NEW EUROPEAN PATENT SPECIFICATION

(51) Int Cl. #: C11B 3/00

(45) Date of publication and mention of the opposition decision:
03.07.1996 Bulletin 1996/27

(45) Mention of the grant of the patent:
09.06.1993 Bulletin 1993/23

(21) Application number: 69201635.3

(22) Date of filing: 20.06.1989

(54) Method of refining glyceride oils
Verfahren zur Raffination von Glyceridölen
Procédé pour raffiner les huiles glycéridiques

(84) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI NL SE

(30) Priority: 21.06.1988 GB 8814732

(43) Date of publication of application:

(60) Divisional application: 92203179.4

(73) Proprietors:
• UNILEVER N.V.
 NL-3013 AL Rotterdam (NL)
 Designated Contracting States:
 BE CH DE ES FR GB GR IT LI NL SE AT
• UNILEVER PLC
 London EC4P 4BQ (GB)
 Designated Contracting States:
 GB

(72) Inventors:
• Van de Sande, Robert Leo Karel Maria
 NL-4841 GG Prinsenbeek (NL)
• Segers, Jacobus Cornelis
 NL-2912 TG Nieuwekerk a/d IJssel (NL)
• Lammers, Janne Gerrit
 D-2875 Rotthorn Ganderkesee 2 (DE)

(74) Representative: Prins, Hendrik Willem et al
Arnold & Siedsma,
Advocaten en Octrooigemachtigden,
Sweelinckplein 1
2517 GK Den Haag (NL)

(56) References cited:
EP-A- 0 077 528
EP-A- 0 195 991
DE-A- 3 244 007
GB-A- 2 162 530
US-A- 4 162 260
US-A- 4 584 141

• Revue Francaise des Corps Gras, "Le décirage
 des huiles de tournesol", by Denise J., vol. 34,
 no. 3 (March 1987), pp. 133-138
• Degumming and neutralizing methods for
 vegetable and animal oils and fats; Alfa-Laval
 Fats & Oils Division; Technical Brochure no.
 PB40981E2 of April 1987

Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
The present invention relates to a method of refining glyceride oils, and in particular to such a method of refining comprising a degumming step.

Glyceride oils of in particular vegetable origin, such as soybean oil, rapeseed oil, sunflower oil, safflower oil, cottonseed oil and the like, are a valuable raw material for the food industries. These oils in crude form are usually obtained from seeds and beans by pressing and/or solvent extraction.

Such crude glyceride oils mainly consist of tri-glyceride components. However, they generally also contain a significant amount of non-triglyceride components including phosphatides (gums), waxy substances, partial glycerides, free fatty acids, colouring materials and small amounts of metals. Depending on the intended use of the oil, many of these impurities have an undesirable effect on the (storage) stability, taste, and colour of later products. It is therefore necessary to refine, i.e. to remove the gums and other impurities from the crude glyceride oils as much as possible.

In general, the first step in the refining of glyceride oils is the so-called degumming step, i.e. the removal of the phosphatides. In this context the term “degumming” relates to any treatment of the oil eventually, for instance after conditioning of the oil, resulting in the removal of gums and associated components. In conventional degumming processes, water is added to the crude glyceride oil to hydrate the phosphatides, which are subsequently removed e.g. by centrifugal separation. Since the resulting degummed oil often still contains unacceptably high levels of “non-hydratable” phosphatides, this water-degumming step is normally followed by chemical treatments with acid and alkali to remove the residual phosphatides and to neutralize the free fatty acids (“alkali-refining”).

Subsequently, the soapstock so formed is separated from the neutralized oil by centrifugal separation. The resulting oil is then further refined using bleaching and deodorizing treatments.

After the above described water-degumming step in general residual phosphorus levels are achieved in the order of 100-250 ppm. By the improved degumming method as described in US-A-4,049,686 in which the crude or water-degummed oil is treated with a concentrated acid such as in particular citric acid, residual phosphorus levels can be brought down to within the range of from 20-50 ppm. This degumming method is referred to hereafter as a super-degumming method.

