Hydraulic drive controlling apparatus for construction machine.
Description

BACKGROUND OF THE INVENTION

The present invention relates to an apparatus for controlling the hydraulic drive of a construction machine according to the preamble of claim 1. Such an apparatus is known from US-A-4 617 854.

A construction machine, for instance a hydraulic excavator, is equipped with one or a plurality of hydraulic pumps. Actuators of the machine, such as a boom cylinder, an arm cylinder, bucket cylinders, a swing motor, left and right traveling motors, etc., are driven with the hydraulic fluid delivered from these hydraulic pumps. A directional control valve is provided between each actuator and the hydraulic pumps. Operator's manipulation of a control lever for each actuator at his discretion, which control lever is provided in an operator's cabin of the hydraulic excavator, operates the corresponding directional control valve responsive.

The thus operated directional control valve controls the flow of the hydraulic fluid from the hydraulic pumps to the actuator, and hence the movement thereof is controlled to perform an expected operation of the hydraulic excavator.

Various systems have been proposed for the drive control of such actuators. Typical one of the thus proposed is the load sensing system shown in US-A-4,617,854. This load sensing system is adapted to control the displacement of the hydraulic pumps during the drive control of the actuators so that the delivery pressure of the hydraulic pumps is kept higher by a fixed value than the maximum one of load pressures of the actuators. By virtue of this control, the actuators are driven with the minimum delivery of the hydraulic pumps to enable an economical operation.

As described above, the load sensing system is extremely superior as a hydraulic drive controlling apparatus for a construction machine. This system, however, can not control the driving pressure of each actuator in response to the corresponding control lever. Accordingly, in a certain case, for instance, when the load sensing system is employed in the drive control of an actuator for moving a member of large inertia, the following inconvenience or disadvantage arises.

That is, when it is desired to slowly accelerate the swing motor for driving a swing body of a hydraulic excavator, which body is of large inertia, even a slight amount of manipulation of the corresponding control lever causes the delivery pressure of the hydraulic pumps to abruptly increase until the load pressure of the swinging motor reaches a relief pressure for the swinging. This is because the control of the pump displacement is done so as to increase the delivery pressure of the hydraulic pumps by a fixed value as compared with the load pressure of the swing motor. As a result, the high relief pressure is applied to the swing motor, and the same is suddenly accelerated, despite the manipulation for a slow acceleration, to make a different motion from operator's intention. Such motion is quite dangerous. In addition, a large quantity of the hydraulic fluid is relieved, resulting in a large loss of power.

Similar phenomena arise in the case of the other actuators. One example given here among many operations of the hydraulic excavator is the operation of softly pressing its bucket against dug portions of the ground to level the same. Also in this operation, as the driving pressure can not be adjusted, the working member is brought to press rather hard against the ground, making it difficult to perform the desired working while causing a great loss in power.

It is an object of the present invention to provide a hydraulic drive controlling apparatus for a construction machine, which is capable of adjusting the driving pressures of actuators of the machine, while making efficient use of the load sensing system's merits, to enable the actuators to do expected motions.

This object will be solved by the features of claim 1.

In the apparatus thus constructed in accordance with the present invention, when the output from the first command means is the command signal of selecting a control mode to be done by the first control means, the first selection means selects the first control means. The first control means controls the displacement of the hydraulic pump so as to bring the differential pressure between the delivery pressure and the maximum load pressure to the specified value. Namely, the essential control of the load sensing system is performed. On the other hand, in case that the output from the first command means is the command signal of selecting a control mode to be done by the second control means, the first selection means selects the second control means. The second control means controls the displacement of the hydraulic pump so as to bring the delivery pressure thereof to the predetermined value. That is, the pump displacement is controlled in a pressure control mode. Consequently, the driving pressure of the actuators is controlled correspondingly, and therefore the acceleration or a pressing force of each actuator is bought under control.

It is preferable that the apparatus of the present invention further has second selection means. The second selection means judges whether the operation means for specific one of the actuators is manipulated, and selects the second control means when the operation means for the
specific actuator is manipulated, and the first control means when the operation means for the other actuators are manipulated. With the provision of this additional means, the control of the pump displacement in the pressure control mode is carried out solely for the specific actuators.

The second selection means may include first setting means for setting a target pressure which increases as the amounts of manipulation of the operation means increases. The second selection means obtains the target pressure corresponding to the manipulation amounts from the first setting means to provide the predetermined value. With this arrangement, when the pump displacement is controlled in the pressure control mode, a pump delivery pressure is set according to the manipulation amounts of the operation means. Consequently, the driving pressure or pressing force of each actuator can be controlled in proportion to the manipulation amount of the corresponding operation means.

