EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 21.10.92 Bulletin 92/43

Int. Cl.®: C08G 18/65, C08G 18/66

Application number: 89117613.3

Date of filing: 23.09.89

Flexible polyurethane foams comprising a (cyclo)aliphatic diamine.

Priority: 06.10.88 US 254326

Date of publication of application: 11.04.90 Bulletin 90/15

Publication of the grant of the patent: 21.10.92 Bulletin 92/43

Designated Contracting States:
BE DE ES FR GB IT SE

References cited:
DE-A- 1 719 289
US-A- 4 761 434
US-A- 4 761 465

Proprietor: MILES INC.
One Mellon Center 500 Grant Str.
Pittsburgh, PA 15219-2602 (US)

Inventor:
Milliren, Charles M.
100 Marshall Drive
Coraopolis, PA 15108 (US)

Representative:
Müller, Gerhard, Dr. et al
BAYER AG Konzernverwaltung RP
Patentabteilung
W-5090 Leverkusen 1 Bayerwerk (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

It is known in the art to manufacture flexible polyurethane foams using mixtures of methylene bis (phenyl isocyanate) ("MDI") and polymethylene poly(phenyl isocyanate) ("polymeric MDI") and prepolymers based on such mixtures. See, e.g., U.S. Patents 4,239,856, 4,256,849, 4,261,852, and 4,365,025. Typical isocyanate reactive materials suggested for use with such isocyanates include i) mixtures of polyether triols having molecular weights of from 2000 to 7000 with diethanolamine (U.S. 4,239,856); ii) mixtures of 400 to 10,000 molecular weight polyethers having primary hydroxyl groups with low molecular weight active hydrogen containing materials (U.S. 4,256,849); iii) polyoxypropylene or poly(oxypropylene-oxyethylene) diols or triols having equivalent weights of from 700 to 2000 (U.S. 4,261,852) and iv) water (U.S. 4,365,025).

It is also known to use various low molecular weight crosslinkers in the manufacture of flexible foams. U.S. Patent 3,067,148 describes the use of tetrahydric compounds derived from ethylene diamine and alkylene oxides. U.S. Patent 3,948,825 describes the use of reaction products of methylene diamine and alkylene oxides. U.S. Patent 4,569,952 describes the use of an addition product of an alkylene oxide and an aromatic diamine and a mixture of the addition product with an alkanolamine.

Further, DuPont has recently introduced an amine sold as Dytek amine for a variety of uses. The Dytek amine is described as 2-methylenpentamethylene diamine. Among the uses suggested in product bulletin entitled "Amines" is the use as a chain extender for polyurethanes.

Finally, it is already known to manufacture integral skin polyurethane foams using 2,2,4-trimethyl hexamethylene diamine as a so-called "quick" diamine (DE-A 1719 289, e.g. example 10) and excluding water as blowing agent. The foams obtainable according to the invention are, in contrast, flexible foams having no integral skin and manufactured with water as blowing agent.

While many foam formulations based on MDI and polymeric MDI give adequate properties for many applications, it is generally difficult to have good processability over a broad isocyanate index range. Additionally, it would be desirable to develop a foam having high tear strength, high elongation, and low compression set for automotive seating and headrests and for nonautomotive seating.

DESCRIPTION OF THE INVENTION

The present invention is directed to flexible polyurethane foams obtainable from a specific reaction mixture. Foams of a wide range of densities can be produced with good mold vent stability over a wide isocyanate index range. The flow times of the foam systems are extended, which, when combined with the improved vent stability, gives much improved molded parts. The foams produced from the reaction mixtures have improved green strength upon demold with reduced, and, in most cases, eliminated finger printing. In addition, the use of cell-openers is not required. Finally, when using the preferred formulations, the foams produced have high tear strengths, high elongations, and low compression sets.

Subject of the present invention is a flexible, non-integral foam prepared by reacting:

A) from more than 0 to up to 3 parts by weight per 100 parts by weight of components B) and C) of an amine of the formula:

\[\text{H}_2\text{N} - \text{R} - \text{NH}_2 \]

where R is a C3 to C10 straight or branched alkylene group, or a C4 to C16 alicyclic group

B) from 0 to 30% by weight of a polyoxyalkylene polylamine having a molecular weight of from 400 to 5000 and containing from 2 to 3 primary amino groups, and

C) from 70 to 100% by weight of one or more polyether polyhydroxy compounds having hydroxy functionalities of from 2 to 3 and molecular weights of from 1000 to 10,000, the percents by weight of components B) and C) totalling 100%; and

D) a polymethylene poly(phenyl isocyanate) containing from 40 to 85% by weight of methylenebis(phenyl isocyanate) and/or a prepolymer of such isocyanate, said prepolymer having an isocyanate content of from 15 to 30% by weight, in the presence of

E) water and optionally readily volatile organic substances as blowing agents, at an isocyanate index of from 60 to 140.

