EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 24.06.92 Bulletin 92/26

Application number: 89118091.1

Date of filing: 29.09.89

Process for the removal of sulfides.

Priority: 30.09.88 US 251362

Date of publication of application: 11.04.90 Bulletin 90/15

Publication of the grant of the patent: 24.06.92 Bulletin 92/26

Designated Contracting States: AT BE CH DE ES FR GB IT LI NL SE

References cited:
US-A- 3 024 192

Proprietor: UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (a New York corporation)
39 Old Ridgebury Road
Danbury Connecticut 06817-0001 (US)

Inventor: Leder, Jonathan
195 Old Croton Road
Flemington New Jersey 08822 (US)

Representative: Barz, Peter, Dr. et al
Patentanwälte Dipl.-Ing. G. Dannenberg Dr. P. Weinhold, Dr. D. Gudel Dipl.-Ing. S. Schubert,
Dr. P. Barz Siegfriedstrasse 8
W-8000 München 40 (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates in general, to a process for the removal of sulfides. In one aspect, this invention relates to a process which utilizes certain halonitroalkanols for removing sulfides from solids, liquids and gases. Sulfides can be removed from gases or liquids, as well as as sulfides occurring as deposits in conduits, such as on metal pipe interiors. In another aspect the invention relates to novel formulations and their use in the removal of hydrogen sulfide and its salts from liquids such as those encountered in water treatment, pulp and paper manufacture and oil field water flooding. In a further aspect, this invention is directed to the use of 2,2-dibromo-2-nitroethanol for the scavenging of sulfides from aqueous mixtures.

Sulfides are commonly encountered in various industrial products and processes, including cooling water, paper manufacturing, oil field flood water, and the like. While a number of compounds are currently available which are effective as scavengers for sulfides, none is completely effective in all situations, and may also have undesirable characteristics in terms of handling, toxicity, spectrum of activity, cost and the like.

For example, a number of sulfide scavengers are reported in the literature and are indicated to be effective for removing sulfides from water and other fluids. Most recently, US-A 4,680,127 to Edmondson, discloses the use of glyoxal for reducing the amount of hydrogen sulfide in aqueous or wet gaseous media. This patent also provides a review of the prior art in this area, and particularly the utility of acrolein. The patentees refer to US-A-3,459,852 which is directed to the use of acrolein and to US-A-1,991,765 which disclosed the use of formaldehyde for the same purpose.

It is stated in the Edmondson patent that "acrolein is more expensive than formaldehyde as well as extremely toxic and dangerous to handle". It is also indicated that "glyoxal approaches the hydrogen sulfide scavenging rate of acrolein without the constraining handling problems presented by the use of acrolein". Indeed, acrolein has been used for some time to reduce sulfide concentrations in the production of oil and gases, but its use has been greatly hampered by problems of handling and toxicity. In contrast, the compounds employed in the process of the present invention are at least the functional equivalent of acrolein, but have the added advantage of being extremely rapid and efficient scavengers of sulfide from fluids and yet do not present the toxicity or handling problems of previous scavenger compounds, such as acrolein.

It is known that corrosion can occur in pipelines from oil wells due to the presence of hydrogen sulfide and its salts. Dripets of water can form on the interior of gas pipe lines and in the presence of sulfides can give rise to corrosive conditions. Thus, in the recovery of natural gases and in oil wells which utilize flooding operations, sulfide scavenger compounds are sometimes used to prevent or at least minimize corrosion. Moreover, it is well known that hydrogen sulfide is toxic and hence its removal is desirable.

In US-A-3,024,192 there is disclosed an improved method in a flooding program for the recovery of oil from oil bearing subterranean formations, which utilize a halonitroalkanol such as 2-bromo-2-nitro-1,3-propanediol, 2-chloro-2-nitro-1-butanol and the like. However, the compounds are used to inhibit the growth of sulfate-reducing bacteria and not as scavengers for sulfides. Moreover, there are many instances wherein bacteria are not present in any appreciable amount but it is desired to remove sulfides present in a fluid.