Further, the second control means may include second setting means for setting a fixed target pressure which provides the predetermined value.

Moreover, the apparatus of the invention may have second command means for selecting a target value for the delivery pressure of the hydraulic pump and outputting a corresponding command signal, and the second control means may include third setting means for setting a target pressure which varies depending upon the command signal from the second command means. The second control means obtains the target pressure corresponding to the command signal from the third setting means to provide the predetermined value. With this arrangement, the operator can set a pump delivery pressure at his discretion when controlling the pump displacement in the pressure control mode.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a system diagram of the hydraulic drive controlling apparatus for a hydraulic excavator in accordance with an embodiment of the invention;

Fig. 2 is a view showing the structure of the control section shown in Fig. 1;

Fig. 3 is a flow chart for explanation of the operation of the apparatus shown in Fig. 1; and

Fig. 4 is a flow chart for explanation of the hydraulic drive controlling apparatus for a hydraulic excavator in accordance with another embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will be described hereinafter with reference to the embodiments shown in the accompanying drawings.

In Fig. 1 which shows the hydraulic drive controlling apparatus for a hydraulic excavator in accordance with the first embodiment of the invention, reference numerals 1a, 1b denote two variable displacement type main hydraulic pumps, respectively, which are mounted on the hydraulic excavator, and reference numeral 1c denotes a constant displacement type auxiliary hydraulic pump which supplies a secondary hydraulic fluid such as a pilot hydraulic fluid and the like. The hydraulic pumps 1a, 1b have displacement volume varying mechanisms 2a, 2b, respectively, which will be hereinafter referred to as swash plates for short. The swash plates 2a, 2b are operated through pump displacement control mechanisms 3a, 3b respectively. The pump displacement control mechanisms 3a, 3b comprise cylinders 3a₁, 3b₁ which are connected to the respective swash plates 2a, 2b, and control valves 3a₂, 3b₂ for controlling the driving of the cylinders 3a₁, 3b₁ respectively.

The hydraulic fluid delivered from the hydraulic pumps 1a, 1b is fed to actuators 5a₁, 5b₂, 5a₂, 5b₁, 5b₂ and 5b₂ so as to drive them. Describing these actuators concretely, the actuator 5a₁ is a boom cylinder, the actuators 5a₂, 5b₂ are left and right traveling motors, respectively, the actuators 5b₁, 5b₂ are an arm cylinder and a bucket cylinder, respectively, and the actuator 5a₁ is a swing motor. The amounts and directions of flows of the hydraulic fluid fed to the actuators 5a₁, 5b₁ and 5a₂ are respectively controlled by directional control valves 6a₁, 6a₂ and 6a₃, and to the actuators 5b₁, 5b₂ and 5b₃ are respectively controlled by directional control valves 6b₁, 6b₂, and 6b₃. Pressure compensating valves 7a₁, 7a₂, 7a₃, 7b₁, 7b₂ and 7b₃ are disposed on the upstream sides of the directional control valves 6a₁, 6a₂, 6a₃, 6b₁, 6b₂, and 6b₃, respectively, each of which pressure compensating valves controls a differential hydraulic pressure across the corresponding directional control to a fixed value.

Provided in connection with the directional control valves 6a₁-6b₃ are hydraulic pilot valves 8a₁, 8a₂, 8a₃, 8b₁, 8b₂ and 8b₃ which are operated by means of control levers 8c₁, 8c₂, 8c₃, 8d₁, 8d₂, and 8d₃, respectively. Each of the hydraulic pilot valves exert a pilot pressure on a pilot port of corresponding one of the directional control valves 5a₁-5b₃ to drive the same, which pilot pressure is in proportion to an amount and a direction of manipulation of the corresponding control lever.
The hydraulic fluid from the main pumps 1a, 1b is delivered into a main circuit, and that from the auxiliary pump 1c into a pilot circuit. Relief valves 9a, 9b are provided in the main and the pilot circuit to regulate the maximum pressures thereof, respectively. Additionally, the traveling motor 5a is provided with relief valves 10a1, 10a2, the other traveling motor 5b is provided with relief valves 10b1, 10b2, which relief valves regulate the maximum pressure for the traveling, and the swing motor 5b2 is provided with relief valves 10c1, 10c2 which regulate the maximum pressure for the swinging.

