EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 23.03.94
Int. Cl.: F16H 1/445

Application number: 89312212.7
Date of filing: 24.11.89

Differential clutch and lever actuation system therefor.

Priority: 12.12.88 US 282716
Date of publication of application:
04.07.90 Bulletin 90/27
Publication of the grant of the patent:
23.03.94 Bulletin 94/12

Designated Contracting States:
DE FR GB IT

References cited:
EP-A- 0 090 944
DE-A- 3 813 305
GB-A- 1 001 589
EP-A- 0 283 389
DE-A- 3 899 787
US-A- 4 679 463

Proprietor: EATON CORPORATION
Eaton Center
Cleveland, Ohio 44114(US)

Inventor: Goscinski, Edward John, Jr.
12276 Beadle Lake Road
Battle Creek Michigan 49017(US)

Representative: Schwan, Gerhard, Dipl.-Ing.
Elfenstrasse 32
D-81739 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

BACKGROUND OF THE DISCLOSURE

The present invention relates to limited slip differentials, and more particularly, to such differentials of the type having means for retarding differentiating action, and actuating means for actuating the retarding means.

Limited slip differentials of the type to which the present invention relates typically include a gear case defining a gear chamber and disposed therein a differential gear set including at least one pinion gear and a pair of bevel side gears. A clutch pack is typically disposed between each of the side gears and the adjacent surface of the gear case, such that the clutch pack is operable to retard rotation between the gear case and the side gears.

In many limited slip and/or locking differentials, some sort of actuating mechanism is provided to actuate or move the clutch pack to its engaged condition. One of the current trends in the field of vehicle traction modifiers involves the desire to be able to actuate the clutch packs in response to an external signal, rather than in response to the sensing of a predetermined speed differential as has typically been the case in the prior art.

A typical prior art limited slip differential, actuated in response to an external fluid pressure signal, is illustrated in US-A-2 991 664. Although it is considered possible to produce a somewhat satisfactory limited slip differential in accordance with the teachings of the prior art, there are distinct disadvantages of the prior art design which limit its commercial desirability. In the cited prior art, the clutch pack is actuated by a pressure-actuated piston, disposed adjacent the end of the clutch pack. Therefore, it is necessary to communicate the external fluid pressure signal into the differential gear case, this requiring rotating seals. In addition, the hydraulic pressure acting on the clutch pack is acting in opposition to the gear reaction forces which inherently occur during differentiation. The result is a need for an even greater fluid pressure, further increasing the likelihood of fluid leakage.

Another disadvantage is that most limited slip differentials would need major redesign of the gear case and associated structure in order to utilize an actuation means of the general type shown in the cited reference.

Another limited slip differential gear mechanism is known from EP-A-0 090 944 and includes a gear case defining a gear chamber; differential gear means disposed in the gear chamber, the differential gear means including at least one pinion gear, and a pair of bevel side gears in meshing engagement with the pinion gear; clutch means operable between a relatively disengaged condition and a relatively engaged condition, and effective to retard relative rotation between the gear case and each of the side gears; one engagement means operable to move the clutch means toward the relatively engaged condition; the clutch means comprising at least a pair of clutching surfaces disposed to be engaged in response to axial movement of the one engagement means toward the clutch means; and actuating means for actuating the one engagement means, the actuating means comprising a displacement mechanism operable to achieve an output displacement in response to an external input signal. The actuating means includes input means operable in response to the output displacement of the displacement mechanism to provide an axial input having an actuating travel X and an actuating force F. The actuating means further includes fulcrum means, and lever means operatively associated with the fulcrum means and with the input means to transmit the axial input into the axial movement of the one engagement means. The fulcrum means and the lever means are configured such that the axial movement of the one engagement means has an actuating travel substantially less than the actuating travel X, and an actuating force substantially greater than the actuating force F. The clutch means is actuated by an axially outward displacement aiding the normal biasing force exerted by the side gears as a result of gear reaction forces. In this prior gear mechanism the actuating means includes a hydraulic ring which is acting on the outer race of a bearing the inner race of which engages the inner peripheral edge of a cup spring. The outer peripheral edge of this cup spring rests on a support point of an adjusting nut which is attached to the differential gear case. The cup spring, radially inwardly of the support point, engages an abutment of an axially movable pressure ring. This pressure ring is acting through axial pins on a pressure plate which in turn engages the clutch. If in this prior gear mechanism an axial force F is needed to engage the clutch, then the force F must be transmitted through the pressure ring and the axial pins. As a result, there is also an axial force F applied to the bearing set disposed at the end of the differential gear case opposite differential gear case end supporting the pressure ring. This requires a large, expensive bearing and normally is not acceptable to the vehicle manufacturer.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide an improved limited slip differential of the type in which the clutch pack is actuated...
in response to an external signal, wherein the differential overcomes the afore-mentioned problems associated with typical prior art differentials.