Component A) is preferably used in an amount of from 0.05 to 2.5 parts by weight and most preferably in an amount of from 0.25 to 1.5 parts by weight. Component B) is preferably used in an amount of from 1 to 20% by weight and most preferably from 2.5 to 15% by weight, with component C) preferably used in an amount of from 80 to 99% by weight and most preferably from 85 to 97.5% by weight. The preferred and most preferred ranges produce foams of the best overall physical properties. The foams of the present invention are prepared by reacting the above components A, B, C (and E) with a polymethylene poly(phenyl isocyanate) containing from about 40 to about 85% by weight of methylene bis(phenyl isocyanate) or a prepolymer of such isocyanate, with
such prepolymer having an isocyanate content of from about 15 to about 30% by weight. The isocyanates useful herein are generally known and are produced by reacting phosgene with aniline/formaldehyde condensates. Known processes for preparing the aniline/formaldehyde condensates and the resultant polyisocyanates are described in the literature and in many patents, for example, U.S. 2,683,730, 2,950,263, 3,012,008, 3,344,162 and 3,362,979. Additionally useful isocyanates are described in U.S. 4,256,849, the disclosure of which is herein incorporated by reference. Useful prepolymer are described in U.S. 4,261,852. The isocyanate index is from 60 to 140, and is preferably from 90 to 120.

Component A) of the reaction mixture of the present invention is an amine of the formula:

\[\text{H}_2\text{N} - \text{R} - \text{NH}_2 \]

where \(R \) is a \(C_2 \) to \(C_{10} \) straight or branched chain alkylene group or a \(C_4 \) to \(C_{18} \) alicyclic group. Useful diamines include the various straight and branched chain isomers of diaminopropane, diaminobutane, diaminopentane, diaminohexane, diaminohexane, diaminohexane, diaminooctane, diaminononane, and diaminodecane. Specific useful diamines include 1,2- and 1,3-diaminopropane; 1,3-, 2,3-, and 1,4-diaminobutane; 1,2-diamino-2-methylpropane; 1,5-diaminopentane; 1,4-diamino-1-methylbutane; 1,4-diamino-2-methylbutane; 1,3-diamino-1-ethylpropane; 1,3-diamino-1,1-dimethylpropane; 1,3-diamino-1,2-dimethylpropane; 1,3-diamino-2,2-dimethylpropane; 1,3-diamino-2,2-dimethylpentane; 1,6-diaminohexane and the like. Useful alicyclic diamines include the various isomers of diaminoctylbutane, diaminocyclopentane, diaminocyclohexane, diaminocycloheptane, diaminocyclooctane, and diaminocyclononane. Also useful are the diamino-1-methylcyclohexanes; the methylenebis(cyclohexylamines); the diamino-1-methylcyclohexanes; the diaminodimethylcyclohexanes; the isophorone diamine; and the like. It is presently preferred to use those diamines where \(R \) is a \(C_4 \) to \(C_{10} \) branched chain alkylene group. The most preferred material is 1,5-diamino-2-methylpentane.

Component B) of the reaction mixture is a polyoxyalkylene polynamine having a molecular weight of from 400 to 5000, and having from 2 to 3 primary amine groups. Such polynamines are known in the art. One method for preparing such amines is the preparation of polyhydroxy polymers (e.g., polypropylene glycols) by a reaction with ammonia in the presence of Raney nickel and hydrogen (Belgian Patent 834,741). U.S. 3,854,370 discloses the preparation of polyyxalkylene polynamines by reaction of the corresponding polyl with ammonia and hydrogen in the presence of a nickel, copper, or chromium catalyst. The preparation of polymers containing amino end groups by the hydrogenation of cyanoethylated polyoxypropylene ethers is described in German Patent 1,193,671. Other methods for the preparation of polyoxyalkylene polynamines are described in U.S. Patents 3,155,728 and 3,236,895 and French Patent 1,551,805. Commercially available polyether polynamines are sold by Texaco under the Jeffamine® tradename.