Shuttle valves 11a1, 11a2, 11b1, 11b2 and 11ab are connected to the directional control valves as shown in the figure. The shuttle valve 11a1 selects higher one of the load pressures of the actuators 5a1, 5a2. The shuttle valve 11a2 selects higher one of the selected pressure by the shuttle valve 11a1 and the load pressure of the actuator 5a2. The shuttle valve 11b1 selects higher one of the load pressures of the actuators 5b1, 5b2. The shuttle valve 11b2 selects higher one of the selected pressure by the shuttle valve 11b1 and the load pressure of the actuator 5b2. The shuttle valve 11ab selects higher one of the pressures selected by the shuttle valves 11a1, 11b1, Consequently, the highest or maximum one of the load pressures of the actuators 5a1-5b2 is selected by the shuttle valve 11ab.

In the hydraulic circuits constructed as above, a group of sensors is provided. These sensors include pump displacement detectors 13a, 13b for respectively detecting amounts of tilting of the swash plates 2a, 2b which represent the displacements of the hydraulic pumps 1a, 1b, and operation command detectors 15a1-15b3 for respectively detecting the pilot pressures output from the hydraulic pilot valves 8a-8b3 as the amounts of manipulation of the control levers 8c1-8d2. Further included in the sensors are pressure delivery detectors 16a, 16b for detecting the respective delivery pressures of the hydraulic pumps 1a, 1b, and load pressure detector 17 for detecting the maximum pressure selected by the shuttle valve 11ab. In addition, selection commander 18 adapted to be controlled or operated by an operator is provided for selecting one of a normal load sensing control mode and a specific pressure control mode in which the hydraulic pumps 1a, 1b be controlled. The detection signals from the group of sensors and the command signal from the selection commander 18 are inputted into a controller 20 in which necessary operation is carried out on the basis of these signals to output a resultant command signal to the control valves 3a2, 3b2 of the pump displacement control mechanisms 3a, 3b.

The controller 20 comprises a micro-computer and has, as shown in Fig. 2, a A/D converter 20a for the input, a central processing unit (CPU) 20b, a read only memory (ROM) 20c for storage of a control process program, a random access memory (RAM) 20d for temporary memory of numerical values in the process of the operation, an I/O interface 20e for the output, and amplifiers 20g, 20h.

The controller 20 converts the detection signals from the group of sensors 13a, 13b, 15a1-15b3, 16a, 16b and 17 and the command signal from the selection commander 18 into digital signals through the A/D converter 20a. In the CPU 20b, the operation is made using the digital signals in accordance with the control process program to provide a command value for controlling the displacement the hydraulic pumps. The command value is outputted from the amplifiers 20g, 20h through the I/O interface 20e to the control valves 3a2, 3b2 of the pump displacement control mechanisms 3a, 3b.

Subsequently, the operation of the present embodiment will be described in accordance with the flow chart of the control process program stored in the ROM 20c as shown in Fig. 3.

Assuming here that the operator manipulates one or more of the control levers 8c1-8d2 in order to drive the corresponding actuator or actuators of those 5a1-5b2, each of the corresponding of the hydraulic pilot valves 8a-8b3 outputs a pilot pressure according to the amount and direction of manipulation of the corresponding control lever. The corresponding one or ones of the directional control valves 6a-6b2 are operated by the force of the pilot pressure to open according to the amounts and directions of manipulation of the control levers. Thus, the hydraulic fluid of the hydraulic pumps 1a, 1b is fed to the corresponding one or ones of the actuators 5a1-5b2 through the corresponding ones of the pressure compensating valves 7a1-7b2 and the directional control valves 5a1-5b2. The quantity of the hydraulic fluid fed to each actuator is proportional to the opening area of an orifice in the corresponding one of the directional control valves 6a-6b2, and the actuator is driven at a rate or speed proportional to the flow rate of the thus fed hydraulic fluid. In this case, when plural actuators are simultaneously driven for a combined operation, as the differential pressures across the directional control valves are kept constant by the pressure compensating valves 7a1-7b2, respectively, the hydraulic fluid delivered from the pumps 1a, 1b is divided in proportion to the ratio of the opening areas of the orifices of the corresponding directional control valves. Accordingly, concentration of the hydraulic fluid to the actuator of low load is prevented.
Meanwhile, the controller 20 is input, in a step S1 shown in Fig. 3, with the detection signals from the pump displacement detectors 13a, 13b, the selection commander 18, the delivery pressure detectors 16a, 16b, and the load pressure detector 17 as well as the command signal from the selection commander 18. Then, in a step S2, judgment is made whether the output from the selection commander 18 is the signal of selecting the pressure control mode. In case that the selection commander 18 is not operated and hence the pressure control mode is not selected, namely the load sensing control mode is selected, the process is advanced to a step S3.