More specifically, it is an object of the present invention to provide an improved limited slip differential in which the clutch actuating means not only exerts an actuating force on the clutch packs, aiding the normal biasing force exerted by each of the side gears as a result of gear reaction forces, and in which the actuating force on the clutch packs is substantially greater than the force represented by the external signal, but in which additionally the axial force applied to the bearing arrangement rotatably supporting the differential gear case is substantially reduced.

The above and other objects of the present invention are accomplished by the provision of an improved differential gear mechanism of the type including a gear case defining a gear chamber; differential gear means disposed in said gear chamber, said differential gear means including at least one pinion gear, and a pair of bevel side gears in meshing engagement with said pinion gear; clutch means operable between a relatively disengaged condition and a relatively engaged condition, and effective to retard relative rotation between said gear case and each of said side gears; one engagement means operable to move said clutch means toward said relatively engaged condition; said clutch means comprising at least a pair of clutching surfaces disposed to be engaged in response to axial movement of said one engagement means toward said clutch means; and actuating means for actuating said one engagement means, said actuating means comprising a displacement mechanism operable to achieve an output displacement in response to an external input signal;

(a) said actuating means including input means operable in response to said output displacement of said displacement mechanism to provide an axial input having an actuating travel X and an actuating force F;
(b) said actuating means further including fulcrum means, and lever means operatively associated with said fulcrum means and with said input means to transmit said axial input into said axial movement of one said engagement means;
(c) said fulcrum means and said lever means being configured such that said axial movement of said one engagement means has an actuating travel substantially less than said actuating travel X, and an actuating force substantially greater than said actuating force F; and
(d) said clutch means being actuated by an axially outward displacement aiding the normal biasing force exerted by said side gears as a result of gear reaction forces.

classified by
said fulcrum means comprising a reaction member operably associated with one of said side gears, and said lever means comprising an elongated lever member in engagement, adjacent an inner end, with said reaction member, and in engagement, adjacent an outer end, with said input means, said reaction member and said lever member being disposed to transmit said actuating force through said side gears.

In the gear mechanism of the subject invention a lever action is obtained which provides for only a part of the clutch actuation force being transmitted to be bearing arrangement of the differential gear case.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an axial cross-section of a limited slip differential of the type with which the present invention may be utilized.

Fig. 2 is an enlarged, fragmentary cross-section, similar to Fig. 1, illustrating part of the clutch actuating mechanism of the present invention.

Fig. 3 is a transverse cross-section, taken on line 3-3 of Fig. 1, illustrating another part of the clutch actuating mechanism of the present invention.

Figs. 4 and 5 are somewhat schematic views taken generally along line 4-4 of Fig. 3, illustrating the lever and fulcrum actuating mechanism of the invention, in the disengaged and engaged positions, respectively.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to the drawings which are not intended to limit the present invention, Fig. 1 illustrates a limited slip differential of the type which may utilize the present invention. Fig. 1 illustrates a fragmentary view of a stationary, outer differential housing 11, which rotatably supports a shaft (not shown) on which is mounted an input pinion gear 13, driven by the vehicle driveline. The pinion gear 13 is in toothed, driving engagement with a ring gear 15, which is attached in any suitable manner to a differential gear case, generally designated 17.

The gear case 17 defines a gear chamber, generally designated 19, and disposed therein is a differential gear set, preferably including a plurality of planet pinion gears 21 (only one of which is shown in Fig. 1), rotatably mounted on a pinion shaft 23, which is secured to the gear case 17 by means of a pin 25.

The planet pinion gears 21 comprise the input gears of the differential gear set, and are in meshing engagement with a pair of side gears 27 and
29, which comprises the outputs of the differential gear set. The side gears 27 and 29 are splined to a pair of axle shafts 31 and 33, respectively. The gear case 17 includes a pair of annular hub portions 35 and 37 on which are mounted the inner races of bearing sets 39 and 41, respectively, which are used to provide rotational support of the gear case 17 relative to the outer differential housing 11.