Component C) comprises one or more polyether polyhydroxyl compounds having hydroxyl functionalities of from 2 to 3, and having molecular weights of from 1000 to 10,000, and preferably from 2000 to 6000. Such polymers are generally known in the art. These polymers may be obtained by polymerizing epoxides, such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin in the presence of Lewis catalysts such as BF\(_3\). Polymerization may also be accomplished by the addition of epoxides (preferably ethylene oxide and/or propylene oxide) either in admixture or successively, to compounds containing reactive hydrogen atoms such as water or alcohols. Examples of suitable reactive compounds include ethylene glycol, 1,3- and 1,2-propylene glycol, trimethylol propane, glycerol and the like. Also useful are the polymers containing high molecular weight polyadducts and polycondensates or polymers in finely dispersed or dissolved form. Such polymers may be obtained by polyaddition reactions (for example, reactions between polycyloxyan- ates and aminofunctional compounds) and polycondensation reactions (for example, between formaldehyde and phenols and/or amines) in situ in the above described polymers. Such processes are described in German Auslegeschriften 1,186,075 and 1,260,142 and in German Offenlegungsschriften 2,324,134, 2,423,984, 2,512,385, 2,513,615, 2,550,796, 2,550,797, 2,550,833, 2,550,862, 2,633,293, and 2,639,254. See also U.S. Patents 3,325,421, 4,042,537, 4,089,835, 4,293,470, 4,296,213, and 4,374,209. Also useful are the so-called polymer polyls obtained by polymerizing one or more ethylenically unsaturated monomers in a polyether. Such polymer polyls are described in U.S. 3,383,351, 3,304,273, 3,523,093, 3,110,685 and RE 28,715 and 29,118. Polymer polyls are commercially available from Bayer AG, BASF, and Union Carbide. Regardless of the specific polyether used herein, it is generally preferred to use polymers containing primary hydroxyl groups.

According to the invention, water and optionally readily volatile organic substances are used as blowing agents. Suitable organic blowing agents include, for example, acetone, ethyl acetate and halogen substituted alkanes such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloromethane, chlorodifluoromethane, and dichlorodifluoromethane as well as butane, hexane, heptane and diethyl ether. The effect of a blowing agent can also be obtained by the addition of compounds which decompose at temperatures above room temperature to release gases such as nitrogen, e.g., azo compounds such as azoisobutyric acid nitrile. Further examples of blowing agents and the use of blowing agents are known and have been described, e.g., in Kunststoff-Handbuch, Volume VII, published by Vieweg and Hochtlen, Carl-Hanser.
Catalysts are also frequently used according to the invention. The catalysts added are generally known and include tertiary amines such as triethylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, N-cocomorpholine, N,N,N',N''-tetramethyl-ethylenediamine, 1,4-diaza-bicyclo-(2,2,2)-octane, N-methyl-N'-dimethyl-aminoethyipiperazine, N,N-dimethylbenzylamine, bis-(N,N-diethyl-amoenoimido)-adipate, N,N-diethyl-benzylamine, pentamethyl-diethylenetriamine, N,N-dimethylcyclohexylamine, N,N,N',N''-tetramethyl-1,3-butanediamine, N,N-dimethyl-β-phenylethylamine, 1,2-dimethylimidazole, 2-methylimidazole and the like. Also useful are the commercially available tertiary amines such as Niax® Al and Niax® A107, available from Union Carbide; Thancat® DD, available from Texaco; and the like. Mannich bases known per se obtained from secondary amines such as dimethylamine and aldehydes, preferably formaldehyde, or ketones such as acetone, methyl ethyl ketone or cyclohexanone and phenols such as phenol nonylphenol or bisphenol may also be used as catalysts. Examples of catalysts which consist of tertiary amines having hydrogen atoms which are reactive with isocyanate groups include triethanolamine, trisopropylamine, N-methyl-diethanolamine, N-ethyl-dieethanolamine, N,N-dimethyl-ethanolamine and their reaction products with alkylene oxides such as propylene oxide and/or ethylene oxide.

Silaamines having carbon-silicon bonds as described, e.g., in German Patent No. 1,229,290 and U.S. Patent No. 3,820,984 may also be used as catalysts. Examples include 2,2,4,trimethyl-2-silamorpholine and 1,3-dimethylaminosilylethamidolsiloxane.