In the step S3, judgment is made whether the differential pressure between an average of the delivery pressures of the hydraulic pumps 1a, 1b detected by the delivery pressure detectors 16a, 16b and the maximum load pressure is larger than a specified value ΔP_{LSO}. The above differential pressure will be designated hereinafter by ΔP_{LS}. When the differential pressure ΔP_{LS} is higher than the specified value ΔP_{LSO} in a step S4, the command signal for reducing the pump displacement or delivery capacity is outputted to the control valves 3a, 3b of the pump displacement control mechanisms 3a, 3b. On the other hand, when the differential pressure ΔP_{LS} is judged to be less than the specified value ΔP_{LSO} in the step S3, namely judgment is made that the pump delivery capacity is insufficient, in a step S5, the pump delivery capacity is judged once as to whether the same reaches a predetermined value, for instance the maximum capacity which is limited in view of the characteristic of a prime mover. This judgment is made by knowing, from the detection signals of the pump displacement detectors 13a, 13b, whether tilting of the swash plates 13a, 13b reaches a predetermined amount. Once the pump delivery capacity is judged in the step S5 to reach the predetermined value, a command signal is outputted in a step S6 for holding the displacement of the hydraulic pumps 1a, 1b pump as it is, because any further increase in the pump delivery capacity can not be expected. When the pump delivery capacity does not reach the predetermined value, however, the command signal for increasing the pump delivery capacity is output in a step S7 to the control valves 3a, 3b. Either the amount of the pump delivery capacity reduced by the process in the step S4 or that increased by the process in the step S7 is a unit amount which has been set beforehand. As described above, the drive control of the actuators is carried out in the load sensing control mode by repeating the above steps S1-S7.

On the other hand, when the operator of the hydraulic excavator wishes to slowly accelerate, for instance, the swing body, he manipulates the selection commander 18. The controller 20 judges the manipulation of the selection commander 18 or the selection of the pressure control mode in the step S2 in the course of the repetition of the above steps S1-S7. In this case, the process is advanced to a step S8.

In the step S8, the signals from the operation command detectors 15a - 15b are monitored to judge whether the control levers for specific actuators, for instance the control lever 8d2 for the swing motor 5b2, are manipulated. When the control levers for the specific actuators are not manipulated, the process advances to the step S3 so that the drive control is performed in the load sensing mode as described above. In case that the the step S8 makes the judgment that the control lever for the swing motor is manipulated, however, a target pressure Pr which corresponds to the operation command signal detected by the operation command detector 15b2 is sought in a step S9. In the present embodiment, the target pressure Pr is set beforehand in such a relation to the operation signal that the former increases as the latter increases as shown in Fig. 3. The function of this relation is stored in the ROM 20c shown in Fig. 2, and the target pressure Pr corresponding to the detected operation command signal is picked out from the ROM 20c.

Subsequently, in a step S10, a current delivery pressure is read out from the detection signals of the delivery pressure detectors 16a, 16b, and the thus read delivery pressure is judged as to whether the same is larger than the above target pressure Pr. When the current delivery pressure is higher than the target pressure Pr, a command signal is outputted, in a step S11, to the control valves 3a, 3b of the pump displacement control mechanisms 3a, 3b so as to reduce the pump delivery capacity. On the other hand, when the delivery pressure is less than the target pressure Pr, the delivery capacity of the pumps 1a, 1b is judged in a step S12 as to whether the same reaches the predetermined value in the same manner as in the step S5. In the case that the delivery capacity reaches the predetermined value, a command signal is outputted at a step S13 to the control valves 3a, 3b so as to hold the pump delivery capacity as it is. Contrarily, in case that the delivery capacity does not reach the predetermined value, the command signal for incrementing the delivery capacity is outputted in a step S14 to the control valves 3a, 3b. The reduction and the increase of the delivery capacity by the process in the steps S11 and S14 are made by predetermined units of amount, respectively.

The process of the steps S9-S14 is repeated, unless the selection of the pressure control mode by the selection commander 18 is canceled, to perform the displacement control in the pressure
control mode with respect to the hydraulic pumps 1a, 1b during driving of the swing motor 5b2. Under this control in the pressure control mode, the delivery pressure of the hydraulic pumps 1a, 1b is brought to a value which is proportional to the manipulation amount of the control lever 8d2, and the driving pressure of the swing motor 5b2 is also kept at a proper value correspondingly. More particularly, a small amount of manipulation of the control lever 8d2 causes the driving pressure of the swinging motor 5b2 to be low, so that the swinging motor 5b2 can accelerate slowly. Thus, the driving pressure of the swing motor is prevented from increasing up to the specified pressure of the relief valves 10c1, 10c2 for the swinging, which increase results in a sudden and rapid acceleration of the swing motor and which would occur if the control is made in the load sensing control mode.

