EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 14.12.94

Int. Cl.: A22C 11/02

Application number: 90200809.3

Date of filing: 04.04.90

Method and apparatus for supplying casings.

Priority: 05.04.89 JP 84646/89

Date of publication of application:
10.10.90 Bulletin 90/41

Publication of the grant of the patent:
14.12.94 Bulletin 94/50

Designated Contracting States:
CH DE ES GB IT LI NL

References cited:
EP-A- 0 123 932
DE-A- 3 024 509
US-A- 3 195 176
US-A- 4 343 527
EP-A- 0 183 229
US-A- 3 191 222
US-A- 3 672 001

Proprietor: HITEC Co., Ltd.
27-6, Seta 1-chome
Setagaya-ku
Tokyo (JP)

Inventor: Kasai, Minoru
No. 3530-20, Oomatubara Aza,
Kokubu
Ebina-shi, Kanagawa (JP)

Inventor: Nakamura, Minoru
No.27-5, Seta 1-chome
Setagaya-ku, Tokyo (JP)

Representative: Flamman, Han
LIOC Patents and Licensing
P.O. Box 85096
NL-3508 AB Utrecht (NL)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

Background of the invention.

Field of the invention.

The present invention is utilized in the technical field of stuffing contents into casings, and more particularly relates to a method and an apparatus for automatically supplying casings to a stuffing device. A typical representative of such a casing is the casing used for stuffing a meat emulsion or the like. It has a hollow bar-shaped configuration and consists of a very long cylindrical film which is unfolded with bellows.

Description of the Related Art.

Several methods and corresponding apparatus aiming at the realization of the above are known.

For instance in EP-A-0123 932 and EP-A-0183 229 such methods and machines are described. However, they have serious drawbacks; the machines are large, heavy and complicated. From EP-A-0123 932 it goes that the method and the machine described serve for supplying a casing and stuffing emulsion into the casing, capable of using only a cored high density shirred casing, which does not require a stuffing tube.

One specific drawback is, that both the structure and the operation for delivering casings by an indexing mechanism for the supplying member, as described in the last mentioned patent, is complicated and expensive mainly because of:

- the rotating of the arranging surfaces (notches) being indexed by an angle, dependent on the number of arranging surfaces;
- the restricting portion being formed by the arcuate guide, which is separate from the supplying member;
- the supplying member, holding the casing brought to the stuffing portion remaining in that position until stuffing is completed - this leading to a complicated operation of delivering casings.

The aim of the present invention is to provide a method and a device so that a simple one by one delivery of casings to the stuffing tube is realized.

In particular it should be possible to arbitrarily select the number of casings on an arranging surface, without the necessity to change the structure.

Also the apparatus and method for stuffing casings as described in EP-A-0123 932 and 0183 229 do not reveal or hint at a solution of the problem.

Summary of the invention.

Accordingly, an object of the present invention is to provide a method and an apparatus for supplying casings which is capable of basically overcoming the above-described drawbacks of the conventional apparatuses and eliminating jammings and the like without causing damage even to soft casings such as collagen casings, thereby positively supplying the casings one by one to a stuffing tube, and in which the structure and operation are easy and adjustment is facilitated.

To this end there is provided a method for supplying casings to a position where they are fitted one by one over a stuffing tube comprising the steps of: placing a plurality of casings in parallel on an arranging surface of a supplying member, extending from an upstream portion of the supplying member to a downstream portion thereof; preventing the casing to be fitted over the stuffing tube from moving in a downstream direction; rotating the supplying member about an axis at a distance from, and parallel to the longitudinal axis of the casing, up to a position in which the casing is aligned with the stuffing tube; inserting the stuffing tube into the casing, rotating the supplying member about the axis so as to leave the casing on the stuffing tube; and moving in downstream direction the casings placed on the arranging surface upstream of the casing now left on the stuffing tube.

In addition there is provided an apparatus for carrying out the above described method, wherein casings are supplied to a stuffing device having a stuffing tube for stuffing a content into a casing, having a rotatably supplying member for supplying said casings to a stuffing position characterized by said supplying member having an arranging surface for arranging thereon a plurality of casings in parallel between an upstream portion and a downstream portion and having a restricting portion provided at a downstream position of said arranging surface integrally with said arranging surface and adapted to prevent a casing to be fitted over the stuffing tube from moving in a downstream direction; and a supporting member for supporting said supplying member said supporting member having an axis, which extends at a distance from, and along a longitudinal direction of, the restricting portion and is provided at a position upstream of said restricting portion, wherein the supplying member is rotatable about the axis between a position in which the casing to be fitted over said stuffing tube, which casing is prevented from moving by said restricting portion aligned with the stuffing tube on the one hand, and another position on the other, said supplying member being disposed in such a manner as to be rotatable toward said other
position relative to said casing to be fitted in which said stuffing tube is inserted.

In the present invention having the above described arrangement, the plurality of casings placed on the arranging surface of the supplying member are arranged in parallel one after another toward the upstream side by using as a reference the casing which is located at the restricting portion and is to be fitted over the stuffing tube.