Basic nitrogen compounds such as tetraalkylammonium hydroxides, alkali metal hydroxides such as sodium phenolate and alkali metal alcoholates such as sodium methyate may also be used as catalysts. Hexa hydrotriazines are also suitable catalysts.

Organic metal compounds may also be used as catalysts according to the invention, in particular organic tin compounds. The organic tin compounds used are preferably tin(II) salts of carboxylic acids such as tin(II) acetate, tin(II) octoate, tin(II) ethyl hexoate and tin(II) laurate and tin(IV) compounds such as dibutyl tin oxide, dibutyl tin dichloride, dibutyl tin dicacetate, dibutyl tin dilaurate, dibutyl tin maleate or dioctyl tin dicacetate. All the above-mentioned catalysts may, of course, be used as mixtures.

Further examples of catalysts which may be used according to the invention and details concerning the activity of the catalysts are known and are described, e.g., in Kunststoff-Handbuch, Volume VII, published by Vieweg and Hochtien, Carl-Hansaer-Verlag, Munich 1986, pages 96 to 102.

The catalysts, when used, are generally used in a quantity of between 0.001 and 10%, by weight, based on the quantity of primary hydroxyl group containing polyethers.

Surface active additives such as emulsifiers and foam stabilizers may also be used according to the invention. Suitable emulsifiers include, e.g., the sodium salts of ricinoleic sulphonates or salts of fatty acids with amines such as oleic acid diethylenimine or stearic acid diethanolamine. Alkali metal or ammonium salts of sulfonic acids such as dodecylbenzene sulfonic acid or dinaphthylmethane disulfonic acid or of fatty acids such as ricinoleic acid or of polymeric fatty acids may also be used as surface active additives.

Polyether siloxanes are particularly suitable foam stabilizers, especially useful are those which are water soluble. These compounds generally have a polydimethyl siloxane group attached to a copolymer of ethylene oxide and propylene oxide. Foam stabilizers of this kind are known and have been described, for example, in U.S. Patent Nos. 2,834,748, 2,917,480 and 3,629,308. It may, however, be advantageous to carry out the process according to the invention without foam stabilizers.

Other additives which may also be used according to the invention include reaction retarders, e.g., substances which are acid in reaction such as hydrochloric acid or organic acid halides, cell regulators such as paraffins or fatty alcohols or dimethyl polysiloxanes, pigments, dyes, flame retarding agents such as trichloroethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphates, stabilizers against ageing and weathering, plasticizers, fungistatic and bacteriostatic substances, and fillers such as barium sulfate, kieselguhr, carbon black or whiting.

Other examples of surface active additives, foam stabilizers, cell regulators, reaction retarders, stabilizers, flame retarding substances, plasticizers, dyes, and fungistatic and bacteriostatic substances which may be used according to the invention and details concerning the use and mode of these additives are known and may be found, e.g., in Kunststoff-Handbuch, Volume VII, published by Vieweg and Hochtien, Carl-Hansaer-Verlag, Munich 1966, on pages 103 to 113.

According to the invention, the components may be reacted together by known processes often using mechanical devices such as those described in U.S. Patent No. 2,764,565. Details concerning processing apparatus which may be used according to the invention may be found in Kunststoff-Handbuch, Volume VII, published by Vieweg and Hochtien, Carl-Hansaer-Verlag, Munich, 1966, pages 121 and 205.

According to the invention, the foaming reaction for producing foam products is often carried out inside molds. In this process, the foamy reaction mixture is introduced into a mold which may be made of a metal
such as aluminum or a plastics material such as an epoxide resin. The reaction mixture foams up inside the mold to produce the shaped product. The process of foaming in molds is carried out to produce a product having a cellular structure on its surface. According to the invention, the desired result can be obtained by introducing just sufficient foamable reaction mixture to fill the mold with foam after the reaction is completed.

So-called external mold release agents known in the art, such as silicone waxes and oils, are frequently used when foaming is carried out inside the molds. The process may also be carried out with the aid of so-called internal mold release agents, if desired, in combination with external mold release agents, e.g., described in German Offenlegungsschriften Nos. 2,121,670 and 2,307,589.

Cold setting foams may also be produced, as described in British Patent No. 1,162,517 and German Offenlegungsschrift No. 2,153,086.