Upon cancellation of the selection of the pressure control mode by the selection commander 18, this cancellation is judged or known through the process in the step S2, and then the control is returned to the normal load sensing control mode using the process of the steps S3-S7.

As has been described above, the present embodiment is so constructed that the operator of the hydraulic excavator can select at his discretion the load sensing control mode or the pressure control mode by using the selection control commander 18. Accordingly, it is possible to accurately move the actuator for driving such a body of large inertia as the swing motor in conformity with operator's intention.

Next, description will be made on another embodiment of the invention with reference with Figs. 1 and 4.

The drive control apparatus of the present embodiment further has, in addition to the components of the first embodiment, a second selection commander 19 as shown by a two-dot chain line in Fig. 1, which selects a target value for the delivery pressure of the hydraulic pumps 1a, 1b and outputs a command signal.

In Fig. 4, in a step 15, the controller 20 receives the command signal from the second selection commander 19 in addition to the detection signals from the pump displacement detectors 13a, 13b, the operation command detectors 15a1 - 15b2, the delivery pressure detectors 16a, 16b and the load pressure detector 17, and the command signal from the selection commander 18. Then, in the step S2, judgment is made whether the output from the selection commander 18 is the command signal of selecting the pressure control mode. If the selection commander is not operated to select the pressure control mode, namely when the normal load sensing control mode is selected, the process is, advanced to the step S3 to carry out the control in the normal load sensing control mode by using the process of the steps S3-S7. In case that the selection commander 18 is operated, however, the process is advanced to the step S8 where the control levers for specific actuators are judged as to whether they are manipulated. If the control levers for the specific actuators are not manipulated, the process is advanced to the step S3 to perform the control through the above described steps S3-S7.

Once judgment is made in the step S8 that the control levers for the specific actuators are manipulated, the process is advanced to a step S16. In the step S16, the specific actuators selected to be driven are judged as to whether they include the boom cylinder 5a1 and the swing motor 5b2. If the boom cylinder 5a1 and the swing motor 5b2 are included, for instance in the case of a combined operation of raising the boom and swinging, in a step S17, the target pressure Pr of a fixed value is set independently of the operation command signals detected by the operation command detectors, or the amounts of manipulation of the control levers for these actuators. The target pressure Pr has been determined beforehand to the optimum value for the combined operation of raising the boom and swinging, and is memorized in the ROM 20 c shown in Fig. 2. Subsequently, the process of steps S10-S14 is executed to control the delivery capacity of the hydraulic pumps 1a, 1b. With this arrangement, even when the combined operation of raising the boom and swinging, the delivery pressure of the hydraulic pumps 1a, 1b are controlled so as to attain or coincide the target pressure Pr, and the driving pressure of the actuators is kept constant correspondingly. As a result, the swinging motor 5b2 is accelerated at a rate proportional to the driving pressure, and the combined operation of raising the boom and swinging is done appropriately without any sudden acceleration.

When judgment in the step S16 is made such that the boom cylinder 5a1 and the swinging motor 5b2 are not included, the process is advanced to a step S18 to judge whether the specific actuators selected to be driven include the boom cylinder 5a1 and the arm cylinder 5b1. If the boom cylinder 5a1 and the arm cylinder 5b1 are included, for instance when a combined operation of the boom and the arm for leveling the ground, in a step S19, the target pressure Pr is set correspondingly to the command signal from the second selection commander 19. This target pressure Pr corresponds to the target value for the delivery pressure selected by the second selection commander 19, and is constant independently of the operation command signals as shown in Fig. 4. The function of this relation is also memorized in the ROM 20c.
Subsequently, the process of the steps S10-S14 is carried out likewise to control the delivery capacity of the hydraulic pumps 1a, 1b. By this control, even in the work for leveling the ground by means of the combined operation of the boom and the arm, the delivery pressure of the hydraulic pumps is controlled to the target pressure Pr, and the driving pressure is controlled correspondingly. Accordingly, a force for pressing the rear of the bucket against the ground does never become excessive, and the ground leveling work can be performed with a suitable pressing force in accordance with the selection of the second selection commander 19. In addition, this pressing force can be set to any magnitude by operating the second selection commander 19.