In general, the lower the amount of residual phosphatides after the degumming step the better or easier the subsequent refining steps. In particular, a low phosphatide level after degumming results in easier processing in the alkali-refining step or even may open the possibility to omit the alkali-refining step altogether, in which case the oil is only further refined by means of bleaching and steam-refining. A refining process sequence which does not involve an alkali treatment and subsequent removal of soapstock is often referred to as “physical refining”, and is highly desirable in terms of avoiding pollution, processing simplicity, and yield.

EP-A-0 269 277 discloses a method for degumming triglyceride oils, wherein crude or partially degummed (industrially degummed) oil is treated with an organic acid or acid anhydride at a temperature not greater than about 40°C.

Subsequently water is dispersed in the oil.

EP-A-0 077 528 discloses a process for preparing refined edible oil, wherein crude oil is water degummed and subsequently degummed/demetalized using organic or inorganic acids or their anhydrides as degumming reagent.

GB-A-377,366 discloses a method for separating impurities from vegetable fatty oils, in which oil is treated with phosphoric acid and heated to between 55-120°C and sludge is removed.

Subsequently, an aqueous alkali solution is added and for example the temperature is raised to 70°C before setting and removing the material formed.

The article of J. Denise in Etudes et Recherches, No. 3, 1987 discloses in page 138 a degumming process in which after phosphoric acid degumming alkali and 3% water are added, followed by cooling to 6°C and heating to then 16°C before centrifugation after separating of wax formed.

The final phosphorus content is not more than 4-10 ppm.

It has now been found that although the conventionally degummed oil may visually appear ‘crystal’ clear, there is still present a certain proportion of residual, undissolved particles, such as hydrated phosphatides that cannot be removed by a straightforward centrifugation, and these particles may be removed by any suitable separation technique after subjecting the degummed oil to conditions promoting the agglomeration and/or the additional formation of undissolved gum containing particles by adding alkali. In case of residual phosphatides, residual phosphorus levels below 15 ppm or even below 10 or 5 ppm are attainable. A very convenient method of separating off this proportion of undissolved phosphatides, suitable to be applied on a technical scale, has been found to be filtration over a microfilter of suitable pore size and porosity.

Accordingly, in its broadest aspect the present invention provides a Method for refining glyceride oil comprising the steps of:

i) using a degummed glyceride oil;

ii) mixing the degummed glyceride oil with alkali in an amount equivalent to 0.01 to 100% of free fatty acids present
in the degummed oil;
iii) holding the mixture at a temperature below 40°C for a time period to cause formation of particulate material; and
iv) separating the particulate material formed whereby the amount of water present during steps ii to iv is below that which would lead to the formation of a separate aqueous phase.

Essential in the present refining method is that the glyceride oil is first degummed. This may be effected by any conventional degumming method which involves hydration of the phosphatides, and suitable to reduce the level of residual phosphorus to within the range of from 5-250 ppm by weight of the oil.

For the purposes of the present invention the term "degumming" relates to any method of treating glyceride oils which involves the addition of water to said oil, whether alone or in addition or subsequent to or preceding chemicals such as acid and/or alkaline substances, and whether for the sole purpose of degumming or also for further purposes, for example to render at least last part of the non-glyceride components such as in particular the phosphatides, insoluble in said oil due to hydration, and subsequently separating off said insoluble hydrated material by centrifuge or filtration to a level of from 5-250 ppm, residual phosphorus. Suitable degumming methods are for instance disclosed in GB-A-1,565,569; US-A-4,240,972; US-A-4,276,227; EP-A-0,195,991.

In its simplest form the degumming step involves the addition of a relatively small amount of water to the crude glyceride oil, particularly from 0.2 to 5%, preferably from 0.5 to 3% by weight of the oil, followed by separating off the phosphatide containing sludge by centrifuge. This so-called water-degumming is well known in the art and descriptions of suitable processing conditions can be found in many textbooks.

Preferably the super-degumming method is applied as described in US-A-4,049,686 which comprises dispersing an effective amount of a concentrated acid or acid anhydride in the crude or optionally water-degummed oil, and subsequently dispersing an appropriate amount of water into the acid-treated oil. The aqueous sludge is separated off after the oil, acid and water mixture has been maintained for at least 5 minutes at a temperature below 40°C.

