EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 25.08.93
Int. Cl. 5: B60H 1/32, B60P 3/20,
F25D 19/00
Application number: 89304950.2
Date of filing: 16.05.89

Zero cube transport refrigeration unit for straight trucks.

Priority: 23.05.88 US 197177
Date of publication of application: 29.11.89 Bulletin 89/48
Publication of the grant of the patent: 25.08.93 Bulletin 93/34
Designated Contracting States: DE FR GB IT
References cited:
EP-A- 0 058 821
GB-A- 743 888
US-A- 2 869 333
US-A- 4 770 002

Proprietor: THERMO KING CORPORATION
314 West 90th Street
Minneapolis Minnesota 55420(US)
Inventor: Welch, Dennis Elroy
1719 Montreal Avenue
St. Paul Minnesota 55116(US)
Inventor: Waldschmidt, William Leo
5965 Upper 182nd Street
Farmington Minnesota 55024(US)
Representative: van Berlyn, Ronald Gilbert
23, Centre Heights
London NW3 6JG (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The invention relates to transport refrigeration units, and more specifically to zero cube transport refrigeration units for straight trucks.

Transport refrigeration systems for straight trucks are often mounted through the front wall of the truck body. Tilt cab clearance is usually not a problem when the refrigerant compressor is in the truck engine compartment, and driven by the truck engine, as the refrigeration package mounted on the truck wall can easily be made small and compact. When a Diesel engine and compressor are added to the refrigeration package to make a self contained unit, however, it presents a challenge in coordinating and mounting the various refrigeration components on a frame to minimize the height of the refrigeration unit. Adding an optional standby electrical drive motor to the unit package, and the requirement that the unit intrusion into the truck cargo space be essentially zero, called "zero cube", additionally complicates the problem.

GB-A-743-888 discloses a refrigeration unit suitable for mounting on a wall which encloses a space to be conditioned. The unit includes an external portion mounted outside the conditioned space, and an internal portion mounted inside the conditioned space. A drive shaft is disposed perpendicular to the mounting wall. A condenser section is located in the external portion, at a first end of the drive shaft, with a condenser fan mounted on the first end. A prime mover/compressor section is disposed between the condenser section and the mounting wall. The condenser fan pulls air through the condenser and into the prime mover/compressor section, where it is discharged through louvers located on opposite vertical sides of the unit. The drive shaft extends through a bulkhead into an evaporator section located in the internal portion of the unit, with a second end of the drive shaft having an evaporator fan which draws air into the evaporator section through two spaced evaporator coils, and discharges conditioned air back into the conditioned space.

US-A-2,869,333 discloses an air conditioning unit for the comfort of personnel in a truck cab, and is generally for roof mounting. The unit includes an evaporator unit substantially completely mounted within a common external frame which also houses a condenser, a compressor, an engine, and a condenser and evaporator air mover apparatus. The evaporator is mounted laterally, relative to an engine drive shaft. Condenser air is drawn through a grille in the front of the unit, and it is discharged through louvers on opposite sides of the enclosure.

US-A-2,863,476 discloses a refrigeration unit for a truck in which a fan shaft is disposed perpendicular to a supporting wall, serving a condenser section in an external portion of the unit, and a relatively large evaporator section in a portion of the unit which is inside a space to be conditioned. An engine is belted to the fan shaft, and a compressor, located between the fan shaft and engine, is also belted to the engine. A condenser section is located at the front of the unit, followed by a combined engine-compressor section, which is between the condenser section and the support wall.

It is the object of the present invention to provide a component layout for a completely self contained transport refrigeration unit suitable for a straight truck which, although it includes an evaporator, condenser, compressor and a prime mover, has a height dimension which will reduce or eliminate the need to increase truck body height to accommodate tilt cab clearance. It is a further object of the invention to locate the refrigerant evaporator within the frame of the transport refrigeration unit, with zero intrusion into truck cargo space, to provide a zero cube unit, notwithstanding that the prime mover includes an internal combustion engine and an optional electrical standby motor. It is an object of the invention to provide a zero cube unit having an evaporator air flow arrangement which promotes good air circulation through the cargo space of the associated truck. It is also an object of the invention to reduce the street level noise generated by the internal combustion engine.