The supplying member is subjected to rotative drive so that the casing located at the restricting portion reaches a position for alignment with the casing tube. After the casing which has reached the alignment position is fitted over the stuffing tube, the supplying member is subjected to rotative drive to another position. That is, the supplying member moves in an orthogonal direction to the stuffing tube in a state in which the remaining casings, excluding the casing held by the stuffing tube, are arranged thereon as they are. After the casing on the restricting portion has been delivered to the stuffing tube, the casings on the arranging surface each move by a portion of one casing, and an ensuing casing is sent to the restricting portion to be ready for an ensuing supplying operation.

The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the invention when read in conjunction with the accompanying drawings.

Brief description of the drawings.

Fig. 1 is a perspective view illustrating a casing supplying apparatus in accordance with a first embodiment of the present invention and its peripheral components;

Fig. 2 is a cross-sectional view of the supplying apparatus shown in Fig. 1;

Fig. 3 is a view of Fig. 2 taken in the direction of arrow A;

Fig. 4 is a side-elevational view of Fig. 3;

Fig. 5 is a cross-sectional view taken along the line B - B of Fig. 3;

Fig. 6 is a cross-sectional view taken along the line C - C of Fig. 3;

Fig. 7 is a partly cross-sectional view of Fig. 3;

Fig. 8 is a cross-sectional view taken along the line D - D of Fig. 2 with a casing interposed;

Figs. 9A and 9B to 12A and 12B are diagrams illustrating the operation of the apparatus shown in Fig. 1 in order, in which Figs. 9A, 10A, 11A and 12A are cross-sectional views;

Figs. 9B, 10B, 11B and 12B are front elevational views;

Fig. 13 is a cross-sectional view of the apparatus in accordance with a second embodiment;

Fig. 14 is a cross-sectional view of the apparatus shown in Fig. 13 at a second position;

Fig. 15A is a cross-sectional view of the apparatus in accordance with a third embodiment;

Fig. 15B is a partly cross-sectional view of the apparatus shown in Fig. 15A at the second position;

Fig. 16A is a front elevational view illustrating the vicinity of a repressing member of the apparatus shown in Fig. 15A;

Fig. 16B is a top plan view thereof;

Fig. 16C is a right side view of the apparatus shown in Fig. 16A;

Fig. 17 is a cross-sectional view of the apparatus in accordance with a fourth embodiment; and

Fig. 18 is a perspective view of the apparatus in accordance with a fifth embodiment.

Description of the preferred embodiments.

Referring now to the accompanying drawings, a description will be given of the embodiments of the present invention.

Fig. 1 is a perspective view of a casing supplying apparatus in accordance with a first embodiment of the present invention and its peripheral components, and Fig. 2 is a cross-sectional view of the supplying apparatus shown in Fig. 2.

In Fig. 1, a stuffing tube 1 for stuffing a meat emulsion is connected to a rod 4 of a cylinder 3 and is reciprocatably driven at regular intervals in its longitudinal direction via the rod 4. The stuffing tube 1 is provided with a raw-material introducing hole 6 for stuffing the meat emulsion into a casing via the interior of the stuffing tube, the raw-material introducing hole 6 being communicating with an unillustrated pump. The stuffing tube 1 in Fig. 1 is at a retracted position.

A supplying apparatus 10 is disposed on a side of a forward end of the stuffing tube 1 at the retracted position. The supplying apparatus 10 comprises a hopper 12 supported by a supporting member 11 as well as a flapper 13 serving as a supplying member for supplying a casing to a stuffing position.

The hopper 12 has a box-shaped configuration in which its upper side and stuffing tube side are open, and has a tabular damper member 14 disposed on the stuffing tube side. A bottom of the hopper 12 is inclined downwardly from its upstream portion to its downstream portion toward the flapper 13. The damper member 14 is affixed to the hopper 12 at its upper end in such a manner as to be swingable, and its lower edge is set in such a manner as to form an opening having a slightly larger gap than the diameter of one casing between the same and the bottom of the hopper 12.
A rotating shaft 15 which is parallel with the stuffing tube is provided on the lower side of the bottom of the hopper 12. The flapper 13 is rotatably supported at its upper end by the rotating shaft 15. The flapper 13 constitutes a lower guide member having an arranging surface for arranging the casings in parallel, and its upper end portion is substantially continuous with the bottom of the hopper 12, while a V-shaped restricting portion 13' is formed at its lower end portion for preventing the casings from falling down. The position of the restricting portion 13' is set in such a manner that the casing whose position is restricted at the restricting portion 13' is placed at a second position on the longitudinal axis of the stuffing tube 1 when the flapper 13 placed in the illustrated first position is rotated about the rotating shaft 15.

As is apparent from Fig. 2 as well, the rotating shaft 15 is positioned on the lower side of both the bottom of the hopper 12 and the casing arranging surface of the flapper 13. Furthermore, the rotating shaft 15 is positioned on the downstream side (rightward in the drawing) of a swinging center of the damper 14 in the moving direction of the casing (in a direction in which the casing falls down and moves on the bottom of the hopper). As shown in Figs. 3 and 4, the bottom of the hopper 12 is wound into a cylindrical configuration around opposite end portions of the rotating shaft 15 (see Fig. 5), and an upper edge of the flapper 13 between the aforementioned opposite end portions is similarly wound (see Fig. 6), so that even when the flapper 13 rotates, the bottom of the hopper and the arranging surface of the flapper are always substantially continuous via a surface in the form of a circular arc (see Figs. 5 and 6).