To achieve residual phosphorus levels of 20-50 ppm the crude oil is preferably treated with a concentrated solution of citric acid at 70-90°C during 10-20 minutes. Subsequently, water is added in an amount of 0.2 to 5%, preferably 0.5 to 3% by weight of the oil. The mixture is cooled down either before or after addition of the water to a temperature of below 40°C, preferably below 25°C. So as to allow optimal hydration of the hydratable phosphatides the oil, acid and water mixture is kept at this temperature during a period of preferably more than 1 hour, more preferably 2-4 hours.

Depending upon the level of non-hydratable phosphatides it may be of advantage to further add extrahydration phosphatides according to the method described in US-A-4,162,260. Also the addition of hydrolyzed phosphatides as described in US-A-4,584,141 may be of advantage. Subsequently, the phosphate-containing sludge is separated from the oil by way of a centrifugal separator. It is preferred to heat the mixture to a temperature of 50 to 80°C immediately before the separation step.

Subsequent to the degumming step (including the sludge separation step) the degummed oil is further treated to remove the remaining proportion of undissolved phosphatides present as very small particles having a critical separation diameter of below about 0.05-10 μm, depending on the separation technique and separation conditions used.

In particular, a suitable and preferred method for such removal has been found filtering the degummed oil over a microfilter of suitable pore size.

Accordingly, in a particular aspect of the present invention there is provided the step of filtering the degummed oil over a microfilter having an average pore size suitable to reduce the residual phosphorus level to below 15 ppm by weight of the oil.

To achieve a reduction of the residual phosphorus to a level of below 15 ppm in accordance with the present invention the average pore size of the filter should be below about 5 μm. Further and preferred reductions to below 10 or even below 5 ppm residual phosphorus can be achieved by using microfilter pore sizes of below 0.5 μm and most preferably within the range of from 0.1 to 0.3 μm.

The agglomeration may be initiated and/or increased by subjecting the degummed oil to conditions initiating the formation of the particulate material (gums) that is not dissolved in the oil and/or promoting the agglomeration of the undissolved particles, such as holding time, lowering temperature, by adding agents initiating the formation of the particulate material and/or promoting the agglomeration of the undissolved particles, such as alkali (lye, caustic soda, sodium silicate, calcium carbonate and the like), hydratable phosphatides (US-A-4,162,260), hydrolyzed phosphatides (US-A-4,584,141). With respect to alkali an appropriate amount of alkali, the amount of alkali added is equivalent to 0.01 to 100% of free fatty acids present in the degummed oil. Preferably the amount of alkali added is equivalent to 0.05 to 50% of free fatty acids present in the degummed oil. Due to the addition of these agents at similar agglomeration times, the agglomeration temperature may be chosen, if desired, at a higher temperature or at a specific agglomeration temperature the agglomeration time may be shortened.

Optionally the separation step may include the addition of an absorbent or adsorbent for the undissolved particles to be removed. Examples of absorbents are bleaching earth, activated coal comprising materials, cellulose materials, such as Arboceol (registered trade mark). Examples of absorbents are microporous silicas and alumina silicas, such
as Trisyl (registered trade mark).

Under conditions very favourable for the agglomerating process instead of or in addition to the microfiltration step also a second centrifugal separation step or any other separation method suitable for removing the undissolved particulate material from the oil may be used.

Super-degumming is preferably used, because the agglomeration time period is remarkably reduced, and higher agglomeration temperatures may be used. Most preferred, the agglomeration step is performed at the same temperature as used in the super-degumming treatment.

The undissolved particles or agglomerates may be removed by microfiltration, filtration, centrifugation, sedimentation and decantation. After the removal of the particles the refining of the oil, for instance having a residual phosphorus level below 15 ppm, preferably below 10 ppm, or even below 5 or 2 ppm, may be continued by any refining method suitable to achieve the desired specification of the refined oil. Such further refining methods include alkali refining, bleaching and deodorisation. In particular, and preferably the refining method in accordance with the present invention is physical refining, in which case the refining method comprises the steps of degumming, reducing the residual phosphorus level to below 15 ppm, bleaching and deodorisation, but does not include an alkali-refining step. It is even possible that the bleaching step is omitted.

The very low residual phosphorus levels of below 10 ppm or even 5 ppm as achieved by the process of the present invention have an advantageous effect upon the consumption of bleaching agent in the bleaching step, thereby contributing significantly to the economy of the refining process and reducing the environmental difficulties attached to excessive consumption of bleaching agents.