During normal, straight-ahead operation of the vehicle, no differentiating action occurs between the left and right axle shafts 31 and 33, and the pinion gears 21 do not rotate relative to the pinion shaft 23. Therefore, the gear case 17, the pinions 21, the side gears 27 and 29, and the axle shafts 31 and 33 all rotate about the axis of the shaft 31 and 33, as a solid unit.

Under certain operating conditions, such as when the vehicle is turning, or a slight difference in tire size exists, it is permissible for a certain amount of differentiating action to occur between the side gears 27 and 29. However, it is desirable to be able to retard the relative rotation between the gear case 17 and the side gears 27 and 29, to prevent excessive differentiating action which, under certain operating conditions, could result in a spin-out of one of the axle shafts, and a loss of driving traction.

In order to retard differentiating action, the differential gear mechanism is provided with a retarding means for retarding differentiating action, and an actuating means for actuating the retarding means. In the subject embodiment, the retarding means comprises a clutch pack, generally designated 43, disposed between the side gear 27 and the adjacent surface of the gear case 17, and a clutch pack, generally designated 45, disposed between the side gear 29 and the adjacent surface of the gear case 17. Furthermore, in the subject embodiment, each of the clutch packs is of the multiple disc type and includes a plurality of clutch discs 47 which are splined to the side gears 27 and 29, and interdigitated therewith, a plurality of clutch discs 49 which are rotationally fixed relative to the gear case 17 by an "ear" arrangement, generally designated 51, of the type which is well known in the art.

Although the invention is being described in connection with an embodiment having a pair of clutch packs 43 and 45, those skilled in the art will understand that the invention is not so limited, and could be utilized advantageously in a differential mechanism having only a single clutch pack. Furthermore, the invention is being illustrated by means of an embodiment wherein the clutch packs are disposed between the side gears and the gear case 17, such that normal gear reaction forces, during differentation, exert a biasing force axially outward (i.e., toward the gear case 17) on the clutch packs. However, the invention is not so limited, and may be used advantageously in a differential mechanism in which the clutch packs are generally operatively associated with the side gears, but are not necessarily biased toward engagement by gear reaction forces transmitted to the side gears.

Actuation of Clutch Packs

All of the structure described up to this point is well known in the art in terms of construction details and mode of operation. The present invention, which will now be described in some detail, is directed to an improved actuating means for actuating the clutch packs 43 and 45 to retard differentiating action. As was described in the background of the specification, one of the current trends in the field of vehicle traction modifiers is to be able to operate a traction modifier in the "limited slip" or "locking" mode in response to an external signal, typically, microprocessor controlled. Therefore, the present invention provides an improved differential gear mechanism wherein the clutch packs 43 and 45 can be actuated to an engaged condition in response to an external signal, which will be described herein as a fluid pressure signal, by way of example only.

Referring now to FIG. 1, in conjunction with FIG. 3, the differential of the present invention includes a load plate 53, disposed in engagement with the axially-inner face of the side gear 27, and in addition, a load plate 55, in engagement with the axially-inner face of the side gear 29. As may best be seen in FIG. 3, each of the load plates (only load plate 53 is shown in FIG. 3) has an overall shape which is annular, but with two diametrically-opposed portions removed to accommodate the pinion gears 21. In FIG. 3, the pinion shaft 23 has been removed to simplify viewing of the load plate 53.

Referring again to FIG. 1, the differential gear mechanism includes a fluid pressure actuated displacement mechanism, generally designated 57, which is operatively associated with both the stationary outer differential housing 11, and the rotating gear case 17. Referring now primarily to FIG. 2, the mechanism 57 comprises an annular cylinder member 59, and an annular piston member 61, received within the cylinder 59, for relative axial displacement therein. It is important in utilizing the present invention that the assembly of the cylinder 59 and piston 61 is rotationally stationary, i.e., neither is permitted to rotate. The annular cylinder member 59 includes an inlet fitting portion 63 which, preferably, is formed integrally with the cylinder 59. The inlet fitting portion 63 defines a fluid
passage which is in open communication with an annular chamber 65, cooperatively defined by the cylinder 59 and piston 61.

Disposed within the fitting portion 63 is a short, cylindrical fluid coupling member 67, the left end of which is received within an opening defined by the outer differential housing 11. Disposed adjacent to the left end of the coupling member 67, the housing 11 defines a threaded fluid port 69, adapted for connection to an external fluid pressure signal line, illustrated schematically at 71.