In the step S18, if the boom cylinder 5a₁ and the arm cylinder 5b₁ are judged not to be included, for instance when only the control lever 8b₁ for the swing motor 5b₂ is manipulated, the process is advanced to a step S20. In the step S20, the target pressure Pr of a fixed value is set independently of the operation command signal detected by the operation command detector 15b₂. This value of the target pressure Pr is also memorized in the ROM 20c shown in Fig. 2. Subsequently, the process of the steps S10-S14 is carried out likewise to control the displacement capacity of the hydraulic pumps 1a, 1b. Under this control, the delivery pressure of the hydraulic pumps 1a, 1b is controlled to the target pressure Pr, and the driving pressure is controlled correspondingly to be kept constant. Consequently, the swing motor 5b₂ is accelerated at a proper rate proportional to the driving pressure, while being prevented from suddenly and rapidly accelerating.

As has been described above, also in the present embodiment, the operator of the hydraulic excavator can select at his discretion the load sensing control mode or the pressure control mode by operating the selection commander, and appropriate driving of the swinging motor can be done. Additionally, in the combined operation of raising the boom and swinging, the optimum driving pressure for this combined operation is obtainable. Also, when the combined operation of the moving members including the boom and the arm, a target value for the delivery pressure can be set at operator’s discretion from the outside of the apparatus by operating the second selection commander 19. Accordingly, when the ground leveling operation is desired, for instance, the bucket can be pressed against the ground with a proper force to perform the operation appropriately.

Incidentally, although in the above embodiments, the hydraulic excavator and its swing motor, boom cylinder and arm cylinder have been described an example of a construction machine and its actuators, the construction machine and actuators are not limited solely to this example. The present invention is applicable to other construction machines and actuators thereof.

Further, in case that the actuators to be controlled always in the pressure control mode are fixed, selection commanders may be provided in the knobs of the control levers for these actuators so that each selection commander can operate upon operator’s grasping of the corresponding knob. With such provision, the process made in the controller for judging whether the specific actuators are operated may be omitted.

Moreover, instead of respectively detecting the respective delivery pressures and the maximum load pressure to get the differential pressure therebetween in the controller, a differential pressure sensor may be provided to directly detect the differential pressure. The use of such differential pressure sensor is effective for improvement in the detection accuracy.

Claims

1. A hydraulic drive controlling apparatus for a construction machine, comprising:
 - at least one variable displacement type hydraulic pump (1a, 1b);
 - a plurality of actuators (5a₁-5b₂) driven with a hydraulic fluid from said hydraulic pump (1a, 1b);
 - directional control valves (6a₁-6b₂) for controlling said plurality of actuators (5a₁-5b₂), said directional control valve (6a₁-6b₂) being driven in accordance with the setting of operation means (8c₁-8d₂);
 - means (16a, 16b) for detecting a delivery pressure of said hydraulic pump (1a, 1b);
 - means (11a₁-11b₂, 11ab) for selecting maximum one of load pressures of said plurality of actuators (5a₁-5b₂);
 - first control means (20, S3-S7) for controlling displacement of said hydraulic pump to bring a differential pressure between the delivery pressure and the maximum load pressure to a specified value, characterized in that the apparatus further comprises second control means (20, S9-S14) for controlling the displacement of said hydraulic pump (1a, 1b) to bring the delivery pressure thereof to a predetermined value independent of the load pressures of said actuators (5a₁-5b₂);
 - first selection means (18) for selecting a mode of control of the displacement of said hydraulic pump (1a, 1b) and outputting a corresponding command signal; and
 - first selection means (20, S2) for selecting...
one of said first and said second control means depending upon the command signal from said first command means (18).

2. The apparatus according to claim 1, further comprising second selection means (20, S8) for judging whether said operation means for specific one of said actuators (5a-5b₂) is manipulated, and selecting said second control means (20, S9-S14) when said operation means for said specific actuator is manipulated, and said first control means (20, S3-S7) when said operation means for the other actuators are manipulated.

3. The apparatus according to claim 1, wherein said second selection means (20, S8) has first setting means (S9) for setting a target pressure which increases according to an increasing setting of said operation means (8c₁-8d₁) whereby the target pressure corresponding to the setting obtained from said first setting means (S9) provides said predetermined value.

4. The apparatus according to claim 1, wherein said second control means has second setting means (S17, S20) for setting a fixed target pressure which provides said predetermined value.

5. The apparatus according to claim 1, further comprising second command means (19) for selecting a target value for the delivery pressure of said hydraulic pump and outputting a corresponding command signal, said second control means including third setting means (S19) for setting a target pressure which varies depending upon the command signal from said second command means (19) whereby the target pressure corresponding to the command signal obtained said third setting means (S19) provides said predetermined value.