The invention consists in a zero cube transport refrigeration unit suitable for mounting on a vertical front wall of a straight truck, with the unit including a metallic frame having first and second ends and a longitudinal axis which extends between the ends, an evaporator, a condenser, a compressor, an internal combustion engine, a single power shaft having air mover apparatus directly mounted thereon, a first belt arrangement coupled between the internal combustion engine and the power shaft, to drive the power shaft, and a second belt arrangement coupled between the power shaft and compressor to drive the compressor, characterized by said frame defining an elongated structure having separate, laterally spaced, prime mover, evaporator, compressor and condenser sections disposed in the recited order from the first to the second end of the frame, said single power shaft having a longitudinal axis disposed in spaced parallel relation with the longitudinal axis of the frame, said single power shaft being common to all of said frame sections, extending from the prime mover section to the condenser section, through said evaporator and compressor sections, said evaporator being completely disposed within said evaporator section, said lateral arrangement of the prime mover, evaporator, compressor and condenser sections extending horizontally along the front wall of
the truck, with the longitudinal axes of the frame and power shaft being substantially parallel with the front wall, to reduce the height and depth dimensions of the unit on the outside of the front wall while the evaporator arrangement provides substantially zero intrusion of the transport refrigeration unit past the inside of the front wall.

Air is brought in from one side of the unit, through the condenser and an engine radiator, and it is directed in a first path through the compressor section and upwardly through an opening in the top of the unit The frame and cover of the unit cooperatively define an air flow passageway past the compressor section to the prime mover section, to cool the prime movers, i.e., an internal combustion engine and an optional electrical standby motor, enabling the prime mover section to be closed except for an air discharge opening in the top of the unit. Thus, noise generated by the condenser fan, and noise generated by the internal combustion engine, are both discharged vertically upward along with the discharge air, minimizing street level noise.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will become more readily apparent from the following description of preferred embodiments thereof shown by way of example only, in the accompanying drawings in which:

Figure 1 is an elevational view of a straight truck having a transport refrigeration unit constructed according to the teachings of the invention;

Figure 2 is a perspective view of a metallic frame which may be utilized by the transport refrigeration unit of Figure 1;

Figure 3 illustrates the location of major unit components on the frame shown in Figure 2, with the frame being shown mostly in phantom, and with the power shaft, related driving and driven pulleys, and air movers being shown in solid;

Figure 4 is a side elevational view of the transport refrigeration unit shown in Figures 1 through 2, illustrating the only air intake location of the unit; and

Figure 5 is a perspective view of the transport refrigeration unit shown in Figures 1 through 4, shown partially cut away, illustrating air flow paths defined by the unit.

DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now to the drawings, and to Figure 1 in particular, there is shown a transport refrigeration unit 10 constructed according to the teachings of the invention, mounted on the front wall 12 of a straight truck 14. Truck 14 includes a cab 16, which may tilt forward for service, and a cargo space 18 which is to be conditioned by transport refrigeration unit 10.

As will be hereinafter explained in detail, transport refrigeration unit 10 is a completely self contained unit, unlike many straight truck units, with all refrigeration components and prime movers, including an internal combustion engine and an optional standby electrical motor, mounted within unit 10. Further, as illustrated in Figure 1, unit 10 is mounted up at the roffine 20 of the truck 14, with a profile dimensioned to provide tilt cab clearance, and the unit 10 does not intrude into the cargo space 18, maximizing payload capacity.

Referring now to Figure 2, there is shown an elongated metallic frame 22 constructed to provide a component layout and airflow path which enables a 12,000 BTU/hr transport refrigeration unit for straight trucks to be completely self contained and still meet the requirement of being zero cube. Frame 22, when provided with a cover 24, best shown in Figures 4 and 5, has a profile which is only 20 inches high (50.8 cm), 29.8 inches deep (75.69 cm), and 77 inches long (195.58 cm). The depth, measured along the bottom of the unit, is only 11.4 inches (28.95 cm) perpendicular to wall 12, at which point the profile is raised 17 degrees from the horizontal, to accommodate tilt cabs. Cover 24 defines a top 25, front 27, bottom 29, and first and second sides 31 and 33, respectively, of transport refrigeration unit 10.

Frame 22, which is preferably formed of aluminum subcomponents welded together, has first and second ends 26 and 28, a longitudinal axis 30 which extends between its ends, a front portion 32, and a back portion 34. Frame 22 includes a base or bottom portion 36 having first and second ends 35 and 37 at the first and second ends 26 and 28 of frame 22, respectively. Base 36 extends from the front 32 to the back or rear 34 of frame 22, starting with an inverted U-shaped configuration 38 at the front 32. Configuration 38 includes a first depending leg 39 which forms a front edge of base 36, a bight 41, and a second depending leg 43. Base 36 then continues towards the back 34 of frame 22 with an inclined portion 40 which angles downwardly at a 17 degree angle from the horizontal, a horizontally oriented lowermost portion 42, and an upturned flange 44 which forms the back of base 36.

