EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 29.12.93
Int. Cl.: H03K 5/08
Application number: 89309111.6
Date of filing: 08.09.89

Precision 50 percent duty cycle controller.

Priority: 09.09.88 US 242936
Date of publication of application: 14.03.90 Bulletin 90/11
Publication of the grant of the patent: 29.12.93 Bulletin 93/52
Designated Contracting States: DE FR GB IT NL SE

References cited:
EP-A- 0 155 041
DE-A- 2 426 634
GB-A- 2 085 685
US-A- 3 999 083
US-A- 4 638 255

Proprietor: HONEYWELL INC.
Honeywell Plaza
Minneapolis Minnesota 55408 (US)

Inventor: Farina, Joseph P.
234 South Longyard Road
Southwick MA 01077 (US)

Representative: Rentzsch, Heinz, Dipl.-Ing. et al
Honeywell Holding AG
Patent- und Lizenzabteilung
Kalsersieistraße 39
Postfach 10 08 65
D-63008 Offenbach (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to demodulation and, in particular, to a precision 50% duty cycle controller.

For modulated signals having a high second harmonic content it is desirable to reject the unwanted components using a properly phase shifted chopper signal with no second harmonic as the baseband demodulation signal. A precision squarewave meets this requirement.

For example, in a serrodyne nullled fiber optic gyro, the signal being nullled is present along with a much larger second harmonic bias at twice the frequency of an AC carrier ("dithering") bias injected in the loop in order to reduce sensitivity to DC fluctuations.

Designs requiring a demodulator to reject second harmonics typically utilize "divide-by-two" schemes to create a precision 50% duty cycle. With "divide-by-two" techniques performance is limited to that of the rise and fall time capability of the divide-by-two circuit. This works fairly well, but the signal applied to the "divide-by-two" network must be derived using phase-locked-loop up-converter techniques. This necessarily introduces circuit complexities associated with such techniques.

IBM Technical Disclosure Bulletin, Volume 24, No. 10, March 1982 describes on pages 5183/84 a photo amplifier with self-adjusting threshold for symmetrical output pulses. It includes a duty cycle controller, whereat a first amplifier is used to convert the current of a photo transistor into a voltage. A diode connected in parallel with a resistor insures a non-linear transfer characteristic for said first amplifier with higher amplification at low amplitudes. This characteristic is used to compensate for the non-linearity of the photo transistor. A comparator is used to derive a digital signal from the output voltage of the first amplifier. This output voltage is compared with a reference voltage consisting of two components, the first of which is derived from a fixed divider and the second from the output of a second amplifier which serves as an integrator. Its input signal is derived from the output signal of the comparator. The integral of the input voltage of the integrator is proportional to the duty cycle of the output signal of the comparator. The output voltage of the integrator is steady only when the duty cycle of the comparator output signal is 50%.

GB-A 20 85 685 discloses a signal wave control circuit for controlling the duty cycle of a recorded signal during reproduction of a digital audio disk record. The control circuit produces a reference level signal such that the interval of the positive portion of the output signal and the interval of the negative portion of the output signal become equal to each other.

A rectangular wave pulse generator described in US-A 46 38 255 produces a periodic rectangular wave signal having at least one transition of which the phase is dependent upon a D.C. voltage reference level. An unstable, but periodic, voltage wave form produced by an oscillator is compared with ground to produce a square wave at the comparator output. This is then applied to a second comparator via a low pass filter which has a time constant greater than the half period of the square wave. The output of the filter is compared with a D.C. reference level thus producing an output wave form whose duty cycle is dependent upon the value of the D.C. reference level. This D.C. reference level is generated in a feedback loop from the output of the second comparator, wherein the effect of temperature and supply voltage-dependent variations on the comparator output is eliminated.

