A push-button switch having an interlocking device.

Priority: 17.03.89 JP 65169/89

Date of publication of application: 19.09.90 Bulletin 90/38

Publication of the grant of the patent: 17.05.95 Bulletin 95/20

Designated Contracting States: DE FR GB

References cited:
DE-U- 7 515 843
GB-A- 426 094
GB-A- 1 135 059
US-A- 1 351 161

Proprietor: SHINKOH ELECTRIC CO., LTD.
16-go, 5-ban, 1-chome Yamasaka
Higashisumiyo shi-ku, Osaka (JP)

Inventor: Kato, Shigeru
2-18-2 Showa-cho,
Abeno-ku
Osaka (JP)

Representative: Perkins, Sarah et al
Stevens, Hewlett & Perkins
1 Serjeants' Inn
Fleet Street
London EC4Y 1LL (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to a push-button switch having an interlocking device.

In some push-button switches, an interlocking device which prevents two push-buttons from being pushed down simultaneously is required in order to avoid breaking of the switch caused by simultaneous operation of two push-buttons.

Widely used interlocking devices for pushbutton switches are disclosed in Japanese Utility Model Publications Nos. 551/57 and 28139/64 for example. These devices have a construction such that a rod for interlocking purpose is disposed movably in lateral direction in the switch body between two parallel push-buttons so that when either one of the two push-buttons is pushed down, an interlocking piece is moved toward the other push-button to lock it.

This earlier interlocking system is complicated in construction, has many component parts and is troublesome to assemble, especially where springs and balls are employed in the switches.

In US-A-1351181 a switch is described in which a lever is provided to open or close electrical connection between two contacts provided. The lever is actuated by two push buttons and has an arm which is in contact with a resilient roller to prevent operation of the two push-buttons together. The lever is pivotally mounted on a pin which is journaled into lugs fixedly connected to the switch housing so that operation of either one of the push-buttons causes the lever to pivot about the pin thereby opening or closing the electrical connection.

A push-button switch device is claimed comprising a switch body in which two push-buttons are mounted side by side for guided sliding movement parallel to each other, an interlocking lever extending between the push-buttons and having its opposite ends in engagement with the two push-buttons respectively and a pin mounted in the switch body and extending transversely of the interlocking lever, the interlocking lever having at its side further from the tops of the pushbuttons and mid-way between its ends a projection which is held by and co-operates with the pin so as to enable pivotal movement of the interlocking lever whereby when either one of the two push-buttons is depressed initially the interlocking lever is caused to swivel about its end engaged with the other of the two push-buttons so that the projection moves round the side of the pin remote from the push-button being depressed characterised in that the interlocking lever is located in and guided by a channel extending between the two push-buttons which are mounted in the switch body for two-stage operation and the interlocking lever is held by and co-operates with the pin so as also to be capable of lateral movement parallel to and within the channel whereby when the push-button is further depressed in a second stage the entire lever is caused to move laterally within the channel with the opposite ends of the lever respectively moving towards and away from end regions of the channel thereby enabling the projection to move further round the side of the pin remote from the push-button being depressed the engagement between the pin and the lever thereby preventing the other of the two push-buttons from being depressed in both the first and second stages.

Thus, when either of the two push-buttons is depressed, the lever swings in a see-saw manner, so that the opposite end of the lever is inclined upward as shown in Figure 5(B) and the other push-button is locked, i.e. it cannot be depressed. When the push-button is depressed further, the projection on the lever slides about the outer periphery of the pin. At this time the lever moves laterally toward the other push-button, and the pin may also be arranged to rotate a little, whereby wear on the projection is reduced and the locking action on the other push-button reinforced. Thus locking can be carried out accurately when the pushing down action is made in two steps.

The nature and advantage of the present invention will be understood more clearly from the following description of a preferred embodiment of the invention making reference to the accompanying drawings, in which:

Figure 1 is a longitudinal section of a push-button switch device according to the present invention,

Figure 2 is a side view of the push-button switch of Figure 1,

Figure 3 is a plan view of the push-button switch shown in Figure 1,

Figure 4 is a bottom view of the push-button switch shown in Figure 1, and

Figure 5 is an explanatory drawing of the operation, showing the relation between the push-button and the interlocking lever.

Referring to the drawings, two holes 1a in which push-buttons 2 are slidably mounted side by side are provided in the switch body 1. A vertical guide groove 1b for guiding a guide ball 3 for two-step operation is provided in the upper part of the wall of each hole 1a. The guide ball 3 is led into the hole 1a from the guide groove 1b.