As shown in Fig. 2, a rod 16A of a cylinder 16 is connected to the flapper 13 arranged as described above, so that the flapper 13 is reciprocately driven about the rotating shaft 15. In addition, as shown in Figs. 3 and 7, an arm 17 serving as an aligning member is secured to an upper end of the flapper 13 of a lower side thereof, and is retained by a stopper 18 (see Fig. 10B) provided on the supporting member 11 at the time rotation, thereby allowing the flapper 13 to stop at its second position. The stopping of the flapper 13 at its first position is effected by a stroke end of the cylinder 16, whereby the flapper 13 reciprocates accurately between the first and second positions. The stopper 18, which constitutes a first adjusting means, has a form of such a screw that permits a change in the position of the restricting portion 13' in order to maintain alignment between the casing and the stuffing tube in the second position when the casing size (diameter) is altered.

In addition, the apparatus of this embodiment has a second adjusting means (see Fig. 2) which is arranged such that the position in which the supporting member 11 is fixed to a base B of the Stuffing device can be adjusted by rotating an adjustment knob 23, which, in turn, causes a rod 24 with a screw to which the adjusting knob 23 is attached to move in the direction of its longitudinal axis. At the time of a change in the casing size, the second adjusting means is capable of making the positional adjustment of the restricting portion 13' in cooperation with the first adjusting means. It should be noted that, in order to permit the movement of the supporting member 11 without needing to loosen a fixing screw 11A of the supporting member 11, the supporting member 11 is pressed and secured by means of a disk spring 11B interposed between a head of the fixing screw 11A and the supporting member 11.

Referring to Figs. 1 and 8, the supplying member in accordance with this embodiment is preferably provided with not only the flapper 13 constituting the lower guide member but also an upper guide member 19 which is disposed thereabove in parallel therewith. An interval between the two guide members 13, 19 is set to be slightly greater than the diameter of a casing C. The upper guide member 19 has a pair of side walls 19A, 19B each having an elongated hole 20 formed therein, and is secured to a pair of side walls 13A, 13B of the lower guide member 13 by tightening nuts 21 respectively meshing with screws 21' affixed to the side walls 13A, 13B through the elongated holes 20. A guide pin 25 for guiding the elongated hole 20 together with the screw 21' is secured to each side wall 13A, 13B, and is fitted in the elongated hole 20, whereby the moving direction of the upper guide member 19 is restricted in the direction of the elongated hole.

A lower edge 19' of the upper guide member 19 is positioned in such a manner that an interval L greater than the diameter of the casing C is formed between the lower edge 19' and the restricting member 13' of the lower guide member 13 (see Fig. 2). The direction of each elongated hole 20 is determined such that the interval between the lower guide member 13 and the upper guide member 19 (see Fig. 8) and the interval L between the restricting portion 13' and the lower edge 19' of the upper guide member 19 (see Fig. 2) can be changed simultaneously if the upper guide member 19 is moved, so as to cope with a change in the diameter of casings. Thus, the elongated holes 20, together with the screws 21' and the guide pins 25, constitute a third adjusting means. In addition, a stopper 22 having a threaded portion is provided at an upper end of the upper guide member 19 so as to restrict a lower limit of swinging movement of the damper 14. Disposed above the stopper 22 is a screw 26 for adjusting an amount of swinging
movement of the damper 14 to the upstream side.

The automatic feeding of the casings in the apparatus of this embodiment thus arranged is
affected as follows.

1) First, if a plurality of casings C are charged
into the hopper 12, as shown in Fig. 9A, the
casings C slide down onto the arranging surface
of the flapper 13 (lower guide member) at the
illustrated first position through an opening
formed by the bottom of the hopper 12 and the
damper 14, and are arranged in parallel. A
lowermost casing C1 is retained by the restrict-
ing portion 13' and is thereby prevented from
rolling down. At this time, the stuffing tube 1 is
inserted into a preceding casing C0 already
supplied and is in a state in which the contents
can be stuffed into the casing C0 (see Fig. 9B).
2) Upon completion of the stuffing into one
casing C0, the stuffing tube 1 retracts, as shown
in Figs. 10A and 10B, and the flapper 13 is
brought to the second position by being driven
by the cylinder 16, so that the casing C1 located
at the restricting portion 13' of the flapper 13 is
aligned with the axis of the stuffing tube 1.
3) In this state, the stuffing tube 1 is driven
forwardly and advances into the casing C1 (see
Figs. 11A and 11B).
4) With the stuffing tube 1 thus advanced into
the casing C1, the flapper 13 starts to undergo
rotative return toward the first position, i.e.,
an original position (see Figs. 12A and 12B).
Accordingly, as shown in Figs. 12A and 12B, only
the casing C1 remains in the stuffing position in
a state in which it is held by the stuffing tube 1,
and the delivery of the casing C1 to the stuffing
tube 1 is thereby completed. The other casings
return to the aforementioned first position to-
gether with the flapper 13 (see Fig. 9A). During
the aforementioned rotative return, the casing
C1 and an ensuing casing CZ are separated
from each other normal to their longitudinal di-
rection, so that no longitudinal friction is involved
between the two casings. Subsequently, the en-
suing casing C2 and the following casings each
slide down on the flapper by a portion of one
casing, and the casing C2 is set ready for an
ensuing supplying operation (see Fig. 9A).
5) It should be noted that, in the aforementioned
step (4), when the flapper 13 rotates about the
rotating shaft 15, the casings move quite
smoothly from the hopper 12 since the upper
end portion of the arranging surface of the flap-
per 13 is continuous with the bottom of the
hopper 12 by virtue of the arcuate surface.
In addition, since the arcuate surface extends in
the longitudinal direction of the casing, an inter-
val between the casing is created, so that jam-
ming does not occur. Moreover, since the
damper 14 pushes the casings in the second
and higher rows rearwardly inside the hopper 12
through the rotative operation of the flapper 13
in the aforementioned step (2), the jamming of
the casings when moving toward the flapper 13
is prevented more reliably (see Fig. 10A).