Foams may, of course, also be produced by the process of block foaming or by the laminator process known in the art. The products obtainable according to the invention may be used, for example, as upholstery or padding materials.

The invention is further illustrated but is not intended to be limited by the following examples in which all parts and percentages are by weight unless otherwise specified.

EXAMPLES

In the examples which follow, the following materials were used:

A) POLYOL A: a glycerin initiated-propylene oxide/ethylene oxide polyether (weight ratio of PO to EO of about 5:1) having a molecular weight of 6000.

B) POLYOL B: a propylene glycol initiated-propylene oxide/ethylene oxide polyether (weight ratio of PO to EO of about 7:1) having a molecular weight of 4000.

C) POLYAMINE A: an approximately 400 molecular weight difunctional primary amine terminated polyether, available from Texaco as Jeffamine® D-400.

E) DYTEK A: 2-methylpentamethylenediamine, available from Dupont.

F) SILOXANE A: B8002, a siloxane available from Goldschmidt.

G) SILOXANE B: KS 43, a low molecular weight polyoxyalkylene polysiloxane available from Bayer AG.

H) CELL OPENER A: a glycerin based ethylene oxide/propylene oxide polyether having an OH number of 35.

I) CELL OPENER B: a sorbitol initiated-propylene oxide/ethylene oxide polyether (weight ratio of PO to EO of about 5:1) having an OH number of 100.

J) WATER

K) ISOCYANATE: Mondur® MRS-2, available from Mobay, a polymethylenepoly(phenyl isocyanate) containing 78% by weight disiocyanate, having an isocyanate content of 33%, an equivalent weight of 127, and a viscosity of 22 mPa.s at 25°C.

In the examples, the components of the B-side were accurately weighed into a suitable container and mixed using an air driven two blade mixer. The resultant mixture was then taken to the metering equipment. The metering equipment was flushed with the mixture and calibrated for the desired foam index.

The mixture was mixed with the isocyanate using high pressure metering equipment (HENNECKE® HK100) and a Hennecke® MQ-12-2 self-cleaning mixhead. Process settings were as follows:

TEMPERATURE MIX/ISO	27/27°C
MIX PRESSURES MIX/ISO	17,5/ 11,2 N/mm²
MOLD TEMP/F	54-66°C
MOLD RELEASE	Brulin 2023
DEMOL TIME	3-5 minutes

The reaction mixture was metered into a 37,5 cm x 37,5 cm x 10 cm mold (which had been previously sprayed with the mold release), in an amount sufficient to give the desired foam density. The mold was then closed and the foam part demolded after the reaction was complete. The parts were labelled and tested for physical properties. The parts were aged under standard ASTM conditions (50% RH, 22-23°C) for three days. The parts were then tested under ASTM 2406 laboratory procedures as specified in Chrysler MS-DC634.

The formulations used and the results obtained were as reported in the following table (all amounts are in parts by weight):
Table

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-SIDE:</td>
<td></td>
</tr>
<tr>
<td>POLYOL A</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>45</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>POLYOL B</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>52.5</td>
<td>55</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>66</td>
</tr>
<tr>
<td>POLYAMINE A</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>POLYAMINE B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CELL OPENER A</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>CELL OPENER B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DYEK A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>1</td>
<td>.2</td>
</tr>
<tr>
<td>SILOXANE A</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>SILOXANE B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>.85</td>
</tr>
<tr>
<td>WATER</td>
<td>3.0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>A1/LV:1/1*</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>.6</td>
<td>-</td>
<td>.3</td>
<td>-</td>
</tr>
<tr>
<td>A1/LV:1/1.5</td>
<td>-</td>
</tr>
<tr>
<td>A1/LV:1/4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>-</td>
</tr>
<tr>
<td>A1/LV:1/1.75</td>
<td>-</td>
<td>.65</td>
<td>.65</td>
<td>.65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A1/LV:10</td>
<td>-</td>
<td>.65</td>
<td>-</td>
</tr>
<tr>
<td>ISO INDEX</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE (Cont'd)