Referring still to FIG. 2, in conjunction with FIG. 1, the mechanism 57 further includes an annular bearing set 73 disposed to the right of the piston 61, and an annular thrust plate 75, disposed to the right of the bearing set 73.

As noted previously the annular cylinder member 59 is rotationally stationary, i.e., it is fixed to the outer housing 11. However, in the subject embodiment, the cylinder 59 extends axially into an annular recess 77 defined by the rotating gear case 17. The gear case 17 defines a plurality of axially-extending bores 79 (only one of which is shown in each of FIGS. 1 and 2). Disposed within each of the bores 79 is a rod-like input member 81, the left end of which, in FIGS. 1 and 2, is seated against the righthand surface of the thrust plate 75. As may be seen in FIG. 3, the subject embodiment of the invention includes two of the bores 79 and input members 81.

Referring now primarily to FIGS. 3 and 4, in conjunction with FIG. 1, the lever and fulcrum portion of the actuating mechanism will be described. The end of the input member 81 which is opposite the displacement mechanism 57 (i.e., right end in FIG. 1) is received within an opening 83, defined by the outer end of a lever member 85. As may best be seen in FIG. 3, there are two of the lever members 85 in the subject embodiment, and only one will be described in detail, it being understood that the subsequent description applies equally to both of the members 85.

Referring now primarily to FIG. 4, there is a reaction member 87 attached, by means of a pair of pins 89 (see FIG. 3), to the load plate 53. Similarly, a fulcrum member 91 is attached, by means of a pair of pins 93 (only one of which is shown in FIG. 4), to the load plate 55. In addition, a pair of pins 95 is received within openings in the load plate 53, and are disposed radially-outwardly of the lever members 85 to limit radially-outward movement of the members 85, as a result of centrifugal force during rotation of the differential mechanism. Of course, radially-inward movement of the lever members 85 from the position shown in FIG. 3 is prevented by the presence of the pinion shaft 23.

The lever member 85 defines a recessed portion 97 (see FIG. 4), within which is disposed the fulcrum member 91. In addition, the "inner" end of the lever member 85 (left end in FIG. 4) engages the reaction member 87. In the position shown in FIG. 4, with no substantial axial input being provided by the input members 81, the lever members 85 are in what may be considered a neutral or "minimum bias" position, as will be described subsequently.

Referring now to FIG. 5, the input members 81 are now shown in a position providing an axial input to the fulcrum and lever arrangement described previously. In the position shown in FIG. 5, the outer end of the lever member 85 has been displaced axially (down in FIG. 5), with the result that the lever member 85 is pivoted about the fulcrum member 91. Typically, the distance from the fulcrum member 91 to the point of contact between the lever member 85 and the reaction member 87 would be referred to as a "lever arm". As the input member 81 moves axially, moving the outer end of the lever member 85, and causing it to pivot about the fulcrum member 91, an axial force is exerted on the reaction member 87 and on the fulcrum member 91, these axial forces comprising actuating forces which are then transmitted axially to the load plates 53 and 55, respectively, then through the side gears 27 and 29, respectively, to the clutch packs 43 and 45, respectively.

As is well known to those skilled in the art, there is a known relationship between the movement of the input member 81 and the movements of the reaction member 87 and the fulcrum member 91. This relationship is based upon the relationship between the lengths of the various lever arms involved. As may be seen in FIG. 5, the length of the lever arm from the axis of the input member 81 to the contact point of the reaction member 87 is designated "L1", while the length of the lever arm from the point of contact with the reaction member 87 to the pivot point defined by the fulcrum member 91 is designated "L2". In the subject embodiment, by way of example only, the ratio of L1 to L2 is approximately 4:1. Therefore, and still by way of example only, it will be assumed that an external fluid pressure signal is communicated into the annular chamber 65, which is sufficient to displace the piston 61 and provide an axial input, by means of the input members 81, the axial input having an actuating travel of X cm (inches), and an actuating force of F Newton (pounds) (see FIG. 5). As a result of the fulcrum and lever mechanism of the present invention, there is transmitted to each of the clutch packs 43 and 45, a clutch-actuating movement having a travel of approximately (X divided by 4) cm (inches), as an average, and an actuating force averaging approximately 4F Newton.
(pounds). It will be understood by those skilled in the art that the axial forces exerted by the lever member 85 on the reaction member 87 and fulcrum member 91 will be somewhat different, but for purposes of the present invention will be considered to be approximately the same. Therefore, it is one important aspect of the present invention that the actuating input from the displacement mechanism 57 may be translated into a clutch-actuating movement having substantially less travel, but a greatly multiplied actuating force.