Referring now to Figs. 13 and 14, a descrip-
tion will be given of a second embodiment of the
present invention. In this embodiment, the casing
C1 is positioned at the restricting portion 13' so
that the casing C1 at the restricting portion 13' will
not be offset upwardly of the restricting portion 13'
when the apparatus of the foregoing embodiment is
run at a very high speed.

In this embodiment, the damper 14 is provided
with a repressing member 27 bent into a substan-
tially L-shaped configuration and having a distal
end portion 27A extending in the longitudinal di-
rection of the casing. The repressing member 27 is
arranged such that, when the casing C1 on the
flapper 13 is brought into the second position (at
the position of an extension of the axis of the
stuffing tube), as shown in Fig. 14, the damper 14
is rotated by means of the screw 26 affixed to the
upper guide member 19, whereby the repressing
member 27 is caused to swing downwardly, and
the distal end portion 27A is brought into contact
with an upper surface of the casing C1, thereby
preventing the casing C1 from being offset from
the restricting portion 13'. When the flapper 13
returns to the first position, the damper 14 swings
downstream together with the movement of the
screw 26, so that the repressing member 27 re-
turns to its upper standby position, as shown in
Fig. 13.

A description will now be given of a third
embodiment shown in Figs. 15 and 16. A repress-
ing member 28 is arranged such that its proximal
portion 28B is swingably supported by an arm
member 29 and is urged clockwise as viewed in
Fig. 16A about its axis by means of a torsion
spring 30, so that its distal end portion 28A moves
in its axial direction by means of the swinging
motion and its height can be varied. The arm
member 29 is mounted on a column 35 provided
uprightly on the base B of the stuffing device, in
such a manner as to be rotatable about a shaft 34,
and is urged downwardly by means of a spring 32.
A stopper 31 for retaining the proximal portion 28B
and a stopper 33 for retaining the arm member 29
are provided on the arm member 29 and the col-
umn 35, respectively, so that the distal end portion
28A will stop at a predetermined position.

In this embodiment thus arranged, midway in
the course when the casing C on the flapper 13
rises toward the second position, the distal end
portion 28A of the repressing member 28 is
brought into contact with the casing C.
Subsequently, as the flapper 13 rises, the arm member 29 rotates against the urging force of the spring 32 until the flapper 13 reaches the second position (see Fig. 15B). This embodiment differs from the second in that the flapper 13 is raised while the casing C is being pressed by the repressing member 28. Even if the diameter of the casing is changed, the arm member is swung by the casing, so that there is no need for positional adjustment of the repressing member 28 in the direction of its height. When the casing C is supported by the stuffing tube 1, and the casing C is pushed forwardly by a pusher 2 affixed to the rod 5 reciprocated by an illustrated cylinder, the proximal portion 28B of the repressing member 28 is rotated by the pusher 2, as shown in Fig. 18A, and its distal end portion 28A moves upward, canceling its abutment against the casing C and causing the arm member 29 to return to its original position by means of the spring 32. After the casing C has been used for stuffing, the repressing member 28 also returns to its original position by means of the urging force of the torsion spring 30 as the pusher 2 retracts.

A description will now be given of a fourth embodiment shown in Fig. 17. In this embodiment, an arrangement is provided such that a repressing member 36 is closed after the flapper 13 reaches the second position until the stuffing tube is inserted into the casing C, while the repressing member 36 is opened by the operation of a cylinder 37 when the flapper returns to the first position. It should be noted that the repressing member 36 and the casing C may not be brought into contact with each other, and there may be a small gap therebetween.

In addition to the advantage of preventing the floating up of the casing in the restricting portion 13', the repressing members in the above-described second, third and fourth embodiments offer an advantage in that when an exceptionally curved casing is used, its curve shape along its longitudinal direction can be rectified into a straight shape, thereby rendering the alignment between the casing and the stuffing tube more positive.