Moreover, US-A-3,711,561 discloses a process for the preparation of bromonitroalcohols, among others 2-bromo-2-nitro-1,3-propane diol which according to two examples contained in said patent is added to carbon tetrachloride or ethylene dichloride in the last process step.

Accordingly, one or more of the following objects will be achieved by the practice of the present invention. It is an object of this invention to provide a process for the removal of sulfides from solids and fluids. Another object of this invention is to provide a process for the removal of sulfides and sulfide salts from liquid and gases, particularly in industrial operations. A further object is to remove sulfides from solids, such as sulfide deposits on the inner surfaces of pipes. A still further object of this invention is to provide a process which avoids the use of toxic and dangerous chemicals such as acrolein in the removal of sulfides. A still further object of this invention is to provide a process for removal of sulfide which utilizes certain halonitroalkanols. Another object is to provide a process which employs 2,2-dibromo-2-nitroethanol. A further object is to provide formulations useful for sulfide removal. Another object is to provide a method for scavenging sulfides which are present in industrial water cooling systems. It is also an object of this invention to provide a method for removing sulfides in industrial processes used in the production of pulp and paper. A still further object of this invention is to provide a method for using the halonitroalkanols compositions in the treatment of water employed in oil well flooding operations. These and other objects will readily become apparent to those skilled in the art in the light of the teachings herein set forth.

In its broad aspect, the invention relates to a process and formulations for the removal of at least one sulfide from solids and fluids containing hydrogen sulfide, organic sulfides or salts thereof. The process comprises contacting the solid or fluids with a sulfide-removing amount of certain halonitroalkanols, and in particular 2,2-dibromo-2-nitroethanol, hereinafter also referred to as "DBNE". The invention also relates to the use of the pro-
cess in various fields of application, particularly in oil field flooding operations and industrial cooling water treatment wherein the presence of sulfides and their salts are detrimental to effective operations.

The single drawing is a graph showing the sulfide scavenging ability of various compounds including those disclosed for this use in the prior art.

As indicated above, the process of the present invention is directed to the removal of sulfides from fluids using certain halonitroalkanols. The process comprises the steps of:

(a) contacting a fluid containing at least one sulfide with a sulfide-removing amount of a halonitroalkanol of the formula:

\[
\text{R}_1 - \text{CH} - \text{C} = \text{NO}_2 \quad \text{OH} \quad \text{X}
\]

wherein:
- \(X \) represents bromo or chloro;
- \(\text{R}_1 \) represents hydrogen or substituted or unsubstituted alkyl or aryl of up to about 18, and more preferably up to about 12 carbon atoms, and wherein any substituents can be \(X \), hydroxyl or lower alkyl; and
- \(\text{R}_2 \) represents \(\text{R}_1 \) or \(X \); and

(b) allowing said halonitroalkanol to react with said sulfide.

Illustrative halonitroalkanols which can be employed in the process of the present invention include, but are not limited to, compounds such as, 2-bromo-2-nitroethanol, 2,2-dibromo-2-nitroethanol, 2-bromo-2-nitro-1-propanol, 2-bromo-2-nitro-1,3-propanediol, 2,2-dibromo-2-nitro-1-phenylethanol, 3-bromo-3-nitro-2,4-pentanediol, 1,1-dibromo-1-nitro-2-propanol, 2,2-dichloro-2-nitroethanol, 2-chloro-2-nitro-1,3-propanediol, 2-bromo-2-nitro-1-phenyl-1,3-propanediol, 2-bromo-2-nitro-1-butanol, 3-bromo-3-nitro-2-butanol, 2-chloro-2-nitro-1-butanol, 1-chloro-1-nitro-2-pentanol, 1,1-dichloro-1-nitro-2-hexanol, 2-chloro-2-nitro-1-propanol, and the like.

It has also unexpectedly and surprisingly been found that of this class of halonitroalkanols, 2,2-dibromo-2-nitroethanol, DBNE, was vastly superior to other halonitroalkanols of the type disclosed in scavenging sulfides and their salts from solids and fluids.

It was therefore surprising to find that although the halonitroalkanols of the above formula were all effective as scavengers for sulfides, DBNE showed superior activity when compared to the other halonitroalkanols.