It is another important aspect of the present invention that the preload biasing springs normally included in limited slip differentials of this type are no longer necessary, thereby saving not only the expense of the springs, but the expense and difficulty of the assembly process. With the present invention, maintenance of a relatively small "standby" pressure in the external signal line 71 can result in sufficient axial preload force on the clutch packs. An additional, related advantage of the invention is that the typical preload springs are capable of exerting only the single, predetermined preload force, whereas even the "minimum bias" or the preload which would normally be associated with a "relatively disengaged" condition of the clutch pack, can be varied, by varying the external signal 71.

Among the primary advantages associated specifically with the fulcrum and lever arrangement of the present invention is that any desired actuating force, to actuate the clutches 43 and 45, can be achieved with a much lower level of fluid pressure in the annular chamber 65, thus substantially decreasing the likelihood of fluid leakage around the coupling member 67, or past the piston member 61. Also, because of the force multiplication of the fulcrum and lever arrangement, much less axial force is transmitted from the piston 61 through the bearing set 73 and thrust plate 75 to the input members 81, thus substantially increasing the life of those components, and the overall durability of the mechanism.

The use of the present invention also makes it possible to use a lower pressure, less expensive pump to supply the external signal 71, and/or allows the use of a smaller, cylinder 59 and piston 61 in situations where space available for the cylinder and piston is limited. The use of the present invention also reduces drag at the interface of the bearing set 73, which in turn, reduces heat generation and power losses which would occur (and be time greater in the subject embodiment) in the absence of the present invention. Finally, the use of the present invention also reduces axial reaction forces imposed on the differential housing 11 and gear case 17, which must be counteracted by the bearings 39 and 41, and the substantial reduction (75% in the subject embodiment) in the forces exerted on the mechanism 57 and input members 81 makes it possible for these components to be lighter, smaller, and less costly.

Claims

1. A differential gear mechanism including a gear case (17) defining a gear chamber (19); differential gear means disposed in said gear chamber, said differential gear means including at least one pinion gear (21), and a pair of bevel side gears (27, 29) in meshing engagement with said pinion gear; clutch means (43) operable between a relatively disengaged condition and a relatively engaged condition, and effective to retard relative rotation between said gear case and each of said side gears; one engagement means (53) operable to move said clutch means toward said relatively engaged condition; said clutch means comprising at least a pair of clutching surfaces (47, 49) disposed to be engaged in response to axial movement of said one engagement means toward said clutch means; and actuating means for actuating said one engagement means, said actuating means comprising a displacement mechanism (57) operable to achieve an output displacement in response to an external input signal (71);

(a) said actuating means including input means (81) operable in response to said output displacement of said displacement mechanism to provide an axial input having an actuating travel X and an actuating force F;
(b) said actuating means further including fulcrum means (91), and lever means (85) operatively associated with said fulcrum means and with said input means to transmit said axial input into said axial movement of one said engagement means;
(c) said fulcrum means and said lever means being configured such that said axial movement of said one engagement means has an actuating travel substantially less than said actuating travel X, and an actuating force substantially greater than said actuating force F; and
(d) said clutch means (43) being actuated by an axially outward displacement aiding the normal biasing displacement exerted by said side gears as a result of gear reaction forces;

characterized by said fulcrum means comprising a reaction member (87) operably associated with one (27) of said side gears, and said lever means com-
prising an elongated lever member (85) in engagement, adjacent an inner end, with said reaction member, and in engagement, adjacent an outer end, with said input means (81), said reaction member and said lever member being disposed to transmit said actuating force through said side gears (27, 29).

2. A differential gear mechanism as claimed in claim 1 characterized by said mechanism further comprising another clutch means (47) operable between a relatively disengaged condition and a relatively engaged condition, and effective to retard relative rotation between said gear case (17) and each of said side gears (27, 29), and further comprising another engagement means (55) operable to move said another clutch means toward said relatively engaged condition, said another clutch means comprising at least a pair of clutching surfaces (47, 49) disposed to be engaged in response to axial movement of said another engagement means toward said clutch means.

3. A differential gear mechanism as claimed in claim 2 characterized by said lever means (85) being operable to transmit said axial input into axial movement of said one engagement means (53) and said another engagement means (55), simultaneously.

4. A differential gear mechanism as claimed in claim 3 characterized by said fulcrum means (91) and said lever means (85) being configured such that said axial movement of said another engagement means (55) has an actuating travel and an actuating force approximately equal to said actuating travel and said actuating force of said one engagement means (53).