Furthermore, a fifth embodiment of the present invention is shown in Fig. 18. In this embodiment, a belt conveyor 38, i.e., a supplying member, is disposed in such a manner as to reciprocate between an illustrated second position and a first position obtained as the belt conveyor 38 is rotated upwardly therefrom, as shown by the arrow. The belt conveyor 35 is constituted by a belt 39 with protrusions each accommodating one casing at a time, and an L-shaped restricting portion 40 is provided at a tip of the belt conveyor 38 by being positioned in place by means of an unillustrated spring in such a manner as to be rotatable with a shaft 44 as a fulcrum. The belt conveyor 38 is adapted to rotate about a shaft 41 and the shaft 44 by means of a motor 43 via a belt conveyor 42 which will be described below, so as to convey the casings on the belt 39 to the restricting portion 40. The belt conveyor 42, which is a hopper disposed horizontally, has a multiplicity of casings placed thereon, and is adapted to be driven by the motor 43 which rotates by a portion of one casing during a predetermined period so as to deliver one casing at a time to the belt conveyor 38 serving as a supplying member. After the stuffing tube 1 is inserted into the casing C located at the illustrated second position, the belt conveyor 38 starts to rotate upwardly about the shaft 41, while the restricting portion 40 rotates downwardly about the shaft 44 through cooperation between the stuffing tube 1 and the above-described rotation of the belt conveyor 38. Upon completion of the delivery of the casing C to the stuffing tube 1 by means of the rotation of the restricting portion 40, the belt conveyor 38 conveys an ensuing casing to the restricting portion 40. Even if the belt conveyor 38 is inclined upwardly, the casings can be conveyed positively by means of the belt 39 with protrusions. In accordance with this embodiment, at the time of stuffing, the casings above the belt conveyor 38 are not stained with the stuffing material since the stuffing tube is disposed on the lower side of the belt conveyor 38 located in the first position.

As described above, in accordance with the present invention, the arrangement provided is such that after the insertion of the stuffing tube into one of the casings arranged on the supplying member, the supplying member is moved in such a manner as to move the remaining casings in an orthogonal direction to the longitudinal direction of the stuffing tube away from the stuffing tube which is in a stationary state with the casing fitted over it. Hence, the present invention offers the following advantages.

Since the casings can be delivered to the stuffing tube without mediation of any other member with the casings arranged on the supplying member as they are, the casings experience no jamming or the like, and can be conveyed positively.

Since the supply of the casings to the stuffing tube is effected by simply rotating the supplying member, the arrangement is very simple and the number of parts to be adjusted is small.

The casings are supported over their entire length by the supplying member until they are received by the stuffing tube, with the result that even if soft casings, when used, are not subjected to deformation or damage.

The casing which is in an ensuing position to that of the casing being supplied to the stuffing tube is supported over its entire length by the
casing being supplied, and is moved, simultaneously over its entire length, away from the casing being supplied, without entailing friction after the casing being supplied is fitted over the stuffing tube. Hence, deformation such as bending is not caused.

The plurality of casings arranged on the supplying member move not only by their own weight but by receiving a force exerted by the movement of the supplying member, so that the movement of the casings is rendered positive.

Even if a hopper is provided, the casings are capable of moving on the continuous surface toward the supplying member, with the result that the movement of the casings is rendered smooth and positive.

Claims

1. A method for supplying casings to a position where they are fitted one by one over a stuffing tube (1), comprising the steps of:
 placing a plurality of casings in parallel on an arranging surface of a supplying member (13, 38), extending from an upstream portion of said supplying member to a downstream portion thereof;
 preventing the casing to be fitted over the stuffing tube (1) from moving in a downstream direction;
 rotating the supplying member (13, 38) about an axis at a distance from, and parallel to the longitudinal axis of said casing, up to a position in which said casing is aligned with said stuffing tube (1);
 inserting said stuffing tube (1) into said casing;
 rotating the supplying member (13, 38) about said axis so as to leave said casing on said stuffing tube;
 moving in a downstream direction said casings placed on said arranging surface upstream of the casing now left on said stuffing tube.

2. An apparatus for carrying out the method according to claim 1, wherein casings are supplied to a stuffing device having a stuffing tube (1) for stuffing a content into a casing, having a rotatable supplying member for supplying said casings to a stuffing position, characterized by:
 said supplying member (13, 38) having an arranging surface for arranging thereon a plurality of casings in parallel between an upstream portion and a downstream portion and having a restricting portion (13', 40) provided at a downstream position of said arranging surface integrally with said arranging surface and adapted to prevent a casing to be fitted over said stuffing tube (1) from moving in a downstream direction; and
 a supporting member for supporting said supplying member (13, 38), said supporting member having an axis (15A, 41A) which extends at a distance from, and along a longitudinal direction of, said restricting portion (13', 40) and is provided at a position upstream of said restricting portion, wherein said supplying member (13, 38) is rotatable about said axis (15A, 41A) between a position in which the casing to be fitted over said stuffing tube, which casing is prevented from moving by said restricting portion (13', 40) is aligned with said stuffing tube (1) on the one hand, and another position on the other, said supplying member being disposed in such a manner as to be rotatable toward said other position relative to said casing to be fitted in which said stuffing tube is inserted.

3. A casing supplying apparatus according to claim 2, further comprising a hopper having a guide surface for placing thereon said plurality of casings between an upstream portion and a downstream portion and for moving said casings in a lateral direction thereof, said supplying member being disposed downstream of said guide surface of said hopper in such a manner as to be rotatable relative to said guide surface.

4. A casing supplying apparatus according to claim 3, wherein said axis is located on the lower side of a downstream end portion of said guide surface of said hopper and on the lower side of an upstream end portion of said arranging surface of said supplying member.

5. A casing supplying apparatus according to claim 3 or 4, wherein said guide surface of said hopper is inclined downwardly in a moving direction of said casings.