The process of the present invention will be more readily understood by reference to the single drawing which is a plot of the sulfide removal ability of known sulfide scavengers and the halonitroalkanols employed in the present invention. As indicated in the drawing, glutaraldehyde, glyoxal and formaldehyde are not as effective in removing sulfides as the halonitroalkanols, such as DBNE and bronopol of the present invention. While acrolein is quite effective, it is toxic and requires special handling techniques in its use.

In practice, the halonitroalkanol, such as DBNE is employed as the major scavenger composition, and in most instances, as the sole composition for removing the sulfides.

The concentration of the halonitroalkanol employed in the process will of course vary depending upon the concentration of the sulfides in the fluids. Thus, the halonitroalkanol is employed in a "sulfide-removing amount" which is that amount necessary to remove sulfides and their salts. This amount can range from about 2 to about 6000, and more preferably from about 10 to about 250 parts per million, based on the total amount of the liquid or gas containing the sulfides.

As indicated above, the halonitroalkanol can be employed with other scavengers. When employed with other scavengers, the halonitroalkanol will constitute at least 2 percent by weight and not more than about 99 percent by weight of the total scavengers used. Thus, if desired, the halonitroalkanol can also be employed in admixture with other compounds capable of removing sulfide ions, such as glyoxal, formaldehyde and other compounds, such as chlorine dioxide, and the like.

The scavenger can also be employed in conjunction with an inert carrier in those instances where one is preferred. For example, if the sulfides are present in gases, it may be desirable to have the scavenger compound contained on a carrier such as a fixed bed through which, or over which, the gases containing the sulfides are passed or dissolved in a liquid carrier through which the gases containing the sulfides are bubbled.

The carriers can be inorganic or organic, and can be a solid or a liquid diluent in which the halonitroalkanol is dissolved or dispersed. For example, DBNE is soluble in water up to about 6 to 8 percent, and accordingly may be feasible to employ the scavenger in the form of an aqueous solution. For other concentrations, the carriers can include, but are not limited to, organic compounds, such as, hydrocarbons, halocarbons, including
dichloromethane, alcohols, glycols, aldehydes, ketones, high molecular weight glycols, and the like, and inorganic compounds, such as, diatomaceous earth, clay, pumice, and the like.

Blending of a carrier, when employed, and the halonitroalkanol compound can be effected using conventional materials handling equipment by techniques known in the art.

In practice, wherein the concentration of sulfide in the fluid is small, it is usually not necessary to remove the reaction product of the sulfide with the halonitroalkanol. However, in some instances removal may be desired and it can be effected by known separation techniques.

The halonitroalkanols used in the present invention, are conveniently prepared by one of several methods disclosed in the literature. For example, in US-A- 3,711,561 there is disclosed a process for preparing bromonitro alcohols of the formula:

\[
R_1\text{CH}_2\text{NO}_2
\]

wherein \(R_1\) is hydrogen, methyl or halogenated methyl and \(R_2\) is hydrogen, methyl, ethyl or halogen and may be substituted with at least one of the following groups:

\[
R_1\text{CH}_2\text{OH}
\]

The alcohols of the indicated formula are prepared by reacting an aldehyde of the formula:

\[
R_1\text{CHO}
\]

wherein \(R_1\) is as indicated above, with a nitroalkanol of the formula:

\[
R_2\text{CH}_2\text{NO}_2
\]

wherein \(R_2\) is hydrogen, methyl and ethyl and an alkali metal hydroxide. The aqueous solution of the alkali metal salt of the nitroalcohol is then reacted with bromine.

Depending upon the ratio of aldehyde and nitroalcohol employed, monohydroxy compounds or diols can be obtained. Thus for example, by reacting nitromethane with one equivalent of formaldehyde, followed by bromination, 2,2-dibromo-2-nitroethanol can be obtained.

A process for producing dibromonitro compounds is also disclosed in US-A- 4,723,044. The reaction disclosed therein comprises condensing nitromethane with formaldehyde or acetalddehyde in the presence of alkali. The amount of alkali is at least 1.5 moles per mole of nitromethane. Thereafter, without isolating the product, the reaction mixture is treated with bromine, and the dibromonitro compound recovered.