The present invention is now further illustrated by way of the following examples.

Example 1 (not according to the invention)

Crude rapeseed oil was degummed by the following procedure:

(1) admixing the crude oil with 2% of hydrolyzed lecithin and 0.12% citric acid monohydrate (as a 50% solution) at 65°C;
(2) after 20 minutes admixing 1.7 % of water;
(3) cooling the mixture down to 40°C and allowing hydration for 3 hours; and
(4) separating the sludge from the oil at 65°C over a centrifugal separator.

Subsequently, the resulting degummed oil was microfiltrated using five Millipore (registered trademark) filters having pore sizes ranging from 1.20 to 0.22 μm. The average results of 5 tests were as follows:

<table>
<thead>
<tr>
<th>P in ppm</th>
<th>residual P in ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>after degumming, unfiltered</td>
<td>20</td>
</tr>
<tr>
<td>filtered over 1.20 μm</td>
<td>10</td>
</tr>
<tr>
<td>filtered over 0.80 μm</td>
<td>7</td>
</tr>
<tr>
<td>filtered over 0.65 μm</td>
<td>8</td>
</tr>
<tr>
<td>filtered over 0.45 μm</td>
<td>5</td>
</tr>
<tr>
<td>filtered over 0.22 μm</td>
<td>4</td>
</tr>
</tbody>
</table>

For reasons of comparison the same filtration tests were carried out with a non-degummed rapeseed oil and a similarly degummed, but subsequently dried rapeseed oil (i.e. comprising residual phosphatides in unhydrated form only). The results were as follows:

<table>
<thead>
<tr>
<th>non-degummed</th>
<th>degummed and dried</th>
</tr>
</thead>
<tbody>
<tr>
<td>unfiltered</td>
<td>410</td>
</tr>
<tr>
<td>filtered over 1.20 μm</td>
<td>430</td>
</tr>
<tr>
<td>filtered over 0.65 μm</td>
<td>410</td>
</tr>
<tr>
<td>filtered over 0.22 μm</td>
<td>420</td>
</tr>
</tbody>
</table>

These comparisons clearly show that the microfiltration step is suitably applied only to degummed oils containing residual particles, e.g. phosphatides. Re-addition of water resulted in the reformation of the undissolved particles re-
movable by microfiltration as shown in the first 5 microfiltration tests.

Example 2

Crude rape seed oil was super-degummed following the procedure of example 1. Subsequently, sodium hydroxide was added in amounts equivalent to about 15% or 25% of the free fatty acids (ffa) present in the oil (corresponding to 0.19% and 0.32% ffa, respectively). The sodium hydroxide was intensively admixed with the super-degummed rape seed oil.

After a holding time period of 3-4 hours oil samples were filtrated using filters having a pore size of 6, 1.2 and 0.4 μm, respectively.

The results of two independent experiments are summarized in table I.

<table>
<thead>
<tr>
<th>Alkali addition</th>
<th>residual P (ppm) after 3-4 hrs holding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/f</td>
</tr>
<tr>
<td>no alkali</td>
<td>7-9</td>
</tr>
<tr>
<td>addition alkali:</td>
<td>equiv. 15% ffa</td>
</tr>
<tr>
<td>equiv. 25% ffa</td>
<td>10</td>
</tr>
</tbody>
</table>

