NEW EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the opposition decision: 24.04.2002 Bulletin 2002/17

(45) Mention of the grant of the patent: 18.08.1993 Bulletin 1993/33

(21) Application number: 90102682.3

(22) Date of filing: 12.02.1990

(54) **System of vegetation strips for protection of slopes against erosion**

Begrünungsbandsystem zum Erosionsschutz von Böschungen

Système de bandes de végétation pour la protection de talus contre l’érosion

(84) Designated Contracting States: AT CH DE ES FR IT LI

(30) Priority: 06.03.1989 YU 46989

(43) Date of publication of application: 12.09.1990 Bulletin 1990/37

(73) Proprietor: Subic, Franc, Dipl.-Ing. 61000 Ljubljana (SI)

(72) Inventor: Subic, Franc, Dipl.-Ing. 61000 Ljubljana (SI)

(74) Representative: Hofinger, Engelbert, Dr.Dr. et al Patentanwälte Torggler & Hofinger Wilhelm-Greil-Strasse 16 6020 Innsbruck (AT)

(56) References cited:

DE-A- 3 328 991 FR-A- 2 566 811

YU-A- 159 584
Description

[0001] The subject matter of the invention is a system of vegetation strips for protection of slopes against erosion. This kind of protection is used with slopes with inclines ranging from 45° to 65°. The slope and also the space under the slope are efficiently protected against erosion and erosion materials. The vegetation strip system completely prevents erosion of the ground.

[0002] The technical problem, which is successfully solved with the present invention, is to retain erosion material on the slope, especially slopes with inclines exceeding 45°.

[0003] The known protections of slopes with inclines ranging from 45° to 65° are primarily made with dead materials - concrete walls etc. There also exist protective covers consisting of living vegetative material as active component of protection and wire netting as incomplete protection.

[0004] The drawback of protection by means of dead materials, e.g. concrete wall, is limited life because the material used cannot regenerate. The implementation is a technical problem, primarily because of troubles caused by mountain water, the height of protection is limited statically. It is also impossible to achieve that the protection adheres to the mainly uneven configuration of the slope, and additional space is needed at the foot of the slope for the foundation. This kind of protection is also ecologically inappropriate.

[0005] Among the protections applying living material there are also the so-called slope mesh and slope support. Slope meshes are of several types, depending on the inclination and the height of the slope. The basic principle of the mesh is to anchor the wooden or concrete mesh to the slope and then put earth into the openings of the mesh. The great volume of the filling material which covers the whole slope becomes a statical problem at a certain slope height. For that reason this kind of protection is appropriate for slopes with limited inclines. Wooden meshes are usually designed for slopes with inclines not exceeding 45°, although there exist special types intended for steeper slopes (intensive filling of vegetative material results in an increase of the angle of internal friction of the filling material), but this kind of protection is limited to heights ranging between 3 and 5 metres with slopes having an incline of 65°.

[0006] The concrete type mesh has similar disadvantages and usually even worse. This type is used for consolidation of the ground (slides) rather than for surface protection of steep excavated slopes.

[0007] A great disadvantage of all slope meshes is that they do not adhere well to uneven configurations, so their use is limited.

[0008] Slope support is used for protection of steep overhanging points but its application is also very limited.

[0009] Recently, slopes have been protected with wire or plastic netting. The protection is perfect only in slopes with small inclinations - only exceptionally in even slopes with inclinations of 60° where the wire netting closely adheres to the slope, where there are no water sources and no large oscillations of daily temperatures (northern side) and where the slope does not contain moisture or is subject to freeze. In complex cases the wire netting is fixed by rock bolts to prevent separation of the netting and to hold the erosion material on the slope. However, the wash away of - especially - small fractions from the slope and constant movement of erosion material under the netting prevents the vegetation cover from developing. On soft slopes, the rock bolts get loose under the pressure of the material accumulated under the netting, so this material slides down the slope, devastating the already growing protection cover of the slope.

