) sont associés pour guider la lame en bande (15).

18. Appareil selon la revendication 17, dans lequel les moyens de guidage comprennent une pluralité de roulettes folles (111) coopérant avec le bord supérieur (15A) de la lame en bande (15).

19. Appareil selon la revendication 18, dans lequel les roulettes folles (111) sont portées par une unité (113) dont la position peut être ajustée pour tenir compte de l'usure de la lame en bande (15).

20. Appareil selon l'une des revendications précédentes, dans lequel des moyens de convoyage (146,149) sont prévus en aval de la zone de coupe pour reprendre et éloigner les rouleaux coupés (R1,R2,R3).

21. Appareil selon la revendication 20, dans lequel les moyens de convoyage comprennent une glissière (146) pouvant transférer les rouleaux coupés du groupe de saisie (23) vers un convoyeur à courroie (149) en vue de leur évacuation.

22. Appareil selon la revendication 20 ou 21, dans lequel un dispositif (155) est associé aux moyens de convoyage pouvant éloigner du convoyeur les chutes d'extrémités (RO).

23. Appareil selon la revendication 22, dans lequel le dispositif (155) pouvant éloigner les chutes d'extrémités comprend une pièce en forme de croix disposée au-dessus du convoyeur pour les rouleaux coupés, à une hauteur telle depuis le plan du convoyeur à courroie qu'elle permet aux chutes d'extrémités de passer en-dessous de la pièce en forme de croix, tandis que les rouleaux coupés sont dirigés par la pièce en forme de croix vers un autre convoyeur ou des moyens de rassemblement.

24. Appareil selon la revendication 22, dans lequel le dispositif (155) comprend une commande (157) pour contrôler l'oscillation d'un organe (185) pouvant interacter les chutes d'extrémités (RO) qui sont sur les moyens de convoyage (149) et les diriger en dehors du cheminement des rouleaux (R1,R2,R3).
25. Appareil selon l'une des revendications précédentes, dans lequel les moyens (170-193) sont prévus en amont de la zone de coupe de la bille pour freiner la bille avançante.

26. Appareil selon la revendication 25, dans lequel les moyens pour freiner la bille comprennent des patins (193) pressés élastiquement contre la surface cylindrique de la bille (B) à couper, la position des patins (193) étant ajustable en fonction de la dimension de la bille (B).

27. Appareil selon l'une des revendications précédentes, dans lequel au moins deux guides parallèles (202,203,205,207) et au moins deux groupes de saisie sont prévus pour l'avancement et la coupe simultanée de deux billes (B11,B12).

28. Appareil selon la revendication 27, dans lequel les groupes de saisie comprennent des lames flexibles (215,217) pour serrer les billes durant la coupe.

29. Appareil selon la revendication 27 ou 28, dans lequel les moyens (205,207,209,211,213) sont prévus pour changer la conformation des deux guides afin de les changer d'une configuration en guide double à une configuration en guide simple et vice-versa.

30. Appareil selon la revendication 2, dans lequel les moyens de saisie comprennent, de chaque côté de la zone de coupe, une lame flexible pour serrer la bille à couper en amont et en aval de la zone d'opération de la lame.

31. Méthode d'utilisation de l'appareil selon la revendication 1, pour la production de rouleaux (R1,R2,R3) de matériaux en papier de grand diamètre, caractérisée en ce qu'une bille (B) d'un diamètre correspondant au diamètre des rouleaux (R1,R2,R3) à produire est coupée le long d'une pluralité de plans perpendiculaires à l'axe de la bille, ces plans étant espacés les uns des autres d'une quantité correspondant à la hauteur des rouleaux.

32. Méthode selon la revendication 31, dans laquelle deux coupes sont faites sur la bille à proximité de ses extrémités pour éliminer les chutes d'extrémités.