Patentansprüche

1. Hydraulische Antriebs-Steuvorrichtung für eine Baumaschine, mit:
 - mindestens einer hydraulischen Verstellungspumpe (1a, 1b),
 - mehreren Stellelementen (5a₁ bis 5b₂), die mit einer Hydraulikflüssigkeit von der Hydraulikpumpe (1a, 1b) angetrieben sind,
 - Wegeventilen (6a₁ bis 6b₂) zur Steuerung der Mehrzahl von Stellelementen (5a₁ bis 5b₂), wobei die Wegeventile (6a₁ bis 6b₂) entsprechend der Einstellung von Betätigungseinrichtungen (8c₁ bis 8d₁) angesteuert sind,
 - einer Einrichtung (16a, 16b) zur Erfassung eines Förderdrucks der Hydraulikpumpe (1a, 1b), einer Einrichtung zur Auswahl des maximalen Belastungsdruks der Mehrzahl von Betätigungselementen (5a₁ bis 5b₂), einer ersten Steuereinrichtung (20, S3 - S7) zur Steuerung der Verstellung der Hydraulikpumpe, um einen Differentialdruck zwischen dem Förderdruck und dem maximalen Belastungsdruk auf einen bestimmten Wert zu bringen, dadurch gekennzeichnet, daß die Vorrichtung ferner umfaßt:
 - eine zweite Steuereinrichtung (20, S9 - S14) zur Steuerung der Verstellung der Hydraulikpumpe (1a, 1b), um deren Förderdruck auf einen vorbestimmten Wert unabhängig von den Belastungsdrukken der Stellelemente (5a₁ bis 5b₂) zu bringen,
 - eine erste Befehlseinrichtung (18) zur Auswahl eines Steuermodus der Verstellung der Hydraulikpumpe (1a, 1b) und zur Ausgabe eines entsprechenden Steuersignals und eine erste Auswahleinrichtung (20, S2) zur Auswahl einer der ersten und zweiten Steuer einrichtung in Abhängigkeit von dem Befehlsignal der ersten Befehlseinrichtung (18).

2. Vorrichtung nach Anspruch 1, ferner mit einer zweiten Auswahleinrichtung (20, S8) zur Beurteilung, ob die Betätigungseinrichtung für ein bestimmtes Stellelement (5a₁ bis 5b₂) betätigt ist und zur Auswahl der zweiten Steuereinrichtung (20, S9 bis S14), wenn die Betätigungseinrichtung für das bestimmte Stellelement betätigt ist, und der ersten Steuereinrichtung (20, S3 - S7), wenn die Betätigungseinrichtungen für die anderen Stellelemente betätigt sind.

3. Vorrichtung nach Anspruch 1, bei der die zweite Auswahleinrichtung (20, S8) eine erste Stelleinrichtung (S9) zur Einstellung eines Zieldruckes hat, der entsprechend einer zunehmenden Einstellung der Betätigungseinrichtung (8c₁ bis 8d₁) ansteigt, wodurch der Zieldruck, welcher der durch die erste Stelleinrichtung (S9) erhaltenen Einstellung entspricht, den vorbestimmten Wert liefert.

4. Vorrichtung nach Anspruch 1, bei der die zweite Steuereinrichtung eine zweite Stelleinrichtung (S17, S20) zur Einstellung eines festen Zieldrucks aufweist, der den vorbestimmten Wert liefert.

5. Vorrichtung nach Anspruch 1, ferner mit einer zweiten Befehlseinrichtung (19) zur Auswahl eines Zielwertes für den Förderdruck der Hy-
draulkpumpe und zur Ausgabe eines entsprechenden Steuersignals, wodurch die zweite Steuereinrichtung eine dritte Einstellrichtung (S19) zur Einstellung eines Zieldruckes aufweist, der abhängig von dem Befehlssignal der zweiten Befehleinstellung (19) variiert, wobei der Zieldruck, welcher dem durch die dritte Einstellrichtung (S19) erhaltenen Befehlssignal entspricht, diesen vorbestimmten Wert liefert.

2. Appareil selon la revendication 1, comprenant en outre un second moyen de sélection (20, S8) pour juner si oui ou non le moyen d'actionnement relatif à un actionneur spécifique parmi les vérins (5a₁,-5b₃) est manoeuvré et pour sélectionner le second moyen de commande (20, S9-S14), lorsque le moyen d'actionnement relatif audit vérin spécifique est manoeuvré, et le premier moyen de commande (20, S3-S7), lorsque les moyens d'action relatifs aux autres vérins sont manoeuvrés.