[0011] Also known are vegetation cores for protection of slopes against erosion described in the Yugoslav patent application P 1595/84. Here, the vegetation core is made as follows: Wire netting is spread on the ground. At appropriate distances, pieces of wire netting are fastened to it. The upper edges of the wire nettings are fixed with wire to the wire netting below, making pockets which are filled with earth, turf or other vegetation material. Then, shrubs and small trees are planted into it, forming vegetation cores retaining erosion material.

[0012] By such vegetation cores the slope is not perfectly protected against erosion in the initial period of vegetation because the filling material moves at points where there are no vegetation cores.

[0013] The vegetation strip system for protection of slopes against erosion described in the present invention is made with wire netting strips fixed slantwise (preferably at angles ranging between 20° and 40° to the base wire netting).

[0014] The vegetation strip system under the present invention will be described with an example and with figures showing the following:

Fig. 1 Diagrammatic presentation of base wire netting 1 with fixed wire netting strips 2 under the invention.

Fig. 2 Diagrammatic presentation of the complete system of vegetation strips for protection of slopes against erosion, as designed by the invention.

[0015] The vegetation strip system prevents erosion in the area around and along the vegetation strips, so making it possible for the vegetation cover to develop full growth. The base wire netting 1 is shown in Fig.1.
On the base wire netting 1 whose mesh is shown in detail "a", wire netting strips 2 are fixed at similar distances (between 1 to 3 m). The mesh of the wire netting 2 is shown in detail "b".

Wire netting strip 2 is fixed to the base wire netting 1 with a wire 3 which is twisted around the base netting 1 and the bottom edge of the wire netting strip 2. Fixed on the upper edge of the wire netting strip 2 are wires which are fixed to the base netting 1 at points 4. The above structure can be prefabricated, made on site or combinedly.

The vegetation strip system under the invention is installed as follows:

Base wire netting 1 is spread on the slope and fastened at the top of the slope. In case of uneven slope configuration base wire netting 1 must be fixed by rock bolts also at the uneven points to adhere to the ground. Individual strips of base wire netting 1 are also fixed to each other, so the slope is completely covered with base wire netting 1, with the bottom edge of wire netting 2 fixed to the base wire netting 1 with wire 3.

"According to the invention it is provided that the base wire netting 1 comprises strips with longitudinal edges extending in the direction from the top to the bottom of the slope, the wire netting strip 2 extending continuously from the left longitudinal edge to the right longitudinal edge of the base wire netting strip, the individual strips of the base wire netting being fixed to each other. A preferred embodiment is characterized in that the wire netting strips 2 are arranged on each base wire netting strips in such a manner that a continuous channel extending over several adjacent base wire netting strips is formed.

As shown in Fig. 1 and Fig. 2, the strips of wire netting 2 are fixed to the base wire netting 1 slantwise, under an angle of 20° to 60° to the bottom line of the slope. Such installation of wire netting strips 2 provides better adherence to the uneven surface of the slope (usually these are furrows going down the slope in the direction of the roadway) and essentially easier performance of all subsequent works on the slope (each strip of wire netting 2 ends at the bottom of the slope).

Then, upper edges of wire netting strips 2 are fixed with wire to the points 4 on the base wire netting 1. The channel so formed is set apart with special spacers and then filled with earth, turf or other similar material. If necessary, the front side of this channel is dosed with synthetic material, jute or similar material to prevent the wash away of earth. This procedure starts at the top of the slope and continues slowly downwards to the bottom. The vegetation strip is completed.

Small trees and shrubs are then planted or seeded into the vegetation strips to ensure continued development of vegetation which will protect the slope.

With this protection system, the slope is exposed only to such loads (of earth or other filling material) as are absolutely necessary for further development of the vegetation strips. Vegetation strips hold erosion material, whereas the filling material is held first by the force of friction between the base wire netting 1 and the surface of the slope and later by the roots of the plants.

Due to these advantages, slopes with inclines ranging from 45° to 65° can be protected with no height limit.

One further advantage is the tight adherence of the protection system to the configuration of any slope. Overhanging and protuberant points can be covered by corresponding installation of the wire netting strips.