5. A differential gear mechanism as claimed in any one of the preceding claims characterized by said external input signal (71) comprising a fluid pressure signal, and said displacement mechanism (57) comprising a cylinder (59) and a piston (81) assembly.

6. A differential gear mechanism as claimed in claim 5 characterized by said cylinder and piston assembly being rotationally stationary, and said gear case (17) being rotatable relative to said cylinder and piston assembly.

7. A differential gear mechanism as claimed in claim 6 characterized by said mechanism further including a stationary, outer differential housing (11), and a fluid pressure coupling (67) interconnecting said outer housing and said cylinder and piston assembly, to communicate said external fluid pressure input signal (71) to said cylinder and piston assembly.

8. A differential gear mechanism as claimed in claim 6 characterized by said input means comprising an elongated, rod-like member (81) disposed to rotate with said gear case (17), and being axially moveable relative thereto, and further comprising bearing means (73) disposed between said piston (81) and said rod-like member (81).

9. A differential gear mechanism as claimed in any one of the preceding claims characterized by said reaction member (87) being disposed axially between said side gears (27, 29).

10. A differential gear mechanism as claimed in claim 2 characterized by said fulcrum means further comprising a fulcrum member (91) operatively associated with said other (29) of said side gears, and said elongated lever member (85) disposed axially between said reaction member and said fulcrum member, and in engagement therewith, said reaction member and said fulcrum member being transversely offset, and said lever member defining a pivot point, said lever member being pivotable about said pivot point in response to said axial input.

Patentansprüche

1. Differentialgetriebevorrichtung mit einem eine Getriebekammer (19) bildenden Getriebegehäuse (17); einer in der Getriebekammer untergebrachten Differentialgetriebeanordnung, die mindestens ein Ritzel (21) und zwei mit dem Ritzel in Klämmereinrichtung stehende Kegelseitenrädern (27, 29) aufweist; einer Kupplungsanordnung (43), die zwischen einem relativ ausgeführten Zustand und einem relativ eingerückten Zustand verstellbar ist und die für eine Verzögerung der Relativdrehung zwischen dem Getriebegehäuse und jedem der Seitenräder sorgt; einer Einrückanordnung (53), mittels deren die Kupplungsanordnung in Richtung auf den relativ eingerückten Zustand verstellbar ist; wobei die Kupplungsanordnung mindestens zwei Kupplungsflächen (47, 49) aufweist, die in Abhängigkeit von einer Axialbewegung der einen Einrückanordnung in Richtung auf die Kupplungsanordnung miteinander in Eingriff bringbar sind; und einer Betätigungsanordnung zum Betätigen der einen Einrückanordnung, wobei die Betätigungsanordnung einen Verstellmechanismus (57) aufweist, der für eine Ausgangsstellung auf-
grund eines externen Eingangssignals (71) sorgen kann;
a) wobei die Betätigungsanordnung eine Eingangsanordnung (81) aufweist, die aufgrund der Ausgangsverstellung des Verstellmechanismus für einen Axialeingang mit einem Betätigungsweg X und einer Betätigungskraft F sorgt;
b) wobei die Betätigungsanordnung ferner eine Gelenkpunktanordnung (91) und eine dieser und der Eingangsanordnung funktionsmäßig zugeordnete Hebelanordnung (85) aufweist, um den Axialeingang in die Axialbewegung der einen Einrückanordnung umzusetzen;
c) wobei die Gelenkpunktanordnung und die Hebelanordnung so ausgestaltet sind, daß die Axialbewegung der einen Einrückanordnung einen Betätigungsweg, der wesentlich kleiner als der Betätigungsweg X ist, und eine Betätigungskraft hat, die wesentlich größer als die Betätigungskraft F ist; und
d) wobei die Kupplungsanordnung (43) durch eine axial nach außen gerichtete Verstellung betätigt wird, welche die normale Vorspannkraft unterstützt, die von den Seitenrädern aufgrund von Getriebereaktionskräften ausgeübt wird;
dadurch gekennzeichnet, daß die Gelenkpunktanordnung ein Reaktionssteil (87) aufweist, das dem einen (27) der Seitenräder funktionsmäßig zugeordnet ist, und die Hebelanordnung mit einem langgestreckten Hebelteil (85) versehen ist, das benachbart einem innenliegenden Ende mit dem Reaktionssteil in Eingriff steht und das benachbart einem außenliegenden Ende mit der Eingangsanordnung (81) in Eingriff steht, wobei das Reaktionssteil und das Hebelteil so angeordnet sind, daß sie die Betätigungskraft über die Seitenräder (27, 29) übertragen.

2. Differentialgetriebevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Vorrichtung eine weitere Kupplungsanordnung (47), die zwischen einem relativ ausgerückten Zustand und einem relativ eingerückten Zustand verstellbar ist und die für eine Verzögerung der Relativdrehung zwischen dem Getriebegehäuse (17) und jedem der Seitenräder (27, 29) sorgt, sowie eine weitere Einrückanordnung (55) aufweist, mittels deren die weitere Kupplungsanordnung in Richtung auf den relativ eingerrückten Zustand verstellbar ist, wobei die weitere Kupplungsanordnung mindestens zwei Kupplungsflächen (47, 49) aufweist, die in Abhängigkeit von einer Axialbewegung der weiteren Einrückanordnung in Richtung auf die Kupplungsanordnung miteinander in Eingriff bringbar sind.

4. Differentialgetriebevorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Gelenkpunktanordnung (91) und die Hebelanordnung (85) so ausgestaltet sind, daß die Axialbewegung der weiteren Einrückanordnung (55) einen Betätigungsweg und eine Betätigungskraft hat, die näherungsweise gleich dem Betätigungsweg und der Betätigungskraft der einen Einrückanordnung (53) sind.

5. Differentialgetriebevorrichtung nach einem der vorherehrenden Ansprüche, dadurch gekennzeichnet, daß das externe Eingangssignal (71) ein Fluiddrucksignal aufweist und der Verstellmechanismus (57) mit einer Zylinder (59)- und einer Kolben (61)-Anordnung versehen ist.

8. Differentialgetriebevorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Eingangsanordnung ein langgestrecktes, stabförmiges Bauteil (81) aufweist, das so angeordnet ist, daß es zusammen mit dem Getriebegehäuse (17) rotiert, und das gegenüber diesem axial verstellbar ist, und daß ferner eine zwischen dem Kolben (61) und dem stabförmigen Bauteil (81) angeordnete Lageranordnung (73) vorgesehen ist.

9. Differentialgetriebevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Reaktionssteil (87) axial zwi-
schen den Seitenräder (27, 29) angeordnet ist.

Revdendications

1. Mécanisme différentiel comportant une coquille de différentiel (17) définissant une chambre de différentiel (19); des moyens formant pignons de différentiel disposés dans ladite chambre de différentiel, lesdits moyens formant pignons de différentiel comprenant au moins un pignon satellite (21) et une paire de pignons planétaires coniques (27, 29) engrenant avec ledit pignon satellite; des moyens d’embrayage (43) pouvant fonctionner entre une condition relativement hors de prise et une condition relativement en prise et ayant pour rôle de retarder la rotation relative entre ladite coquille de différentiel et chacun desdits pignons planétaires; un premier moyen (53) de mise en prise pouvant fonctionner pour mouvoir lesdits moyens d’embrayage en direction de ladite condition relativement en prise; lesdits moyens d’embrayage comportant au moins une paire de surfaces d’embrayage (47, 49) disposées pour venir en prise en réponse à un mouvement axial dudit premier moyen de mise en prise en direction desdits moyens d’embrayage; et des moyens de manœuvre pour manœuvrer ledit premier moyen de mise en prise, lesdits moyens de manœuvre comportant un mécanisme de déplacement (57) qui peut fonctionner pour réaliser un déplacement de sortie en réponse à un signal d’entrée extérieur (71); a) lesdits moyens de manœuvre incluant des moyens d’entrée (81) qui peuvent fonctionner en réponse audit déplacement de sortie dudit mécanisme de déplacement pour donner un signal d’entrée axial présentant un déplacement de manœuvre X et une force de manœuvre F; b) lesdits moyens de manœuvre incluant en outre des moyens formant pivots (91) et des moyens formant leviers (85) positive-

ment associés avec lesdits moyens formant pivots et avec lesdits moyens d’entrée pour convertir ledit signal d’entrée axial en ledit mouvement axial du premier dit moyen de mise en prise;

c) lesdits moyens formant pivots et lesdits moyens formant leviers étant configurés de façon telle que ledit mouvement axial dudit premier moyen de mise en prise présente un déplacement de manœuvre sensiblement inférieur audit déplacement de manœuvre X et une force de manœuvre sensiblement supérieure à ladite force de manœuvre F; et
d) lesdits moyens d’embrayage (43) étant manœuvrés par un déplacement axialement extérieur aidant la force de contrainte normale exercée par lesdits pignons planétaires du fait des forces de réaction du pignon; mécanisme différentiel caractérisé par le fait que