3. Appareil selon la revendication 1, dans lequel le second moyen de sélection (20,S8) comporte un premier moyen de réglage (S9) pour régler une pression de consigne qui augmente en fonction d'un réglage dans le sens croissant du moyen d'actionnement (B₈₁,-B₉₃), grâce à quoi la pression de consigne correspondant au réglage obtenu à partir du premier moyen de réglage (S9) procure ladite valeur prédéterminée.

4. Appareil selon la revendication 1, dans lequel le second moyen de commande comporte un second moyen de réglage (S17,S20) pour régler une pression de consigne fixe qui procure ladite valeur prédéterminée.

5. Appareil selon la revendication 1, comprenant en outre un second moyen d'instruction (19) pour sélectionner une valeur de consigne pour la pression de refoulement de la pompe hydraulique et pour émettre un signal d'instruction correspondant, le second moyen de commande comprenant un troisième moyen de réglage (S19) pour régler une pression de consigne qui varie en fonction du signal d'instruction provenant du second moyen d'instruction (19), grâce à quoi la pression de consigne correspondant au signal d'instruction obtenu à partir du troisième moyen de réglage (S19) procure ladite valeur prédéterminée.

Revendications

1. Appareil de commande d'entraînement hydraulique pour un engin utilisé dans la construction, comprenant :

 au moins une pompe hydraulique (1a, 1b) du type à cylindré variable;

 une pluralité de vérins (5a₁,-5b₃) entraînés par un fluide hydraulique en provenance de la pompe hydraulique (1a, 1b);

 des distributeurs (6a₁,-6b₃) pour commander la pluralité de vérins (5a₁,-5b₃), les distributeurs (6a₁,-6b₃) étant entraînés en fonction du réglage de moyens d'actionnement (B₈₁,-B₉₃);

 un moyen (16a, 16b) pour déterminer la pression de refoulement de la pompe hydraulique (1a, 1b);

 un moyen (11a₁,-11b₂, 11ab) pour sélectionner la pression de charge maximum parmi les pressions de charge de la pluralité de vérins (5a₁,-5b₃);

 un premier moyen de commande (20, S3-S7) pour commander la cylindrée de la pompe hydraulique afin de porter à une valeur spécifiée indépendante des pressions de charge des vérins (5a₁,-5b₃) la pression différentielle existant entre la pression de refoulement et la pression de charge maximale,

 un second moyen de commande (20, S9-S14) pour commander la cylindrée de la pompe hydraulique (1a, 1b) afin de porter à une valeur prédéterminée la pression de refoulement de cette pompe,

 caractérisé en ce que l'appareil comprend, en outre :

 un premier moyen d'instruction (18) pour sélectionner un mode de commande de la cylindrée de la pompe hydraulique (1a, 1b) et pour émettre un signal d'instruction correspondant; et

 un premier moyen de sélection (20, S2) pour sélectionner l'un des premier et second moyens de commande en fonction du signal d'instruction provenant du premier moyen d'instruction (18).
FIG. 2
FIG. 4

START

READING INPUT SIGNALS FROM OPERATION COMMAND DETECTORS, FIRST SELECTION COMMANDER, SECOND SELECTION COMMANDER, LOAD PRESSURE DETECTORS, DELIVERY PRESSURE DETECTORS AND PUMP DISPLACEMENT DETECTORS

S2

S8

YES

PRESSURE CONTROL MODE BEING SELECTED?

S15

SPECIFIC ACTUATORS BEING OPERATED?

NO

YES

S16

BOOM AND SWINGING BEING INCLUDED?

S18

NO

S17

DELIVERY CAPACITY REACHING PREDETERMINED VALUE?

S5

YES

S19

BOOM AND ARM BEING INCLUDED?

NO

DIFFERENTIAL PRESSURE \(4P_{LS} > 4P_{LS0} \)?

S3

TARGET PRESSURE COMMAND

OPERATION COMMAND SIGNAL

TARGET PRESSURE COMMAND

OPERATION COMMAND SIGNAL

S10

YES

DELIVERY PRESSURE \(> Pr^2 \) ?. NO

S12

DELIVERY CAPACITY REACHING PREDETERMINED VALUE?

S11

OUTPUTTING COMMAND TO HOLD DELIVERY CAPACITY

NO

OUTPUTTING COMMAND TO REDUCE DELIVERY CAPACITY

S13

YES

OUTPUTTING COMMAND TO INCREASE DELIVERY CAPACITY

S14

OUTPUTTING COMMAND TO INCREASE DELIVERY CAPACITY

RETURN TO START