Example 3

Crude rape seed oil was super-degummed using a super-degumming procedure similar to the procedure disclosed in example 1. After an optional addition of alkali and a holding time period of 3-4 hours at ambient temperature (less than 30°C) the separation step was carried out using a continuous pilot scale clarifier (Westfalia SAOOH 205) at a conventional back pressure and at varying throughputs. The experimental results obtained are reviewed in table II.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>Clarifying conditions for superdegummed rate seed oil (sdg-RP)^1</th>
<th>Amount alkali added (% of ffa)</th>
<th>Residual P (ppm)</th>
<th>ffa (%)</th>
<th>Fe (ppm)</th>
<th>Ca/Mg/Na (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>starting sdg-RP</td>
<td>0</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>starting sdg-RP</td>
<td>15</td>
<td>7.7</td>
<td>0.88</td>
<td>0.1</td>
<td>1.3/0.6/140</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>1.0</td>
<td>0.81</td>
<td><0.1</td>
<td>0.3/0.1/4.3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>15</td>
<td>1.9</td>
<td>0.83</td>
<td><0.1</td>
<td>0.2/0.1/7.9</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>15</td>
<td>0.7</td>
<td>0.83</td>
<td><0.1</td>
<td>0.3/0.3/9.3</td>
</tr>
<tr>
<td>III</td>
<td>starting sdg-RP</td>
<td>25</td>
<td>10.3</td>
<td>--</td>
<td>--</td>
<td>--/--/--</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>25</td>
<td>0.7</td>
<td>0.78</td>
<td>0.4</td>
<td>1.3/0.4/16</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>25</td>
<td>2.0</td>
<td>0.76</td>
<td>0.4</td>
<td>1.0/2.2/13</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>25</td>
<td>1.4</td>
<td>0.80</td>
<td>0.3</td>
<td>0.9/0.2/6.5</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>25</td>
<td>1.2</td>
<td>0.75</td>
<td>1.0</td>
<td>0.9/0.2/33</td>
</tr>
</tbody>
</table>

Note 1: super-degumming conditions: incoming oil temperature 50-55°C; P content incoming oil 1000-1100 ppm comprising 2.2% hydrolyzed lecithin; citric acid monohydrate dosing 0.12%; water dosing 2.2%; hydration time 5 hours; separation temperature 65°C.

Note 2: the increase in the starting residual phosphorus level in the later experiments II and III resulted from a contamination of the clarifier.

Table II clearly shows that residual, undissolved and initially non-centrifugeable particles, such as phosphatides.
can be effectively removed by centrifugal separation at relatively high throughputs using the separation step according to the invention and the alkali addition.

Experiment 4

Crude rape seed oil was super-degummed using the procedure similar to that disclosed in experiment III of example 3. The undissolved now agglomerated particles were removed using a micro-filtration module (Microza filter module of Asahi, filter surface area 0.2 m²).

The results are shown in table III

<table>
<thead>
<tr>
<th>oil characteristic</th>
<th>before microfiltration</th>
<th>after microfiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>residual P (ppm)</td>
<td>16.4</td>
<td>2.0</td>
</tr>
<tr>
<td>ffa (%)</td>
<td>0.92</td>
<td>0.76</td>
</tr>
<tr>
<td>Ca/Mg (ppm)</td>
<td>5.3/1.5</td>
<td>0.5/0.2</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>1.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Na (ppm)</td>
<td>610</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Claims

1. Method for refining glyceride oil comprising the steps of:
 i) using a degummed glyceride oil;
 ii) mixing the degummed glyceride oil with alkali in an amount equivalent to 0.01 to 100% of free fatty acids present in the degummed oil;
 iii) holding the mixture at a temperature below 40°C for a time period to cause formation of particulate material; and
 iv) separating the particulate material formed whereby the amount of water present during steps ii to iv is below that which would lead to the formation of a separate aqueous phase.

2. Method as claimed in claim 1, wherein alkali is added in an amount equivalent to 0.05% to 50% of free fatty acids present in the degummed oil.

3. Method as claimed in claim 1 or 2, wherein the alkali is selected from the group comprising lye, sodium hydroxide, sodium silicate and calcium carbonate.

4. Method as claimed in claim 1-3, wherein the glyceride oil to be refined is subjected to the step of super-degumming the glyceride oil.

5. Method as claimed in claim 1-4, wherein the mixture is held at a temperature below 40°C for a time period of 0.5-5 hours.

6. Method as claimed in claim 1-5, wherein an agent promoting the formation of undissolved particles and/or promoting the agglomeration of the undissolved particles is added to the oil.

7. Method as claimed in claim 6, wherein the promoting agent comprises hydratable phosphatide, hydrolyzed phosphatide and mixtures thereof.

8. Method as claimed in claim 1-7, wherein the separation step comprises the addition of an adsorbent and/or adsorbent for the undissolved particles to be removed.

9. Method as claimed in claim 1-8, wherein said particles are removed by filtration, microfiltration, centrifugation, sedimentation and/or decantation.