lesdits moyens formant pivots comportent un élément de réaction (87) positivement associé à l’un (27) desdits pignons planétaires et par le fait que lesdits moyens formant leviers comportent un élément allongé formant levier (85) en prise, près d’une extrémité intérieure, avec ledit élément de réaction et en prise, près d’une extrémité extérieure, avec lesdits moyens d’entrée (81), ledit élément de réaction et ledit élément formant levier étant disposés pour transmettre ladite force de manœuvre par l’intermédiaire desdits pignons planétaires (27, 29).

2. Mécanisme différentiel selon la revendication 1, caractérisé par le fait que ledit mécanisme comporte en outre d’autres moyens d’embrayage (47) pouvant fonctionner entre une condition relativement hors de prise et une condition relativement en prise, et ayant pour rôle de retarder la rotation relative entre ladite coquille de différentiel (17) et chacun desdits pignons planétaires (27, 29), et comporte en outre un autre moyen (55) de mise en prise pouvant fonctionner pour mouvoir lesdits autres moyens d’embrayage en direction de ladite condition relativement en prise, lesdits autres moyens d’embrayage comprenant au moins une paire de surfaces d’embrayage (47, 49) disposées pour venir en prise en réponse à un mouvement axial dudit autre moyen de mise en prise en direction desdits moyens d’embrayage.

3. Mécanisme différentiel selon la revendication 2, caractérisé par le fait que lesdits moyens formant leviers (85) peuvent fonctionner pour
convertir ledit signal d'entrée axial en un mouvement axial dudit premier moyen (53) de mise en prise et dudit autre moyen (55) de mise en prise, simultanément.

4. Mécanisme différentiel selon la revendication 3, caractérisé par le fait que lesdits moyens formant pivots (91) et lesdits moyens formant leviers (85) sont configurés de façon telle que ledit mouvement axial dudit autre moyen (55) de mise en prise présente un déplacement de manoeuvre et une force de manoeuvre approximativement égaux audit déplacement de manoeuvre et à ladite force de manoeuvre dudit premier moyen (53) de mise en prise.

5. Mécanisme différentiel selon l’une quelconque des revendications précédentes, caractérisé par le fait que ledit signal d’entrée extérieur (71) est constitué par un signal de pression de fluide et par le fait que ledit mécanisme de déplacement (57) comporte un ensemble cylindre (59) et piston (61).

6. Mécanisme différentiel selon la revendication 5, caractérisé par le fait que ledit ensemble cylindre et piston est fixe dans le sens de la rotation et que ladite coquille de différentiel (17) est entraînée en rotation par rapport audit ensemble cylindre et piston.

7. Mécanisme différentiel selon la revendication 6, caractérisé par le fait que ledit mécanisme comporte en outre un carter extérieur, fixe, (11) de différentiel et un coupleur (67) de la pression du fluide interconnectant ledit carter et ledit ensemble cylindre et piston pour communiquer ledit signal d’entrée (71) de pression du fluide extérieur audit ensemble cylindre et piston.

8. Mécanisme différentiel selon la revendication 6, caractérisé par le fait que lesdits moyens d'entrée comportent un élément allongé, en forme de tige (81) disposé pour être entrainé en rotation avec ladite coquille de différentiel (17) et pouvoir se déplacer axialement par rapport à elle et comporte en outre des moyens formant portée (73) disposés entre ledit piston (6) et ledit élément en forme de tige (81).

9. Mécanisme différentiel selon l’une quelconque des revendications précédentes caractérisé par le fait que ledit élément de réaction (87) est disposé axialement entre lesdits pignons planétaires (27, 29).

10. Mécanisme différentiel selon la revendication 2, caractérisé par le fait que lesdits moyens formant pivots comportent en outre un élément formant pivot (91) positivement associé avec ledit autre (29) desdits pignons planétaires et par le fait que ledit élément allongé (85) formant levier est disposé axialement entre ledit élément de réaction et ledit élément formant pivot et en prise avec eux, ledit élément de réaction et ledit élément formant pivot étant décalés dans le sens transversal et ledit élément formant levier définissant un point de pivotement, ledit élément formant levier pouvant pivoter autour dudit point de pivotement en réponse audit signal d'entrée axial.