<table>
<thead>
<tr>
<th>EXAMPLE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULTS:</td>
<td></td>
</tr>
<tr>
<td>Density (kg/m3)</td>
<td>49</td>
<td>44</td>
<td>43</td>
<td>46</td>
<td>42</td>
<td>44</td>
<td>42</td>
<td>45</td>
<td>42</td>
<td>41</td>
<td>43</td>
<td>42.3</td>
<td>43.1</td>
<td>41.3</td>
<td>46.4</td>
<td>36.8</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>Tensile (kPa)</td>
<td>136</td>
<td>131</td>
<td>141</td>
<td>186</td>
<td>97</td>
<td>145</td>
<td>154</td>
<td>197</td>
<td>118</td>
<td>137</td>
<td>170</td>
<td>200</td>
<td>155</td>
<td>154</td>
<td>155</td>
<td>143</td>
<td>173</td>
<td>146</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>170</td>
<td>134</td>
<td>134</td>
<td>114</td>
<td>157</td>
<td>153</td>
<td>136</td>
<td>145</td>
<td>159</td>
<td>148</td>
<td>144</td>
<td>137</td>
<td>153</td>
<td>144</td>
<td>160</td>
<td>156</td>
<td>134</td>
<td>156</td>
</tr>
<tr>
<td>Tear Strength (N/m)</td>
<td>189</td>
<td>215</td>
<td>228</td>
<td>236</td>
<td>184</td>
<td>201</td>
<td>227</td>
<td>315</td>
<td>263</td>
<td>271</td>
<td>368</td>
<td>438</td>
<td>265</td>
<td>259</td>
<td>264</td>
<td>259</td>
<td>315</td>
<td>245</td>
</tr>
<tr>
<td>COMPRESSION SET (%)1 (based on original deflection)</td>
<td></td>
</tr>
<tr>
<td>2A 50</td>
<td>71.8</td>
<td>22.1</td>
<td>22.2</td>
<td>21.1</td>
<td>11.9</td>
<td>10.8</td>
<td>11.2</td>
<td>13.9</td>
<td>20</td>
<td>14.8</td>
<td>13</td>
<td>21.4</td>
<td>16.4</td>
<td>21</td>
<td>16.4</td>
<td>16.8</td>
<td>28.4</td>
<td>19</td>
</tr>
<tr>
<td>2A 75</td>
<td>92.7</td>
<td>93.5</td>
<td>89</td>
<td>77.1</td>
<td>56.6</td>
<td>8.8</td>
<td>10.4</td>
<td>12.8</td>
<td>64</td>
<td>23.5</td>
<td>11.8</td>
<td>12.0</td>
<td>14.4</td>
<td>25</td>
<td>12.8</td>
<td>18.2</td>
<td>20</td>
<td>25.4</td>
</tr>
<tr>
<td>2C 50</td>
<td>48.5</td>
<td>28.3</td>
<td>25.3</td>
<td>18.5</td>
<td>17.5</td>
<td>13.1</td>
<td>12.8</td>
<td>15.7</td>
<td>18</td>
<td>16.8</td>
<td>15.4</td>
<td>15.8</td>
<td>15.4</td>
<td>21.4</td>
<td>19.6</td>
<td>17.7</td>
<td>25.2</td>
<td>16.8</td>
</tr>
<tr>
<td>2C 75</td>
<td>87.4</td>
<td>85.8</td>
<td>69.7</td>
<td>17.2</td>
<td>12.8</td>
<td>11.3</td>
<td>11.2</td>
<td>14.2</td>
<td>16</td>
<td>14.4</td>
<td>15.0</td>
<td>14.2</td>
<td>16.5</td>
<td>20.2</td>
<td>14.1</td>
<td>13.3</td>
<td>23.4</td>
<td>14.9</td>
</tr>
</tbody>
</table>

*/ 1
A1 refers to Max A1, a tertiary amine catalyst available from Union Carbide;
LV refers to Dabco 33LV, a tertiary amine catalyst available from Air Products;
the numbers (e.g. 1/1, 1/1.5, etc.) refer to the weight ratio of A1 to LV.
2A is the original foam, while 2C is the foam humid aged to the Chrysler specification. 50 and 75 are the % deflections for the test.
Claims