A first upstanding side 46 of frame 22 is welded to base 36 at the first end 26 of frame 22. The first upstanding side 46 has a longitudinal depth which defines a control section 48 of the frame 22. Control elements mounted in control section 48 are accessible via a removable service panel 50 in cover 24, as shown in Figure 5.
An intermediate frame structure 52 having first, second and third upstanding wall portions 54, 56 and 58, respectively, is welded to base 36. Intermediate frame structure 52 defines a U-shaped configuration in horizontal cross section, with the first and second upstanding wall portions 54 and 56 being leg portions of the U-shaped configuration, which are disposed in spaced parallel relation with the first upstanding side 46. In other words, major flat surfaces defined by wall portions 54 and 56 are perpendicular to longitudinal axis 30. The third upstanding wall portion 58 forms a bight of the U-shaped configuration, and it extends along the front 32 of frame 22, in predetermined spaced relation from leg 39 which defines the foremost edge of base 36. Thus, when cover 24 is disposed on frame 22, the predetermined spaced relation results in wall 58 and cover 24 cooperatively forming an air passageway 62, shown in Figure 5, for purposes which will be hereinafter explained. The uppermost edges of upstanding wall portions 54, 56 and 58 may be inwardly flanged, such as flange 64 on wall 56, and the free ends of wall portions 54 and 56 may be outwardly flanged into the plane of the back portion 34 of frame 22, such as flanges 66 and 68. The first and second upstanding wall portions 54 and 56 define openings 70 and 72 for receiving bearings 74 and 76, respectively, shown in Figure 3.

The first, second and third upstanding wall portions 54, 56 and 58 define an evaporator section 78, and the first upstanding wall portion 54 is spaced from the first upstanding side 46 to define a prime mover section 80 between them.

A second upstanding side 82 of frame 22 is welded to base 36 at the second axial end 28. The second upstanding side 82 has a depth dimension which defines a condenser section 84 at the second end, and it includes an inner wall 86 having an opening 88 therein which functions as a condenser fan shroud 90. The inner wall 86 is spaced from the second upstanding wall 56 of the intermediate frame structure 52 to define a compressor section 92, which section also houses most of the remaining refrigeration system components. A compressor mounting base (not shown) is welded to frame base 36 in compressor section 92, adjacent to the back or rear portion 34 of frame 22.

A rear upper or top member 94 is welded to the first and second upstanding sides 46 and 82, respectively, and to the upstanding wall portions 54 and 56 of the intermediate frame structure 52, to tie these frame elements together and define an upper rear portion of the frame 22. Rear top member 94 is essentially channel shaped, having an inverted U-shaped configuration which includes a bight 96 and inner and outer depending leg portions 98 and 100, respectively, which have varying dimensions across the longitudinal length of the member to cooperatively define an evaporator opening 102 with the upturned flange 44 of base 36 and the first and second upstanding wall portions 54 and 56 of intermediate frame structure 52.

A front upper or top member 104 is welded to the first and second upstanding sides 46 and 82, respectively, and to the upstanding wall portion 58 of the intermediate frame structure 52, to tie these frame elements together and define an upper front portion of the frame 22. Front top member 104 is essentially channel shaped, having a vertically oriented bight 106 and upper and lower outwardly extending leg portions 108 and 110, respectively.

An upper engine mount 112 and an electric motor mounting plate or base 114 are welded in the prime mover section 80, to complete frame 22.

As shown in Figure 3, a power shaft 116 having a longitudinal axis 118 is mounted in the hereinbefore mentioned bearings 74 and 76 which are supported by upstanding wall portions 54 and 56, respectively. Bearing 74 fixes the axial position of shaft 116, while bearing 76 is a slidable bearing, accommodating dimensional changes in shaft 116 due to changes in temperature in the evaporator section 78. In addition to extending through the evaporator section, shaft 116, which has its axis 118 disposed in parallel relation with the longitudinal axis 30 of frame 22, also extends outwardly in one direction into the prime mover section 80, and outwardly in the other direction through the compressor section 92 and into the condenser section 84.