As indicated above, the scavenger halonitroalkanols of the present invention are effective in removing hydrogen sulfide, organic sulfides and salts thereof from solids and fluids, including both gases and liquids. The liquids can be water, organic liquids or mixtures thereof. The halonitroalkanols are also particularly useful for removing iron sulfide (FeS₂) deposits. For example, sulfide deposits on the inner surfaces of pipes, such as those used in oil well operations, heat exchangers and the like, can be removed by employing the halonitroalkanols of this invention.

In practice, as indicated above, the amount of the halonitroalkanol employed will vary depending upon a variety of considerations as well as the particular halonitroalkanol employed. Usually the scavenger will be used in concentrations sufficient to provide from about 2 to about 1000 ppm, and more preferably from about 10 to about 250 ppm, of the halonitroalkanol in the fluids being treated. Amounts above and below these ranges can be employed and will, of course, depend upon the individual circumstances.

In those instances wherein DBNE is used as the halonitroalkanol, the amount of scavenger needed can be markedly lower than other compounds of the same class. For instance, DBNE can be used in fluids in as little as 10 ppm and still achieve excellent removal of sulfides.

The scavenger compositions are also effective in a very short period of time after contact with the sulfide-containing fluid. Rapid separation of sulfides is particularly important in industrial processes in which contact between the fluid and scavenger may be relatively brief. Examples of such processes include (1) treatment of cooling water and paper mill slurries (including white water), in which part of the water is periodically removed and replaced with fresh water, so that the scavenger is lost within several hours of its addition; (2) sugar processing and oil field water flooding, in which the halonitroalkanol is used in a "once-through" system, with a contact time of typically 15 minutes to 4 hours; and (3) when employed in a fixed bed system in which the contact time with the fluid is limited.

In addition to the fast reaction of the scavengers with sulfides, it has been found that they are effective at low concentrations. Thus, the scavengers of the present invention are useful in the control of sulfides in recirculating industrial fluids, such as metal working fluids, closed loop cooling water systems, and oil field produced
water. It is these operations where sour water, i.e., water contaminated with sulfide ion, is encountered. Such conditions are also encountered in storage tanks where the scavengers of this invention are useful.

In the experiments which follow, distilled deionized water was used to prepare 0.1 M phosphate buffer at the indicated pH, which was then deaerated by bubbling with nitrogen gas through a porous stone for at least one hour. Deaeration is necessary due to the fact that sulfide is rapidly oxidized in oxygen-containing aqueous solutions. All subsequent operations were conducted in a glove box under an atmosphere of argon. Aqueous sodium sulfide was added to the buffer to produce a solution with the indicated concentration of sulfide, and this solution was divided into 100 gram portions, placed in screw-top bottles, and the test materials were added to each bottle. Sulfide concentrations were then monitored over time by the use of a sulfide-selective electrode connected to an ion analyzer.

The following examples are illustrative of the invention:

Examples 1-6

Following the general procedure indicated above, a 100 ppm solution of the sulfide was prepared and transferred into test bottles. To each bottle was added at a concentration of 100 ppm, the compounds set forth in Table I below. A control solution was maintained with no added sulfide scavenger. The sulfide concentrations over a period of time are indicated in table I below:

<table>
<thead>
<tr>
<th>Example</th>
<th>Test material</th>
<th>Time after addition in min.</th>
<th>Sulfide Conc. (in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acrolein</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Glutaraldehyde</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>DBNE</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Bronopol</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td>58</td>
</tr>
</tbody>
</table>
TABLE I (CONT'D)

<table>
<thead>
<tr>
<th>Example</th>
<th>material</th>
<th>Time after addition in min.</th>
<th>Sulfide Conc. (in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Bronopol</td>
<td>140</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Glyoxal</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>240</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>360</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>Formaldehyde</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>240</td>
<td>34</td>
</tr>
</tbody>
</table>

It is clearly evident from the data set forth above, that acrolein and DBNE were the most rapid and efficient scavengers of the sulfide.