US-A 39 99 083 shows an automatic threshold circuit in a system for measuring the amplitude of Gaussian noise and employs a servo circuit. The input signal, which includes noise, is supplied to a comparator and compared with a variable threshold level to produce a voltage level of +1 or -1 depending on whether the input signal is greater or less than the threshold level. The threshold level is varied in accordance with the output signal. The circuit shows a differential transistor pair. An operational amplifier compares the input signal with the variable threshold level. If the input signal exceeds the threshold level, current is controlled to flow through one of the transistors of the differential amplifier and if the signal is less, then the variable threshold current is controlled to flow through the other transistor. The respective outputs from the two transistors are then used to vary the common threshold level of both transistors in accordance with the percentage of time that the input signal is above or below the current threshold level. The respective output signals are applied to the two inputs of an operational amplifier comprising an integrating network. The output signal of this network is the threshold level voltage.

A duty cycle controller according to the preamble of claim 1 is known from EP-A 0 155 041 describing a frequency doubler circuit with a 50% duty cycle output. A first input of an exclusive OR-gate is connected to the input signal terminal, an second input of the OR-gate is connected to the output of a delay circuit having its input also connected to the input signal terminal. The OR-gate delivers an output signal twice the frequency of said input signal. This double frequency signal is by means of a capacitor converted into a ramp signal, which ramp signal is compared with the output signal of the integrator, wherein the comparator provides a logical one output voltage when the ramp voltage is greater than the integrator.
output voltage and provides a logic zero output voltage when the ramp voltage is less than the integrator output signal.

The object of the present invention is to provide a precision 50% duty cycle controller.

According to the present invention, a sinusoidal reference wave at a frequency much less than a carrier frequency but referenced thereto is applied to an open loop operational amplifier which is over-driven thereby to provide a trapezoidal waveform to a high speed, differential transistor pair which provides a squarewave whose duty cycle is regulated at 50% by varying the threshold at which the differential pair switches. The squarewave is then used as a second-harmonic-free demodulating signal for demodulating a carrier predominated by the same second harmonic.

The fundamental premise is that if the amplitude levels of the squarewave are known to a high degree of accuracy, and they are equal in the positive and negative directions, then the average value is zero only for a 50% duty cycle.

A current regulator generates a selected current which is switched from one side to the other of the differential pair by the trapezoidal waveform. The voltage excursions are controlled in equal amounts above and below zero by selecting the resistive values in the collector circuits of the differential pair to be of a magnitude which will accomplish that end.

The average value of the resulting squarewave is regulated to zero by integrating the voltage at the output of one of the collectors of the differential pair and varying the threshold at the base of the other transistor to obtain a 50% duty cycle.

The present invention provides a closed loop regulation of the duty cycle that results in an absolute assurance of creating a 50% duty cycle for demodulation purposes.

These and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of an exemplary embodiment thereof, as illustrated in the accompanying drawing.

Brief Description Of The Drawing

Fig. 1 is a simplified block diagram illustration of a precision demodulation circuit for use with a duty cycle controller, according to the present invention; and Fig. 2 is a simplified schematic diagram of a precision 50% duty cycle controller, according to the present invention.

Referring first to Fig. 1, a demodulation circuit 10 for use by way of example and not limitation with a duty cycle controller, according to the present invention, is shown in simplified block dia-
At the same time, the mixer 20 provides a signal on a line 36 representing the mathematical product of the signal on the line 22 with the signal on the line 12. The difference between the signal on the line 36 and the signal on the line 30 is that the signal on line 36 contains parameter information which must be extracted. This is done in the same way as in the reference leg, using an intermediate frequency amplifier and filter 38 which provides a signal on a line 40 containing a signal predominated by the difference frequency between the signal on line 22 and the signal on line 12. Its amplitude is proportional to both the AC carrier (dither) modulation, as in the signal on line 34, but also to the intelligence contained in the signal on line 12.

It is this intelligence which must be removed by a further mixer 42 which is responsive to a signal provided on a line 44 from a precision 50% duty cycle controller 46, as well as the signal on line 40. The mixer 42 may be comprised, e.g., of a Siliconix DMOS FET Quad Analog Switch Array. The function of the precision 50% duty cycle controller is to ensure that a signal on a line 48, which may be a phase compensated version of the signal on the line 34, is converted to an exact 50% duty cycle squarewave. The signal on line 34 may be phase compensated, if necessary, to make up for any phase shifts which may exist in the sensing leg, by a phase shifting network 50.