Condenser and evaporator air mover means 120 and 122, respectively, are directly mounted on power shaft 116. The condenser air mover means 120 is in the form of an axial flow fan in the preferred embodiment. The evaporator air mover means 122 must be a centrifugal blower in order to achieve the object of the invention related to good air flow through the cargo space 18 and its associated load. In the preferred embodiment of the invention, centrifugal blower 122 is a backward incline blower, as a backward incline blower provides maximum air velocity and the desired airflow through cargo space 18 and its load with very low reduction in performance as static pressure increases. While a backward straight centrifugal fan wheel will perform adequately, performance is further enhanced by using a backward curved centrifugal fan wheel.

The prime mover section 80 includes an internal combustion engine 124, preferably a Diesel engine, which is belted to power shaft 116 via a pulley 126 on engine 124, an idler pulley 127, a pulley 128 on power shaft 116, and a belt 130. If the prime mover section 80 is provided with the option of having an electrical standby motor 132,
engine 124 is coupled to pulley 126 via a centrifugal clutch 134 which couples engine 124 with pulley 126 only when engine 124 is operating. Standby motor 132 is also belted to power shaft 116 via pulleys 136 and 138 on motor 132 and power shaft 116, respectively, and a belt 140.

A refrigerant compressor 142 is also belted to power shaft 116, via a pulley 144 on compressor 142, a pulley 145 which drives an alternator, a pulley 146 on power shaft 116, and a belt 148.

An evaporator 150 is disposed in evaporator section 78, with the evaporator 150 having its major air intake and air outlet faces inclined from the vertical to allow more air intake and air outlet surface in a given space. As shown in Figure 5, evaporator opening 102 in the rear 34 of transport refrigeration unit 10 is divided into first and second portions 156 and 158, with opening 156 being in registry with evaporator 150 and with opening 158 being in registry with an air plenum 160 which directs conditioned air into cargo space 18.

As shown in Figure 5, air from cargo space 18, indicated by arrows 162 is drawn into opening 156 and through evaporator 150 by blower 122. Blower 122 discharges the air which has just been drawn through evaporator 150 back into cargo space 18 via opening 158, with the conditioned air being indicated by arrows 164.

As illustrated in Figure 4, air ducts and evaporator apparatus, indicated generally at 168, extend into truck wall opening 168, but not beyond the inner surface of wall 12, making transport refrigeration unit 10 a truly zero cube unit.

A condenser 170 is disposed in the condenser section 84, with the uppermost tubes, indicated at 172, being the radiator for engine 124. The major air intake and air outlet surfaces of condenser 170 are perpendicularly oriented, with the intake surface being disposed at the second side 33 of the transport refrigeration unit 10. When cover 24 is disposed on frame 22, a removable access panel 174 covers the condenser 170, with panel 174 having a plurality of openings 176 through which air, indicated by arrows 178, is drawn by condenser fan 120.

As shown in Figure 5, the only air entranceway into transport refrigeration unit 10 for cooling the condenser 170 and radiator 172, as well as for cooling the prime mover section 80, is through the second side 33 of unit 10. Intake air 178 is drawn through condenser 170 and radiator 172 into the compressor section 92 where it is discharged vertically upward, indicated by arrows 180, via an opening 182 in cover 24 located in the top 25 of unit 10, over the compressor section 92. A portion of the air drawn into the compressor section 92, indicated by arrows 184, is also directed into the air passageway 62 defined by the spacing between cover 24 and the third upstanding wall portion 58 of the intermediate frame structure 52. Air 184 is directed into the prime mover section 80 where it flows over motor 132 and engine 124, before being discharged vertically upward, indicated by arrows 186, via an opening 188 in cover 24 located in the top 25 of unit 10, over the prime mover section 80.

In summary, the laterally spaced sections of transport refrigeration unit 10, the single axially extending power shaft 116, the direct mounting of the air handling equipment, and the belting of the prime movers and compressor, all contribute to a component layout and arrangement which achieves a low height profile of a completely self contained zero cube transport refrigeration unit. Further, the disclosed air flow arrangement wherein all of the cooling air enters one axial end of the unit and is discharged upwardly from the top of the unit 10 via openings 182 and 188 in cover 24, minimizes noise at street level.