Examples 7-9

In these examples, the effect of pH on the sulfide scavenging ability of DBNE was investigated. Deaerated solutions were prepared as described in the above examples at pH 5, 7 and 9, containing 100 ppm of sulfide. After addition of 100 ppm of DBNE, the sulfide concentrations were reduced as set forth in Table II below:

TABLE II

<table>
<thead>
<tr>
<th>Example</th>
<th>pH</th>
<th>Sulfide concentration after 5 minutes</th>
<th>Sulfide concentration after 45 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

It is evident from the data in table II that pH has little effect on the ability of this material to scavenge sulfide. The control solutions showed no reduction in sulfide concentrations over the course of the experiments. However, it was noted that the mixtures remained transparent when the experiments were conducted at pH 9, and were somewhat cloudy at the lower pH's. This effect may prove useful in applications in which the cloudiness is unacceptable.

Example 10

Since it may be desirable to reduce the concentrations of sulfide in industrial solutions which contain low levels of H₂S, reactivity of DBNE with 10 ppm of sulfide was investigated. When pH 7 solutions containing 10 ppm of sulfide were treated with 100 ppm DBNE, sulfide concentrations were reduced to less than 1 ppm within
5 minutes. Addition of 10 ppm of DBNE to the sulfide solutions reduced the sulfide concentrations to less than 1 ppm within 15 minutes. Again, control solutions showed no reduction in sulfide concentrations in the absence of DBNE.

The total sulfide scavenging capacity of a 100 ppm DBNE solution was then determined. When 500 ppm of sulfide was added to such a solution, sulfide concentrations were observed to decrease in the manner set forth in Table III below:

TABLE III

<table>
<thead>
<tr>
<th>Time</th>
<th>Sulfide Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>5 min.</td>
<td>208</td>
</tr>
<tr>
<td>30 min.</td>
<td>222</td>
</tr>
<tr>
<td>5 hours.</td>
<td>170</td>
</tr>
</tbody>
</table>

It is evident from the data, that DBNE has the ability to remove over three times its own weight of sulfide from aqueous solutions.

Example 11

This example demonstrates the ability of DBNE to remove solid sulfide deposits. In this experiment, *Desulfovibrio desulfuricans* was inoculated into two SRB vials (anaerobic vials containing nutrient media and an iron nail) and allowed to grow for one week at 37°C. The resulting bacterial growth produced hydrogen sulfide, which reacted with the iron nail to produce a dense suspension of black solid (iron sulfide), and a black coating on the iron nail. The two vials were purged with argon for several minutes to remove excess hydrogen sulfide. DBNE was then added to one vial, and acrolein was added to the other vial, in quantities sufficient to provide maximum concentrations of 8000 ppm of each chemical. Each vial was mixed briefly by inversion. The results were that the vial treated with DBNE rapidly lost the black color of iron sulfide; almost all of the black deposits were gone within 30 minutes. By contrast, no change was observed in the vial treated with acrolein, even after 24 hours.

Claims

1. A process for the removal of at least one sulfide from solids and fluids which comprises the steps of: (a) contacting a solid or fluid containing at least one sulfide with a sulfide-removing amount of a halonitroalkanol of the formula:

 ![Chemical Structure](attachment:image)

 wherein:
 - X represents bromo or chloro;
 - R₁ represents hydrogen or substituted or unsubstituted alkyl or aryl of up to about 18 carbon atoms, and wherein any substituents can be X, hydroxyl or lower alkyl; and
 - R₂ represents R₁ or X; and
 (b) allowing said halonitroalkanol to react with said sulfide.

2. The process of claim 1 wherein X represent bromo, R₁ represents hydrogen or a group selected from methyl, ethyl, propyl and phenyl, and R₂ represents bromo or R₁.

3. The process of claim 1 or 2 wherein said fluid is an aqueous liquid, e.g. industrial cooling water, an...
aqueous mixture containing hydrogen sulfide and its salts, or water employed in oil field operations.