10. Method as claimed in claim 1-9, wherein the mixture is heated to a temperature of 50 to 80°C immediately before the separation step.
Patentansprüche

1. Verfahren zur Raffination von Glyceridölen, das die Schritte umfaßt:
 i) Verwenden eines entschleimten Glyceridöls,
 ii) Mischen des entschleimten Glyceridöls mit Alkali in einer Menge, die 0,01 bis 100% der freien Fettsäuren, die in dem entschleimten Öl vorliegen, äquivalent ist,
 iii) Halten der Mischung auf einer Temperatur unter 40°C für eine Zeitdauer, bis die Bildung teilenförmigen Materials bewirkt ist, und
 iv) Abtrennen des gebildeten teilenförmigen Materials,

 wobei die Menge an während der Schritte ii) bis iv) vorliegendem Wasser unterhalb derjenigen liegt, die zur Bildung einer separaten wäßrigen Phase führen würde.

2. Verfahren nach Anspruch 1, wonach Alkali in einer Menge hinzugegeben wird, die 0,05 bis 50% der freien Fettsäuren, die in dem entschleimten Öl vorliegen, äquivalent ist.

3. Verfahren nach Anspruch 1 oder 2, wonach das Alkali aus der Gruppe ausgewählt wird, die Lauge, Natriumhydroxid, Natriumsilikat und Calciumcarbonat umfaßt.

5. Verfahren nach Anspruch 1 bis 4, wonach die Mischung während einer Zeitdauer von 0,5 bis 5 h auf einer Temperatur unter 40°C gehalten wird.

6. Verfahren nach Anspruch 1 bis 5, wonach zu dem Öl ein Mittel gegeben wird, das die Bildung ungelöster Teilchen und/oder das Agglomerieren der ungelösten Teilchen beschleunigt.

8. Verfahren nach Anspruch 1 bis 7, wonach der Abtrennschritt die Zugabe eines Adsorptions- und/oder Absorptionsmittels für die zu entferndenden ungelösten Teilchen umfaßt.

9. Verfahren nach Anspruch 1 bis 8, wonach die Teilchen durch Filtration, Mikrofiltration, Zentrifugieren, Sedimentieren und/oder Dekantieren entfernt werden.

10. Verfahren nach Anspruch 1 bis 9, wonach die Mischung unmittelbar vor dem Abtrennsschritt auf eine Temperatur von 50 bis 80°C erhitzt wird.

Reivendications

1. Procédé de raffinage d'une huile glycéridique, qui consiste :
 (i) à utiliser une huile glycéridique dégommée ;
 (ii) à mélanger l'huile glycéridique dégommée avec un alcali en une quantité équivalente à 0,01 à 100% des acides gras libres présents dans l'huile dégommée ;
 (iii) à maintenir le mélange à une température inférieure à 40°C pendant une durée permettant la formation d'une matière particulaire ; et
 (iv) à séparer la matière particulaire formée dans lequel la quantité d'eau présente durant les étapes (ii) à (iv) est inférieure à celle qui entraîneraient la formation d'une phase aqueuse séparée.

2. Procédé selon la revendication 1, dans lequel on ajoute l'alcali en une quantité équivalente à 0,05 à 50 % d'acides
gras libres présents dans l'huile dégommée.

3. Procédé selon la revendication 1 ou 2, dans lequel on choisit l'alcali parmi la lessive, l'hydroxyde de sodium, le silicate de sodium et le carbonate de calcium.

4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel on soumet l'huile glycéridique à raffiner à un stade de super-dégommage de l'huile glycéridique.

5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel on maintient le mélange à une température inférieure à 40°C pendant une durée de 0,5 à 5 heures.

6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel on ajoute à l'huile un agent qui contribue à la formation de particules non dissoutes et/ou contribue à l'agglomération des particules non dissoutes.

7. Procédé selon la revendication 6, dans lequel l'agent promoteur comprend un phosphatide hydratable, un phosphatide hydrolysé ou des mélanges de ceux-ci.

8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le stade de séparation consiste à ajouter un adsorbant et/ou un absorbant pour les particules non dissoutes à soutirer.

9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel on élimine les particules par filtration, microfiltration, centrifugation, sédimentation et/ou décantation.

10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel on chauffe le mélange à une température de 50 à 80°C immédiatement avant le stade de séparation.