Claims

1. A zero cube transport refrigeration unit (10) suitable for mounting on a vertical front wall (12) of a straight truck (14), with the unit including a metallic frame (22) having first and second ends (26,28) and a longitudinal axis (30) which extends between the ends, an evaporator (150), a condenser (170), a compressor (142), an internal combustion engine (124), a single power shaft (116) having air mover apparatus (120,122) directly mounted thereon, a first belt arrangement (126,128,130) coupled between the internal combustion engine and the power shaft, to drive the power shaft, and a second belt arrangement (144,146,148) coupled between the power shaft and compressor to drive the compressor, characterized by:

said frame defining an elongated structure having separate, laterally spaced, prime mover, evaporator, compressor and condenser sections (80,78,92,84) disposed in the recited order from the first to the second end of the frame,

said single power shaft having a longitudinal axis (118) disposed in spaced parallel relation with the longitudinal axis (30) of the frame,

said single power shaft being common to all of said frame sections, extending from the prime mover section to the condenser section, through said evaporator and compressor sections,

said evaporator being completely disposed within said evaporator section,

said lateral arrangement of the prime mover, evaporator, compressor and condenser sections extending horizontally along the front
one of the first and second bearings being a fixed bearing which longitudinally fixes the location of the power shaft, and the remaining bearing being a sidable bearing which accommodates expansion and contraction of the power shaft with changes in temperature in the evaporator section.

4. The transport refrigeration unit of claim 1 wherein the unit includes a cover (24) on the frame (22) which defines top (25), front (27), bottom (9), and first (31) and second (33) sides of the transport refrigeration unit; characterized by:

said cover defining an air entranceway opening (176) into the condenser section (84) at the second side of the transport refrigeration unit, and air exit openings (182, 188) from the compressor and prime mover sections in the top (25) of the transport refrigeration unit, while closing other external openings to the prime mover section to direct prime mover generated noise upwardly,

and wherein the cover and frame cooperatively define an air passageway (62) which interconnects the compressor section and exit through both of said air exit openings on the top of the transport refrigeration unit.

5. The transport refrigeration unit of claim 4 wherein the unit includes a cover (24) on the frame (22) which defines top (25), front (27), bottom (9), and first (31) and second (33) sides of the transport refrigeration unit; characterized by:

said cover defining an air entranceway opening (176) into the condenser section (84) at the second side of the transport refrigeration unit, and air exit openings (182, 188) from the compressor and prime mover sections (92, 80) in the top (25) of the transport refrigeration unit, while closing other external openings to the prime mover section, to direct prime mover generated noise upwardly,

and wherein the cover (24) and third (32) upstanding wall portion of the intermediate passageway (62) which interconnects the compressor section and prime mover section, to enable air entering the air entranceway to exit through both of said air exit openings on the top (25) of the transport refrigeration unit.

Patentansprüche

1. Ein keinen Laderaum einnehmendes Kühlaggregat (10), geeignet zur Montage an der senkrechten Vorderwand (12) eines gewöhnlichen Lastkraftwagens (14), wobei die Einheit einen
Metallrahmen (22) mit einem ersten und einem zweiten Ende (26, 28) und eine Längssachse (30), die sich zwischen diesen Enden erstreckt, einen Verdampfer (150), einen Kondensator (170), einen Kompressor (142), einen Motor mit innerer Verbrennung (124), eine einzige Kraftwelle (116) mit einer direkt darauf aufgesetzten Luftfördervorrichtung (120, 122), eine erste Riemenantriebsanordnung (126, 128, 130), gekuppelt zwischen dem Motor mit innerer Verbrennung und der Kraftwelle zum Antrieb der Kraftwelle, und eine zweite Riemenantriebsanordnung (144, 148, 149), gekuppelt zwischen der Kraftwelle und dem Kompressor zum Antrieb des Kompressors, aufweist, dadurch gekennzeichnet, daß dieser Rahmen eine langgestreckte Struktur definiert, mit voneinander getrennten und seitlich befestigten stehenden Antriebsmaschinen-, Verdampfer-, Kompressor- und Kondensatorabschnitten (80, 78, 92, 84), angeordnet vom ersten zum zweiten Ende des Rahmens in dieser Reihenfolge, diese einzige Kraftwelle eine Längssachse (118) aufweist, die parallel befestet zu Längssachse (30) des Rahmens angeordnet ist, diese einzige Kraftwelle allen diesen Rahmenbereichen gemeinsam ist und sich vom Antriebsmaschinenabschnitt zum Kondensatorabschnitt, durch den Verdampferabschnitt und durch den Kompressorabschnitt erstreckt, dieser Verdampfer vollständig innerhalb dieses Verdampferabschnitts angeordnet ist, sich diese seitliche Anordnung von Antriebsmaschine, Verdampfer, Kompressor und Kondensatorabschnitt horizontal entlang der Vorderwand des Lkws erstreckt, wobei die Längssachsen von Rahmen und Kraftwelle im wesentlichen parallel zur Vorderwand erstrecken, um die Höhen- und Tiefenabmessungen des Aggregats an der Außenseite der Vorderwand zu reduzieren, während die Verdampferanordnung nach der Innenseite der Vorderwand zu im wesentlichen einen "Null-Würfel" des Kühlaggretats vorsieht.