4. The process of claim 1 or 2 wherein said fluid is a non-aqueous liquid.

5. The process of claim 1 or 2 wherein said fluid is a gas, e.g. a gas containing hydrogen sulfide.

6. The process of claim 5 wherein said gas is passed over a fixed bed carrier containing said halonitroalkanol.

7. The process of claim 1 or 2 wherein said solid is the inner surface of a pipe.

8. The process of any one of claims 1 to 7 wherein said sulfide is hydrogen sulfide or a salt.

9. The process of any one of claims 1 to 8 wherein said halonitroalkanol is 2,2-dibromo-2-nitroethanol or 2-bromo-2-nitro-1,3-propanediol.

10. The process of any one of claims 1 to 9 wherein said halonitroalkanol is employed in conjunction with a carrier, preferably an inert solid or liquid carrier.

11. The process of any one of claims 1 to 10 wherein said halonitroalkanol is employed in an amount of from 2 to 6000 parts per million.

12. A formulation for the removal of sulfides from solids, liquids and gases, said formulation comprised of an effective sulfide-removing amount of a halonitroalkanol of the formula

\[
\begin{align*}
\text{R}_1 &-\text{CH}-\text{C}-\text{NO}_2^2 \\
\text{OH} &\quad \text{X}
\end{align*}
\]

wherein:

- \text{X} represents bromo or chloro;
- \text{R}_2 represents hydrogen or substituted or unsubstituted alkyl or aryl of up to about 18 carbon atoms, and wherein any substituents can be \text{X}, hydroxyl or lower alkyl; and
- \text{R}_1 represents \text{R}_2 or \text{X}; and

an inert solid carrier.

13. The formulation of claim 12 wherein \text{X} represents bromo, \text{R}_1 represents hydrogen or a group selected from methyl, ethyl, propyl and phenyl, and \text{R}_2 represents bromo or \text{R}_1.

14. The formulation of claim 12 or 13 wherein said halonitroalkanol is 2,2-dibromo-2-nitroethanol or 2-bromo-2-nitro-1,3-propanediol.

15. A formulation for the removal of sulfides from solids, liquids and gases, said formulation comprised of an effective sulfide-removing amount of (i) a mixture of halonitroalkanols of the formula

\[
\begin{align*}
\text{R}_1 &-\text{CH}-\text{C}-\text{NO}_2^2 \\
\text{OH} &\quad \text{X}
\end{align*}
\]

wherein:

- \text{X} represents bromo or chloro;
- \text{R}_2 represents hydrogen or substituted or unsubstituted alkyl or aryl of up to about 18 carbon atoms, and wherein any substituents can be \text{X}, hydroxyl or lower alkyl; and
- \text{R}_1 represents \text{R}_2 or \text{X};

or (ii) a mixture of a halonitroalkanol as defined above and at least one other sulfide scavenger;

and an inert carrier.

16. The formulation of claim 15 wherein said carrier is an inert solid or liquid carrier.

Patentansprüche

1. Verfahren zum Entfernen von mindestens einem Sulfid aus Feststoffen und Fluiden, welches die Schritte umfasst:

(a) Inkontakbringung eines Feststoffs oder Fluids, der oder das mindestens ein Sulfid enthält, mit einer Sulfid-entfernnenden Menge eines Halogennitroalkanols der Formel:

\[
\begin{align*}
\text{R}_1 &-\text{CH}-\text{C}-\text{NO}_2^2 \\
\text{OH} &\quad \text{X}
\end{align*}
\]

wherein:

- \text{X} represents bromo or chloro;
- \text{R}_2 represents hydrogen or substituted or unsubstituted alkyl or aryl of up to about 18 carbon atoms, and wherein any substituents can be \text{X}, hydroxyl or lower alkyl; and
- \text{R}_1 represents \text{R}_2 or \text{X};

or (ii) a mixture of a halonitroalkanol as defined above and at least one other sulfide scavenger;