Planting or seeding does not depend on the vegetation period as it is the case with the "slope mesh"; this operation can be done subsequently. In addition, this slope protection system has unlimited life and meets environmental requirements.

Claims

1. A system for a protection of slopes against erosion comprising a base wire netting (1) spread over the slope and wire netting strips (2), the bottom edges of which are fixed to the base wire netting (1), while the upper edges of the wire netting strips (2) are fixed to points (4) on the base wire netting (1) by means of wires so that each wire netting strip (2) forms a channel to be filled with earth, turf or other similar material, characterized in that the base wire netting (1) comprises strips with longitudinal edges extending in the direction from the top to the bottom of the slope, the wire netting strip (2) extending continuously from the left longitudinal edge to the right longitudinal edge of the base wire netting strip, and wherein the individual strips of the base wire netting (1) are fixed to each other.

2. The system according to claim 1, characterized in that the wire netting strips (2) are fixed on the base wire netting (1) slantwise under an angle ranging between 20° and 40°.

3. The system according to claim 1 or 2, characterized in that the wire netting strips (2) are arranged on each base wire netting strip (1) in such a manner that a continuous channel extending over several adjacent base wire netting strips (1) is formed.

Patentansprüche

1. System zum Schutz von Böschungen gegen Erosion mit einem über die Böschung ausgebreiteten Basisdrahtnetz (1) und Drehnetzstreifen (2), deren untere Ränder am Basisdrahtnetz (1) befestigt sind, während die oberen Ränder der Drahtnetzstreifen
(2) mit Drähten an Punkten (4) auf dem Basisdrahtnetz (1) fixiert sind, so dass jeder Drahtnetzstreifen (2) einen mit Erde, Rasen oder einem anderen ähnlichen Material füllbaren Kanal bildet, **dadurch gekennzeichnet, dass** das Basisdrahtnetz (1) Streifen mit Längsrändern aufweist, die sich in Richtung vom oberen Ende zum unteren Ende der Böschung erstrecken, wobei sich der Drahtnetzstreifen (2) durchgehend vom linken Längsrand zum rechten Längsrand des Basisdrahtnetzstreifens erstreckt und worin die einzelnen Streifen des Basisdrahtnetzes (1) aneinander befestigt sind.

2. **System nach Anspruch 1, dadurch gekennzeichnet, dass** die Drahtnetzstreifen (2) auf dem Basisdrahtnetz (1) schräg unter einem Winkel zwischen 20° und 40° befestigt sind.

3. **System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass** die Drahtnetzstreifen (2) auf jedem Streifen des Basisdrahtnetzes (1) so befestigt sind, dass ein durchgehender Kanal gebildet wird, der sich über mehrere benachbarte Streifen des Basisdrahtnetzes (1) erstreckt.

Revendications

1. Système pour la protection de talus contre l’érosion comprenant un treillis métallique de base (1) étalé sur le talus et des bandes de treillis métallique (2) dont les bords inférieurs sont fixés au treillis métallique de base (1), alors que les bords supérieurs des bandes des treillis métallique (2) sont fixés à des points (4) sur le treillis métallique de base (1) au moyen de fils métalliques de façon à ce que chaque bande de treillis métallique (2) forme un canal à remplir de terre, de gazon ou d’un matériau de ce type, **caractérisé en ce que** le treillis métallique de base (1) comprend des bandes présentant des bords longitudinaux devant être orientés du haut vers le bas du talus, la bande de treillis métallique (2) s’étendant en continu du bord longitudinal gauche au bord longitudinal droit du treillis métallique de base et les bandes individuelles du treillis métallique de base (1) sont fixées les unes aux autres.

2. Système selon la revendication 1, **caractérisé en ce que** les bandes de treillis métallique (2) sont fixées au treillis métallique de base (1) de façon à être inclinées d’un angle compris entre 20° et 40°.

3. Système selon la revendication 1 ou 2, **caractérisé en ce que** les bandes de treillis métallique (2) sont disposées sur chaque bande de treillis métallique de base (1) de manière à former un canal continu s’étendant sur plusieurs bandes de treillis métallique de base (1) adjacentes.