The signals on lines 40 and 44 are thus locked together in frequency and phase and produce a DC signal on the line 14 containing the low frequency information of the parameter being measured which in the fiber optic gyro example is low frequency angular rotation information.

Fig. 2 is an illustration of a precision 50% duty cycle controller which may be used to accomplish the function described in block 46 of Fig. 1.

The input signal 48 of Fig. 1 is shown in Fig. 2 as being provided to an overdriven amplifier 52 which produces a trapezoidal signal nearly equivalent to a squarewave except having less than a 90° slope on the rising and falling edges, on a line 54 to a transistor 56 being one half of a matched differential pair 56, 58. Each of the transistors is powered at its collector by \(V_{cc} \) and has a precision 2R resistor in its collector circuit. The differential pair is a high speed device and is very responsive to the rising and falling edges of the trapezoidal waveform to cause transistor 56 to turn on and off thereby causing its counterpart 58 to turn off and on in alternation therewith. The amount of current flowing through each transistor in alternation is controlled by a regulator circuit 60 which controls a current (i) on a line 62 provided by either transistor 58, 56 at a level of \(V_{cc} \sqrt{2} R \) by regulating a node 64 to zero volts with a high gain amplifier 68. This current is mirrored by a dual transistor pair 68 which provides the same current to the differential pair 56, 58.

The voltage excursions due to switching the current on the line 62 from transistor 56 to transistor 58 as controlled by the trapezoidal signal on line 54 will be \(2V_{cc} \), since the values of the collector resistors are exactly 2R.

The average value of the resulting squarewave is regulated to zero by integrating the voltage at a node 70 with an integrator 71 and varying the threshold at a node 72 to exactly obtain a 50% duty cycle. The fundamental premise is that if the amplitude levels of the squarewave are known to a high degree of accuracy, and they are equal in the positive and negative direction, then the average value is zero only for a 50% duty cycle.

Claims

1. A duty cycle controller (46) for deriving a 50% duty cycle squarewave output signal (44) from a sinusoidal input signal (48) comprising:
 a) means (52) for deriving a substantially trapezoidal input signal (54) from said sinusoidal input signal;
 b) a comparator (56, 58) for comparing said trapezoidal input signal (54) fed to a first input of said comparator with the output signal (72) of an integrator (71), which output signal is fed to a second input (72) of said comparator (56, 58), for providing a squarewave output signal (44);
 c) means for connecting an input (70) of said integrator (71) to an output (70) of said comparator (56, 58); wherein
 d) the output signal of said integrator (71) controls the average value of said squarewave output signal (44) at the output (70) of said comparator (71) to zero; characterized in that
 e) said comparator (56, 58) comprises a differential pair of transistors (56, 58) having equal collector circuit resistances (2R) connected to a common supply voltage (\(V_{cc} \)) with a current (i) alternately flowing through the first or the second transistor of said pair (56, 58);
 f) the input (70) of said integrator (71) is connected to an output of said first transistor (56) and the output of said integrator provides a control signal for the second transistor (58) of said pair (56, 58); and
 g) a current regulator (60) controls the amount of said current (i) at a level in proportion to said supply voltage (\(V_{cc} \)) divided by a value (R) of half of one of said collector resistances (2R).
2. The controller of claim 1, characterized in that the means (52) for deriving a trapezoidal input signal (54) from said sinusoidal input signal (48) is an overdriven amplifier (52).