and an inert carrier.
worin:
X Brom oder Chlor bedeutet;
R₁, Wasserstoff oder substituiertes oder unsubstituiertes Alkyl oder Aryl mit bis zu 18 Kohlenstoffatomen darstellt, und worin jeder Substituent X, Hydroxyl oder Niederalkyl sein kann; und
R₂, R₃ oder X bedeutet; und
(b) Reagierenlassen des Halogennitroalkans mit dem Sulfid.
2. Verfahren nach Anspruch 1, worin X Brom ist, R₁ Wasserstoff oder eine aus Methyl, Ethyl, Propyl und Phenyl ausgewählte Gruppe darstellt und R₂ Brom oder R₃ bedeutet.
3. Verfahren nach Anspruch 1 oder 2, worin das Fluid eine wässrige Flüssigkeit ist, z.B. industrielles Kühlwasser, eine wässrige Mischung, die Schwefelwasserstoff und dessen Salze enthält, oder Wasser, das bei Arbeiten auf Ölfeldern eingesetzt wurde.
4. Verfahren nach Anspruch 1 oder 2, worin das Fluid eine nicht-wässrige Flüssigkeit ist.
5. Verfahren nach Anspruch 1 oder 2, worin das Fluid ein Gas ist, z.B. ein Gas, das Schwefelwasserstoff enthält.
7. Verfahren nach Anspruch 1 oder 2, worin der Feststoff die innere Oberfläche einer Röhre ist.
8. Verfahren nach irgendeinem der Ansprüche 1 bis 7, worin das Sulfid Schwefelwasserstoff oder ein Salz ist.
9. Verfahren nach irgendeinem der Ansprüche 1 bis 8, worin das Halogennitroalkan 2,2-Dibrom-2-nitroethanol oder 2-Brom-2-nitro-1,3-propandiol ist.
10. Verfahren nach irgendeinem der Ansprüche 1 bis 9, worin das Halogennitroalkan in Verbindung mit einem Träger eingesetzt wird, vorzugsweise mit einem inerten festen oder flüssigen Träger.
11. Verfahren nach irgendeinem der Ansprüche 1 bis 10, worin das Halogennitroalkan in einer Menge von 2 bis 6000 Teilen pro Million eingesetzt wird.
12. Zusammensetzung zum Entfernen von Sulfiden aus Feststoffen, Flüssigkeiten und Gasen, umfassend eine effektive Sulfid-entfernde Menge eines Halogennitroalkans der Formel
worin:
X Brom oder Chlor bedeutet;
R₁, Wasserstoff oder substituiertes oder unsubstituiertes Alkyl oder Aryl mit bis zu 18 Kohlenstoffatomen bedeutet, und worin jeder Substituent X, Hydroxyl oder Niederalkyl sein kann; und
R₂, R₃ oder X bedeutet; und
R₁, Wasserstoff oder substituiertes oder unsubstituiertes Alkyl oder Aryl mit bis zu 18 Kohlenstoffatomen bedeutet, und worin jeder Substituent X, Hydroxyl oder Niederalkyl sein kann; und
einen inerten festen Träger.
13. Zusammensetzung nach Anspruch 12, worin X Brom bedeutet, R₁ Wasserstoff oder eine aus Methyl, Ethyl, Propyl und Phenyl ausgewählte Gruppe ist und R₂ Brom oder R₃ darstellt.
14. Zusammensetzung nach Anspruch 12 oder 13, worin das Halogennitroalkan 2,2-Dibrom-2-nitroethanol oder 2-Brom-2-nitro-1,3-propandiol ist.
15. Zusammensetzung zur Entfernung von Sulfiden aus Feststoffen, Flüssigkeiten und Gasen, umfassend eine effektive Sulfid-entfernde Menge von (i) einer Mischung von Halogennitroalkanen der Formel
Revidications

1. Procédé d'élimination d'au moins un sulfure de matières solides et de fluides, qui comprend les étapes consistant
 (a) à faire entrer une matière solide ou un fluide contenant au moins un sulfure en contact avec une quantité éliminant les sulfures, d'un halogénonitro-alcanol de formule :

 \[
 \begin{align*}
 &\text{R}_1-\text{CH}-\text{C}-\text{NO}_2 \\
 &\text{OH} \\
 &\text{X}
 \end{align*}
 \]

dans laquelle :
 X représente un radical bromo ou chlоро ;
 \(\text{R}_1 \) représente l'hydrogène ou un groupe alkyle ou aryle substitué ou non substitué ayant jusqu'à environ 18 atomes de carbone, et dans lequel tous substituants peuvent représenter \(\text{X} \), un radical hydroxyle ou un radical alkyle inférieur ; et
 \(\text{R}_2 \) représente \(\text{R}_1 \) ou \(\text{X} \) ; et
 (b) à faire réagir ledit halogénonitro-alcanol avec ledit sulfure.