6. A casing supplying apparatus according to claim 2, wherein said restricting portion is a V-shaped portion formed at a downstream end portion of said supplying member.

7. A casing supplying apparatus according to claim 2 or 3, wherein said supplying member is constituted
by a pair of upper and lower guide members for guiding said casings in parallel, an opening portion for taking out one of said casings at a downstream end portion of said upper guide member having a width corresponding to the diameter of said casings.

8. A casing supplying apparatus according to claim 4, wherein an upstream end portion of said supplying member has a portion of a surface in a form of a circular arc with said axis as a center, thereby forming a surface which is substantially continuous with a bottom of said hopper.

9. A casing supplying apparatus according to any of claims 2 to 7, wherein said supplying member has an aligning member for abutting against a stopper so that said casing on said restricting portion will be aligned with saidstuffing tube when said supplying member is rotated.

10. A casing supplying apparatus according to claim 7, wherein said lower guide member has a pair of side walls at opposite side portions thereof in a direction of said axis, each opposite side portion of said upper guide member being affixed to a surface of each of said side walls.

11. A casing supplying apparatus according to claim 7, wherein said opening portion is defined by said restricting portion disposed in said lower guide member and a downstream end of said upper guide member arranged at an interval therewith.

12. A casing supplying apparatus according to claim 11, wherein said supplying member has a third adjusting means for simultaneously changing an interval between said upper guide member and said lower guide member facing each other and the width of said opening portion.

13. A casing supplying apparatus according to claim 3, further comprising a damper member disposed above a downstream end portion of said guide surface of said hopper in such a manner as to be swingable about a shaft along said axis, a lower end of said damper member forming an opening portion together with said guide surface of said hopper, and said damper member being adapted to swing from said opening portion toward an upstream portion of said hopper through the rotating motion of said supplying member.

14. A casing supplying apparatus according to claim 13, wherein said shaft for swingably supporting said damper member is located more on the upstream side of said hopper than said axis of said supplying member.

15. A casing supplying apparatus according to claim 13 or 14, wherein said damper member is brought into contact with an upstream end portion of said upper guide member.

16. A casing supplying apparatus according to claim 2, wherein said supplying member has a second adjusting means for rendering variable a distance between a supporting member for supporting a hopper provided rotatably and a position of a longitudinal axis of said stuffing tube.

17. A casing supplying apparatus according to claim 9, wherein said stopper has a first adjusting means for rendering variable a distance between said stopper and said aligning member.

18. A casing supplying apparatus according to claim 2, wherein said supplying member has a repressing member adapted to abut from above against said casing on said restricting portion aligned with said stuffing tube.

Patentansprüche

1. Ein Verfahren für die Zuführung von Hüllen in eine Position, wo sie einzeln über einer Füllröhrre (1) angebracht werden, das aus den folgenden Schritten besteht:

 Unterbringen einer Vielzahl von Hüllen parallel zueinander auf einer Verteilungsfläche eines Zuführungs-Elements (13, 38), das sich von einem stromaufwärts befindlichen Bereich von besagtem Zuführungs-Element bis zu einem stromabwärts befindlichen Bereich davon erstreckt;

 Verhindern daß die Hüle, die über der Füllröhrre (1) angebracht werden soll, in eine Richtung stromabwärts bewegt;

 Schwenken von besagtem Zuführungs-Element (13, 38) um eine Achse mit einem Abstand von und parallel zu der Längssachse von besagter Hüle bis zu einer Position, in der
besagte Hülle mit besagter Füllröhre (1) fluchtet;
Einführen von besagter Füllröhre (1) in besagte Hülle;
Schwenken von besagtem Zuführungs-Element (13, 38) um besagte Achse, so daß besagte Hülle auf besagter Füllröhre zurückge-lassen wird;
Bewegen in einer Richtung stromabwärts von besagten Hüllen, die sich auf besagter Verteilungsfläche stromaufwärts von der Hülle, die nun auf der besagten Füllröhre zurückge-lassen ist, befinden.

2. Ein Apparat zur Durchführung des Verfahrens nach Anspruch 1,
worin Hüllen einer Fülleinrichtung zugeführt werden, die eine Füllröhre (1) zum Füllen eines Inhaltsstoffes in eine Hülle hat, die ein schwenkbares Zuführungs-Element für die Zuführung von besagten Hüllen zu einer Fülposition besitzt,
dadurch gekennzeichnet, daß besagtes Zuführungs-Element (13, 38) eine Verteilungsfläche hat, um darauf eine Vielzahl Hüllen parallel zueinander zwischen einem stromaufwärts befindlichen Bereich und einem stromabwärts befindlichen Bereich anzusiedeln, und einen einengenden Bereich (13', 40) der, in einer Position stromaufwärts von besagter Vertei-

3. Ein Apparat für die Zuführung von Hüllen nach Anspruch 2,
der fer ner einen Silo enthält, der eine Führungsfläche hat, um darauf zwischen einem stromaufwärts befindlichen und einem stromabwärts befindlichen Bereich besagte Vielzahl Hüllen unterzubringen und um besagte Hüllen in einer seitlichen Richtung davon zu bewegen, wobei besagtes Zuführungs-Element stromabwärts von besagter Führungsfläche von besagtem Silo, auf eine Weise angeordnet ist, daß es relativ zu der besagten Führungsfläche schwenkbar ist.