Patentansprüche

1. Tastverhältnisregler (46) zur Ableitung eines Rechteckwellen-Ausgangssignals (44) mit 50% Tastverhältnis aus einem sinusförmigen Eingangssignal (48) mit:
 a) einer Einrichtung (52) zur Ableitung eines praktisch trapezförmigen Eingangssignals (54) aus dem sinusförmigen Eingangssignal;
 b) einem Vergleicher (56, 58) zum Vergleich eines ersten Eingang des Vergleichers zugeleiteten trapezförmigen Eingangssignals (54) mit dem Ausgangssignal (72) eines Integrators (71), das einem zweiten Eingang (72) des Vergleichers (56, 58) zugeführt wird, um ein Rechteckwellen-Ausgangssignal (44) zu erzeugen;
 c) Mitteln zur Verbindung eines Eingangs (70) des Integrators (71) mit einem Ausgang (70) des Vergleichers (56, 58); wobei
d) das Ausgangssignal des Integrators (71) den Mittelwert des Rechteckwellen-Ausgangssignals (44) am Ausgang (70) des Vergleichers (71) auf Null steuert;
durchge gekennzeichnet, daß
e) der Vergleicher (56, 58) zwei in Differentialschaltung betriebene Transistoren (56, 58) aufweist, welche über gleiche Kollektorwiderstände (2R) an eine gemeinsame Versorgungsspannung (Vcc) angeschlossen sind, wobei ein Strom (i) entweder durch den ersten oder den zweiten Transistor des Transistorpaars (56, 58) fließt;
f) der Eingang (70) des Integrators (71) an einen Ausgang des ersten Transistors (56) angeschlossen ist und der Integratorausgang ein Steuersignal für den zweiten Transistor (58) des Transistorpaares (56, 58) liefert; und
 g) ein Stromregler (60) die Größe des genannten Stroms (i) auf einen Wert regelt entsprechend der Versorgungsspannung (Vcc) geteilt durch einen Wert (R) von der halben Größe eines Kollektorwiderstandes (2R).

2. Regler nach Anspruch 1, durch gekennzeichnet, daß die Einrichtung (52) zur Ableitung eines trapezförmigen Eingangssignals (54) aus dem sinusförmigen Eingangssignal (48) ein übersteuerter Verstärker (52) ist.

Revendikations

1. Circuit de commande du rapport cyclique (46) pour dériver un signal de sortie en onde carrée (44) de 50% de rapport cyclique à partir d'un signal d'entrée sinusoidal (48) comprenant:
 a) un moyen (52) pour dériver un signal d'entrée sensiblement trapézoïdal (54) à partir dudit signal d'entrée sinusoidal;
 b) un comparateur (56,58) pour comparer ledit signal d'entrée trapézoïdal (54) fourni à une première entrée dudit comparateur avec le signal de sortie (72) d'un intégrateur (71), lequel signal de sortie est fourni à une deuxième entrée (72) dudit comparateur (56,58), pour fournir un signal de sortie en onde carrée (44);
 c) un moyen pour connecter une entrée (70) dudit intégrateur (71) à une sortie (70) dudit comparateur (56,58); dans lequel
d) le signal de sortie dudit intégrateur (71) commande la valeur moyenne dudit signal de sortie en onde carrée (44) à la sortie (70) dudit comparateur à zéro; caractère en ce que
 e) ledit comparateur (56,58) comprend une paire différentielle de transistors (56,58) présentant des résistances de circuit collecteur (2R) égales connectées à une tension d'alimentation commune (Vcc) avec un courant (i) passant alternativement à travers le premier ou le deuxième transistor de ladite paire (56,58);
 f) l'entrée (70) dudit intégrateur (71) est connectée à une sortie dudit premier transistor (56) et la sortie dudit intégrateur fournit un signal de commande pour le deuxième transistor (58) de ladite paire (56,58); et
g) un régulateur de courant (63) règle la valeur dudit courant (i) à un niveau en proportion avec ladite tension d'alimentation (Vcc) divisée par une valeur (R) de la moitié desdites résistances du collecteur (2R).

2. Le circuit de commande de la revendication 1, caractérisé en ce que le moyen (52) pour dériver un signal d'entrée trapézoïdal (54) dudit signal d'entrée sinusoidal (48) est un amplificateur surattéqué (52).