2. Procédé suivant la revendication 1, dans lequel \(\text{X} \) représente le radical bromo, \(\text{R}_1 \) représente l'hydrogène ou un groupe choisi entre les groupes méthyle, éthyle, propyle et phényle et \(\text{R}_2 \) est le radical bromo ou \(\text{R}_1 \).

3. Procédé suivant la revendication 1 ou 2, dans lequel ledit fluide est un liquide aqueux, par exemple une eau de refroidissement industrielle, un mélange aqueux contenant du sulfure d'hydrogène et ses sels ou de l'eau utilisée dans des opérations sur des champs de pétrole.

4. Procédé suivant la revendication 1 ou 2, dans lequel le fluide est un liquide non aqueux.

5. Procédé suivant la revendication 1 ou 2, dans lequel le fluide est un gaz, par exemple un gaz contenant du sulfure d'hydrogène.

6. Procédé suivant la revendication 5, dans lequel on fait passer le gaz sur un support en lit fixe contenant ledit halogénonitro-alcanol.

7. Procédé suivant la revendication 1 ou 2, dans lequel ladite matière solide est la surface interne d'une conduite.

8. Procédé suivant l'une quelconque des revendications 1 à 7, dans lequel ledit sulfure est le sulfure d'hydrogène ou un sel.

9. Procédé suivant l'une quelconque des revendications 1 à 8, dans lequel ledit halogénonitro-alcanol est le 2,2-dibromo-2-nitro-éthanol ou le 2-bromo-2-nitro-1,3-propanediol.

10. Procédé suivant l'une quelconque des revendications 1 à 9, dans lequel l'halogénonitro-alcanol est utilisé conjointement avec un support, de préférence un support solide ou liquide inerte.

11. Procédé suivant l'une quelconque des revendications 1 à 10, dans lequel ledit halogénonitro-alcanol est utilisé en une quantité de 2 à 6000 parties par million.

12. Formulation destinée à éliminer des sulfures de matières solides, de liquides et de gaz, ladite formulation étant constituée d'une quantité, efficace pour éliminer des sulfures, d'un halogénonitro-alcanol de for-
dans laquelle :

X représente un radical bromo ou chloro ;

R₁ est l'hydrogène ou un radical alkyle ou aryle substitué ou non substitué ayant jusqu'à environ 18 atomes de carbone, et l’un quelconque des substituants peut représenter X, un radical hydroxyle ou alkyle inférieur ; et

R₂ représente R₁ ou X ; et

un support solide inerte.

13. Formulation suivant la revendication 12, dans laquelle X est un radical bromo, R₁ représente l'hydrogène ou un groupe choisi entre méthyle, éthyle, propyle et phényle et R₂ représente un radical bromo ou R₁.

14. Formulation suivant la revendication 12 ou 13, dans laquelle ledit halogénonitro-alcanol est le 2,2-dibromo-2-nitro-éthanol ou le 2-bromo-2-nitro-1,3-propanediol.

15. Formulation pour éliminer des sulfures de matières solides, de liquides et de gaz, ladite formulation étant constituée d’une quantité, efficace pour éliminer des sulfures, (i) d’un mélange d’halogénonitro-alcanols de formule

\[
R_2 \quad R_1 - CH - C - NO_2 \quad OH \quad X
\]

dans laquelle :

X représente un radical bromo ou chloro ;

R₁ représente l'hydrogène ou un groupe alkyle ou aryle substitué ou non substitué ayant jusqu’à environ 18 atomes de carbone, et l’un quelconque des substituants peut représenter X, un radical hydroxyle ou alkyle inférieur ; et

R₂ représente R₁ ou X ;

ou (ii) d’un mélange d’un halogénonitro-alcanol tel que défini ci-dessus et d’au moins un autre agent de désulfuration ;

et un support inerte.

16. Formulation suivant la revendication 15, dans laquelle ledit support est un support solide ou liquide inerte.