4. Ein Apparat für die Zuführung von Hüllen nach Anspruch 3,
worin besagte Achse sich an der unteren Seite eines stromabwärts befindlichen Endbereichs von besagter Führungsfläche von besagtem Silo befindet und auf der unteren Seite eines stromaufwärts befindlichen Endbereichs von besagter Verteilungsfläche von besagtem Zuführungs-Element.

5. Ein Apparat für die Zuführung von Hüllen nach Anspruch 3 oder 4,
worin besagte Führungsfläche von besagtem Silo in einer Bewegungsrichtung von besagten Hüllen abwärts geneigt ist.

6. Ein Apparat für die Zuführung von Hüllen nach Anspruch 2,
worin besagter einengender Bereich ein V-för-
miger Bereich ist, der an einem stromabwärts befindlichen Endbereich von besagtem Zuführungs-Element gebildet wird.

7. Ein Apparat für die Zuführung von Hüllen nach Anspruch 2 oder 3,
worin besagtes Zuführungs-Element von einem Paar oberer und unterer Führungen gebildet wird, um besagte Hüllen parallel zueinander zu führen, sowie einer Öffnung, um eine der besagten Hüllen bei einem stromabwärts befindli-
chen Endbereich von der besagten oberen Führung, die eine Breite hat, die dem Durchmesservon besagten Hüllen entspricht, herauszunehmen.

8. Ein Apparat für die Zuführung von Hüllen nach Anspruch 4,
worin ein stromaufwärts befindlicher Endbe-
reich von besagtem Zuführungs-Element einen Bereich einer Fläche in der Form eines kreu-
förmigen Bogens mit besagter Achse als Mit-
telpunkt hat, wobei eine Fläche gebildet wird, die mit einem Boden von besagtem Silo im wesentlichen durchgehend ist.
9. Ein Apparat für die Zuführung von Hüllen nach irgendeinem der Ansprüche 2 bis 7, worin besagtes Zuführungs-Element ein Ausricht-Element hat, um gegen einen Anschlag zu stoßen, so daß besagte Hülle in besagtem einengendem Bereich mit besagter Füllröhre fluchtet, wenn besagtes Zuführungs-Element geswenken wird.

11. Ein Apparat für die Zuführung von Hüllen nach Anspruch 7, worin besagte Öffnung bestimmt wird, durch besagten einengenden Bereich, der in der besagten unteren Führung angeordnet ist, und ein stromaufwärts befindliches Ende von besagter oberer Führung, das mit einem Abstand dazu angeordnet ist.

12. Ein Apparat für die Zuführung von Hüllen nach Anspruch 11, worin besagtes Zuführungs-Element eine dritte Einstellmöglichkeit besitzt, um gleichzeitig einen Abstand zwischen der besagten oberen Führung und der besagten unteren Führung, die einander gegenüberstehen, und der Breite von besagter Öffnung zu verändern.

14. Ein Apparat für die Zuführung von Hüllen nach Anspruch 13, worin besagte Welle für die schwingende Unterstützung von besagtem Dämpfer mehr auf der stromaufwärts befindlichen Seite von besagtem Silo untergebracht ist, als die besagte Achse von besagtem Zuführungs-Element.

15. Ein Apparat für die Zuführung von Hüllen nach Anspruch 13 oder 14, worin besagter Dämpfer in Kontakt mit einem stromaufwärts befindlichen Endbereich der besagten oberen Führung gebracht wird.

17. Ein Apparat für die Zuführung von Hüllen nach Anspruch 9, worin besagter Anschlag eine erste Einstellmöglichkeit besitzt, um einen Abstand zwischen besagtem Silo dargestellt und besagtem Ausricht-Element veränderlich zu gestalten.

Revendications

1. Une méthode pour amener des boyaux dans une position où ils sont placées un par un sur un tube de remplissage (1), comprenant les étapes de:
 - placer une pluralité de boyaux parallèlement sur une surface de disposition d'un membre d'alimentation (13, 38), s'étendant d'une partie en amont de membre d'alimentation vers une partie en aval de celui-ci;
 - empêcher le boyau qui doit être placé sur le tube de remplissage (1) de se déplacer dans une direction en aval;
 - faire tourner le membre d'alimentation (13, 38) autour d'un axe, à une certaine distance et parallèlement à l'axe longitudinal de ce boyau, jusqu'à une position où le boyau est aligné avec le tube de remplissage (1);
 - insérer ce tube de remplissage (1) dans ce boyau;
 - faire tourner le membre d'alimentation (13, 38) autour de cet axe, afin de laisser le boyau sur le tube de remplissage;
 - déplacer dans une direction en aval les
boyaux placés sur la surface de disposition, en amont du boyau alors laissé sur le tube de remplissage.