Each push-button 2 is of such shape as to be slid-able vertically in the corresponding hole 1a in the switch body. Each guide ball 3 is disposed in a lateral hole 2a in the push-button and is urged outward against the surface of the guide groove 1b by the biasing force of a spring 4 disposed in the hole 2a and seated against the blanked-off bottom of the hole 2a. A central hole 2b extends upward from the bottom of the push-button 2 and a spring 5 is interposed between the upper end of the hole 2b and the bottom of the hole 1a in the switch body 1 so that the push-button 2 is urged resiliently upward by the spring 5. In order to prevent the push-button 2 from being
pushed out of the switch body 1 by the biasing force of the spring 5, the push button 2 is restrained by movable contact pieces S1, S2 which extend through the push-button 2 laterally and move toward and away from fixed contact pieces T1, T2 fixed to the side of the switch body.

A slot 10 is formed in the top surface of the switch body 1 in such a fashion that it interconnects the two parallel holes 1a, and journal grooves 11 in which a cylindrical pin 12 is rotatably mounted to extend transversely of the slot 10 are formed substantially centrally of opposite surfaces of the slot 10. A locking lever 13 is disposed in the groove 10. The lever 13, as shown in Figures 1 and 5, has a projecting fulcrum 13a of triangular shape at the centre of its lower surface. This fulcrum 13a makes contact with the top of the periphery of the pin 12.

The ends of the lever 13 are engaged in recesses 2c in the sides of the two push-buttons 2 respectively.

The operation of the push-button switch will now be described with reference to Figure 5.

Figure 5 (A) shows the OFF state where neither of both push-buttons 2 is depressed. When the right-hand push-button 2 is pushed down a short distance (i.e., a first step) as shown in Figure 5 (B), the lever 13 tilts to the right about its fulcrum 13a. In this state, depression of the left-hand push-button is impossible because the fulcrum 13a is in abutment with the pin 12. Thus, the left-hand push-button 2 is in a locked state.

When the right-hand push-button 2 is pushed down further (a second step), it reaches the position shown by Figure 5 (C). The fulcrum 13a of the lever 13 is pressed more strongly against the pin 12, and the pin 12 rotates causing the fulcrum 13a to swing to the left and to make contact with the pin 12 at a position lower than the top surface of the pin 12. Thus the fulcrum 13a is kept in contact with and is held by the pin 12, so that the lever 13 is checked from pivotal movement and is in a locked state.

When the push-button is released, it reverts to its original position automatically due to the biasing force of the spring 5 acting on the push-button. At this time, the lever 13 also reverts to its original position shown in Figure 5 (A).

In the case of the left-hand push-button the operational action is opposite to that mentioned above, and the right-hand push-button is locked in first and second-step actuating movements.

Thus, the preferred embodiment is simple in construction and makes it possible to carry out interlocking of the push-buttons in each of two stages of operation.

Claims

1. A push-button switch device comprising a switch body (1) in which two push-buttons (2) are mounted side by side for guided sliding movement parallel to each other, an interlocking lever (13) extending between the push-buttons (2) and having its opposite ends in engagement with the two push-buttons (2) respectively and a pin (12) mounted in the switch body (1) and extending transversely of the interlocking lever (13), the interlocking lever (13) having at its side further from the tops of the push-buttons (2) and midway between its ends a projection (13a) which is held by and co-operates with the pin (12) so as to enable pivotal movement of the interlocking lever (13) whereby when either one of the two push-buttons (2) is depressed initially the interlocking lever (13) is caused to swivel about its end engaged with the other of the two push-buttons (2) so that the projection (13a) moves round the side of the pin (12) remote from the push-button (2) being depressed characterised in that the interlocking lever (13) is located in and guided by a channel (10, 2c) extending between the two push-buttons (2) which are mounted in the switch body (1) for two-stage operation and the interlocking lever (13) is held by and co-operates with the pin (12) so as also to be capable of lateral movement parallel to and within the channel (10, 2c) whereby when the push-button is further depressed in a second stage the entire lever (13) is caused to move laterally within the channel (10, 2c) with the opposite ends of the lever (13) respectively moving towards and away from end regions (2c) of the channel (10) thereby enabling the projection (13a) to move further round the side of the pin (12) remote from the push-button (2) being depressed the engagement between the pin (12) and the lever (13) thereby preventing the other of the two push-buttons (2) from being depressed in both the first and second stages.

2. A switch device as claimed in claim 1, characterised in that said pin (12) is capable of rotational movement about its lengthwise axis in its mounting in the switch body (1).