1. A flexible, non-integral foam prepared by reacting:
 A) from more than 0 to up to 3 parts by weight per 100 parts by weight of components B) and C) of an
 amine of the formula:
 \[\text{H}_2\text{N} \cdot \text{R} \cdot \text{NH}_2 \]
 where R is a C₃ to C₆ straight or branched alkylene group, or a C₄ to C₁₅ alicyclic group
 B) from 0 to 30% by weight of a polyoxyalkylene polyamine having a molecular weight of from 400 to
 5000 and containing from 2 to 3 primary amino groups, and
 C) from 70 to 100% by weight of one or more polyether polyhydroxy compounds having hydroxyl func-
 tionalities of from 2 to 3 and molecular weights of from 1000 to 10,000, the percents by weight of compo-
 nents B) and C) totalling 100%; and
 D) a polymethylene poly(phenyl isocyanate) containing from 40 to 85% by weight of methylene-
 bis(phenyl isocyanate) and/or a prepolymer of such isocyanate, said prepolymer having an isocyanate
 content of from 15 to 30% by weight, in the presence of
 E) water and optionally readily volatile organic substances as blowing agents, at an isocyanate index
 of from 60 to 140.

2. The foam of Claim 1, wherein R is a C₄ to C₁₀ branched chain alkylene group.

3. The foam of Claim 2, wherein component A) is 1,5-diamoно-2-methylpentane.

Patentansprüche

1. Nicht-integaler Weich-Schaumstoff, der hergestellt ist durch Umsetzung von
 A) mehr als 0 bis zu 3 Gew.-Teilen, auf 100 Gew.-Teile der Komponenten B) und C), eines Amins der
 Formel
 \[\text{H}_2\text{N}-\text{R}-\text{NH}_2 \]
 in der
 R eine geradkettige oder verzweigte C₂⁻ bis C₁₀⁻ Alkylengruppe oder eine C₄⁻ bis C₁₅⁻ alicyclische
 Gruppe ist,
 B) 0 bis 30 Gew.-% eines Polyoxyalkylpolyamins mit einem Molekulargewicht von 400 bis 5 000, das
 2 bis 3 primäre Amino-Gruppen enthält, und
 C) 70 bis 100 Gew.-% einer oder mehrerer Polyetherpolyhydroxy-Verbindungen mit Hydroxyl-Funktio-
 nalitäten von 2 bis 3 und Molekulargewichten von 1 000 bis 10 000, wobei die Gewichts-Prozentsätze
 der Komponenten B) und C) zusammen 100 % ergeben; und
 D) einem Polymethylenepoly (phenylisocyanat), das 40 bis 85 Gew.-% Methylenbis(phenylisocyanat)
 und/oder einen Prepolymer eines solchen Isocyanats enthält, wobei das Prepolymer einen Isocyanat-Ge-
 halte von 15 bis 30 Gew.-% hat, in Gegenwart von
 E) Wasser und gegebenenfalls leichtflüchtigen organischen Substanzen als Treibmittel(n) bei einem
 Isocyanat-Index von 60 bis 140.

2. Schaum nach Anspruch 1, worin R eine kettenverzweigte C₄⁻ bis C₁₀⁻ Alkylengruppe ist.

3. Schaum nach Anspruch 2, worin die Komponente A) 1,5-Diamoно-2-methylpentan ist.

Revendications

1. Mousse flexible sans peau intégrée, préparée par réaction de
 A) plus de 0 à 3 parties en poids pour 100 parties en poids des constituants B) et C) d'une amine de
 formule:
 \[\text{H}_2\text{N} \cdot \text{R} \cdot \text{NH}_2 \]
 dans laquelle R est un groupe alkyène en C₃ à C₁₀ linéaire ou ramifié ou un groupe alicyclique en C₄
 à C₁₅
 B) de 0 à 30 % en poids d'une polyoxyalkylénépolyamine ayant un poids moléculaire de 400 à 5000 et
 contenant 2 à 3 groupes amino primaires, et
C) de 70 à 100 % en poids d’un ou plusieurs composés polyhydroxylés de polyéthers ayant de 2 à 3 fonctions hydroxyle et des poids moléculaires de 1000 à 10 000, les pourcentages en poids des constituants B) et C) totalisant 100 %; et
D) un poly(phénylisocyanate) de polyméthylène contenant de 40 à 85 % en poids de bis(phénylisocyanate) de méthylène et/ou un prépolymère d’un tel isocyanate, ledit prépolymère ayant une teneur en isocyanate de 15 à 30 % en poids, en présence
E) d’eau et éventuellement de substances organiques facilement volatiles comme gonflants, à un indice d’isocyanate de 60 à 140.

2. Mousse de la revendication 1, dans laquelle R est un groupe alkylène ramifié en C₄ à C₁₀.

3. Mousse de la revendication 2, dans laquelle le constituant A) est le 1,5-diamino-2-méthylpentane.