2. Un appareil pour réaliser la méthode d'après la revendication 1, où les boyaux sont amenés vers un dispositif de remplissage possédant un tube de remplissage (1) pour farcir un boyau avec un contenu, et possédant un membre d'alimentation rotatif pour amener ces boyaux dans une position de remplissage, caractérisé en ce que:

 ce membre d'alimentation (13, 38) possède une surface de disposition pour y disposer une pluralité de boyaux parallèlement entre une partie en amont et une partie en aval, et possède une partie restrictive (13', 40), fournie à une position en aval de cette surface de disposition intégralement avec cette surface de disposition, et adaptée pour empêcher un boyau qui doit être placé sur le tube de remplissage (1) de se déplacer dans une direction en aval, et

 un membre support pour soutenir le membre d'alimentation (13, 38), ce membre support possédant un axe (15A, 41A) qui s'étend à une certaine distance et le long d'une direction longitudinale de la partie restrictive (13', 40) et qui est fourni à une position en amont de cette partie restrictive, le membre d'alimentation (13, 38) pouvant tourner autour de cet axe (15A, 41A) entre une position dans laquelle le boyau qui doit être placé sur le tube de remplissage, ce boyau étant empêché de se déplacer par la partie restrictive (13', 40), est aligné avec le tube de remplissage (1) d'un côté, et une autre position de l'autre côté, le membre d'alimentation étant disposé de façon à pouvoir tourner vers cette autre position par rapport au boyau qui doit être placé, dans lequel on insère le tube de remplissage.

3. Un appareil pour amener un boyau d'après la revendication 2, comprenant également une trémie possédant une glissière, pour y placer une pluralité de boyaux entre une partie en amont et une partie en aval, et pour déplacer ces boyaux dans une direction latérale, le membre d'alimentation étant disposé en aval de la glissière de cette trémie de façon à pouvoir tourner par rapport à cette glissière.

4. Un appareil pour amener un boyau d'après la revendication 3, où l'axe est situé sur le côté inférieur d'une extrémité en aval de la glissière de la trémie, et sur le côté inférieur d'une extrémité en amont de la surface de disposition du membre d'alimentation.

5. Un appareil pour amener un boyau d'après la revendication 3 ou 4, où la glissière de la trémie est inclinée vers le bas dans une direction de mouvement des boyaux.

6. Un appareil pour amener un boyau d'après la revendication 2, où la partie restrictive est une partie en forme de V, formée à une extrémité en aval du membre d'alimentation.

7. Un appareil pour amener un boyau d'après la revendication 2 ou 3, où le membre d'alimentation est constitué d'une paire de membres glissières supérieures et inférieures pour guider les boyaux en parallèle, une ouverture pour retirer l’un des boyaux à une extrémité en aval du membre glissière supérieur possédant une largeur correspondant au diamètre des boyaux.

8. Un appareil pour amener un boyau d'après la revendication 4, où une extrémité en amont du membre d'alimentation possède une partie d'une surface en forme d'arc circulaire avec l'axe comme centre, formant ainsi une surface qui est largement continue avec un fond de la trémie.

9. Un appareil pour amener un boyau d'après l’une des revendications 2 à 7, où le membre d'alimentation possède un membre d'alignement contigu à un bouchon, de sorte que le boyau sur la partie restrictive soit aligné avec le tube de remplissage lorsque le membre d'alimentation tourne.

10. Un appareil pour amener un boyau d'après la revendication 7, où le membre glissière inférieur possède une paire de parois latérales à des parties latérales opposées dans une direction de l'axe, chaque partie latérale opposée du membre glissière supérieur étant collée à une surface de ces parties latérales.

11. Un appareil pour amener un boyau d'après la revendication 7, où l'ouverture est définie par la partie restrictive disposée dans le membre glissière inférieur et une extrémité en aval du membre glissière supérieur, espacées par un intervalle.
12. Un appareil pour amener un boyau d’après la revendication 11, où le membre d'alimentation possède un troisième élément d’ajustement pour changer simultanément un intervalle entre le membre glissière supérieur et le membre glissière inférieur situés l’un en face de l’autre et la largeur de l’ouverture.

13. Un appareil pour amener un boyau d’après la revendication 3, comprenant également un membre amortisseur disposé au-dessus d’une extrémité en aval de la glissière de la trémie, de façon à pouvoir se balancer autour d’un arbre le long de cet axe, une extrémité inférieure du membre amortisseur formant une ouverture avec la glissière de la trémie, et le membre amortisseur étant adapté pour se balancer de l’ouverture vers une partie en amont de la trémie, par le mouvement de rotation du membre d’alimentation.

14. Un appareil pour amener un boyau d’après la revendication 13, où l’arbre supportant le membre amortisseur de façon à ce qu’il puisse se balancer est situé davantage du côté en amont de la trémie que l’axe du membre d’alimentation.

15. Un appareil pour amener un boyau d’après la revendication 13 ou 14, où le membre amortisseur est mis en contact avec une extrémité en amont du membre glissière supérieur.

16. Un appareil pour amener un boyau d’après la revendication 2, où le membre d’alimentation possède un second élément d’ajustement pour rendre variable une distance entre un membre support soutenant rotativement une trémie et une position d’un axe longitudinal du tube de remplissage.

17. Un appareil pour amener un boyau d’après la revendication 9, où le bouchon possède un premier élément d’ajustement pour rendre variable une distance entre le bouchon et le membre d’alignement.

18. Un appareil pour amener un boyau d’après la revendication 2, où le membre d’alimentation possède un membre de contention adapté pour être contigu du dessus au boyau, sur la partie restrictive alignée avec le tube de remplissage.