Patentansprüche

1. Eine Druckknopfschaltvorrichtung, die einen Schalterkörper (1) aufweist, in dem zwei Druckknöpfe (2) nebeneinander montiert sind, um parallel zueinander eine geführte, Gleitbewegung auszuführen, einen Verriegelungshebel (13), der sich zwischen den Druckknöpfen (2) erstreckt und dessen gegenüberliegenden Enden mit den zwei Druckknöpfen (2) bzw. einem Stift (12) in Eingriff stehen, der im Schalterkörper (1) mon-
tiert ist und der sich quer zum Verriegelungshebel (13) erstreckt, wobei der Verrie-gelungshebel (13) auf der Seite, die weiter von den Oberseiten der Druckknöpfe (2) entfernt ist und auf halbem Wege zwischen seinen Enden einen Vorsprung (13a) aufweist, der vom Stift (12) gehalten wird und mit ihm zusammenarbeitet, um so eine Kippbewegung des Verriegelungshebels (13) zu ermöglichen, wodurch beim Niederdrücken von einem der beiden Druckknöpfe (2) bewirkt wird, daß der Verriegelungshebel (13) zunächst um das, mit dem anderen der zwei Druckknöpfe (2) im Eingriff stehenden, Ende geschwenkt wird, so daß sich der Vorsprung (13a) um die Seite des Stifts (12) bewegt, die vom Druckknopf (2), der soeben gedrückt wird, entfernt liegt, dadurch gekennzeichnet, daß sich der Verriegelungshebel (13) in einem Kanal (10, 2c) befindet und in diesemgeführt wird, wobei sich dieser zwischen den zwei Druckknöpfe (2) erstreckt, die im Schalterkörper (1) für zweistufige Funktion montiert sind und wobei der Verriegelungshebel (13) vom Stift (12) gehalten wird und mit diesem zusammenarbeitet, damit er auch in der Lage ist eine laterale Bewegung parallel zu und innerhalb des Kanals (10, 2c) auszuführen wodurch, wenn der Druckknopf in einer zweiten Stufe weiter niedergedrückt wird, verursacht wird, daß sich der ganze Hebel (13) innerhalb des Kanals (10, 2c) lateral bewegt, wobei sich die gegenüberliegenden Enden des Hebels (13) in Richtung der Endregionen (2c) des Kanals (10) bewegen bzw. sich von diesen entfernen, dadurch wird dem Vorsprung (13a) ermöglicht sich weiter um die Seite des Stifts (12) herum zu bewegen, die vom Druckknopf (2) entfernt liegt, der soeben gedrückt wird und der Eingriff zwischen dem Stift (12) und dem Hebel (13) verhindert dadurch, daß der andere der beiden Druckknöpfe (2) in beiden, d.h. den ersten und zweiten, Stufen niedergedrückt wird.

2. Eine Schaltervorrichtung laut Anspruch 1, dadurch gekennzeich-net, daß der besagte Stift (12) in der Lage ist eine Drehbewegung um seine Längsachse in seiner Montierung im Schalterkör-per (1) auszuführen.

Revendications

1. Un dispositif d’interrupteur à bouton-poussoir comportant un corps d’interrupteur (1) dans lequel deux boutons-poussoirs (2) sont installés côte à côte pour permettre un mouvement coulissant guidé parallèle l’un à l’autre, un levier d’in-terverrouillage (13) rejoignant les boutons-pousoirs (2) ses extrémités opposées s’engageant dans chacun des deux boutons-poussoirs (2) et une broche (12) installée dans le corps de l’in-terrupteur (1) étendue à la transversale du levier d’interverrouillage (13), le levier d’interverrouilla-gge ayant, sur son côté le plus éloigné des têtes des boutons-poussoirs (2) et à mi-chemin entre ses extrémités, une protubérance (13a) maintene nue par, et en interaction avec, la broche (12) afin de permettre un pivotement du levier d’inter-verrouillage (13) permettant au levier d’inter-verrouillage (13) de pivoter sur son extrémité en-gagée avec l’autre bouton-poussoir (2) au premier appui d’un des deux boutons-poussoirs (2) afin que la protubérance (13a) passe du côté de la broche (12) éloigné du bouton-poussoir (2) en-foncé, ceci étant caractérisé par le fait que le le-vier d’interverrouillage (13) est situé dans et gui-dé par un passage (10, 2c) qui se prolonge entre les deux boutons-poussoirs (2) eux-mêmes mon-tés dans le corps de l’interrupteur (1) pour assu-rer un fonctionnement à deux niveaux et que le le-vier d’interverrouillage (13) est fixé par, et en in-teraction avec, la broche (12) pour qu’il puisse se déplacer latéralement en parallèle avec le, et à l’intérieur du, passage (10, 2c), ceci permettant au levier entier (13) de se déplacer latéralement à l’intérieur du passage quand le bouton-poussoir (2) est enfoncé encore plus vers un deuxième ni-veau, les extrémités opposées du levier (13) s’éloignant et se rapprochant respectivement des zones d’extrémité (2c) du passage (10) permet-tant ainsi à la protubérance (13a) de continuer à passer du côté de la broche (12) éloigné du bou-ton-poussoir (2) enfoncé, l’engagement entre la broche (12) et le levier (13) empêchant ainsi d’en-foncer l’autre bouton-poussoir (2) au premier comme au deuxième niveaux.

2. Un dispositif d’interrupteur tel que revendiqué dans la revendication 1, caractérisé par le fait que ladite broche (12) peut effectuer un mouvement rotatif autour de son axe longitudinal dans sa fixation dans le corps de l’interrupteur (1).