3. Das Kühlaggretat gemäß Anspruch 2, wobei das Aggregat ein erstes und ein zweites Lager (74, 76) aufweist, die durch den ersten bzw. den zweiten Wandelteil des Zwischenrahmenglieds gehalten werden und die Kraftwelle in dem ersten und dem zweiten Lager gelagert ist, dadurch gekennzeichnet, daß das eine dieses ersten bzw. zweiten Lagers ein festes Lager ist, das die Längsposition der Kraftwelle fixiert, und das andere Lager ein Gleitlager ist, das die Ausdehnung und das Zusammenziehen der Kraftwelle infolge der Temperaturänderungen im Verdampferabschnitt aufnimmt.

4. Das Kühlaggretat gemäß Anspruch 1, wobei das Aggregat eine Abdeckung (24) auf dem Rahmen (22) hat, die Dach (25), Vorderseite (27), Boden (9) und die erste (31) und die zweite (33) Seite des Kühlaggretats definiert, dadurch gekennzeichnet, daß diese Abdeckung eine Luftleitungsöffnung (176)
in den Kondensatorabschnitt (84) an der zweiten Seite des Kühlaggretgs sowie Luftaustritteöffnungen (182, 188) vom Kompressor- und vom Antriebsmaschinenabschnitt her im Dach (25) des Kühlaggretgs definiert, während sie andere äußere Öffnungen zum Antriebsmaschinenabschnitt hin abdeckt, um den durch die Antriebsmaschine erzeugten Lärm nach oben abzuleiten, und wobei Abdeckung und Rahmen zusammen einen Luftströmungsweg (62) definieren, der den Kompressorabschnitt und den Austritt durch diese beiden Luftaustritteöffnungen auf dem Dach des Kühlaggretgs verbindet.

5. Das Kühlaggretg gemäß Anspruch 4, wobei das Aggregate eine Abdeckung (24) auf dem Rahmen (22) hat, die Dach (25), Vorderseite (27), Boden (8) und die erste (31) und die zweite (33) Seite des Kühlaggretgs definiert, dadurch gekennzeichnet, daß diese Abdeckung eine Lufteintritteöffnung (176) in den Kondensatorabschnitt (84) an der zweiten Seite des Kühlaggretgs sowie Luftaus- tritteöffnungen (182, 188) vom Kompressor- und vom Antriebsmaschinenabschnitt (92, 80) im Dach (25) des Kühlaggretgs definiert, während sie andere äußere Öffnungen zum Antriebmaschinenabschnitt hin abdeckt, um den durch die Antriebsmaschine erzeugten Lärm nach oben abzuleiten, und wobei die Abdeckung (24) und der dritte (32) hochstehende Wandteil des Zwischenluftströmungskanals (62), der den Kompressorabschnitt und den Antriebsmaschinenabschnitt verbindet, es der in den Lufteintritt eintretenden Luft ermöglichen, durch die beiden Luftaustritteöffnungen auf dem Dach (25) des Kühlaggretgs auszutreten.

Revendications

1. Unité de réfrigération pour transport (10) n’occupant pas de volume de chargement, approp-priée pour être montée sur une paroi avant verticale (12) d’un camion à caisse (14), l’unité comprenant une enceinte métallique (22) comportant des première et seconde extrémités (26, 28) et un axe longitudinal (30) qui s’étend entre les extrémités, un évaporateur (150), un condenseur (170), un compresseur (142), un moteur à combustion interne (124), un seul arbre d’entraînement (116) sur lequel est mon- té directement un appareillage de propulsion d’air (120, 122), un premier mécanisme à courroie (126, 128, 130) accouplé entre le moteur à combustion interne et l’arbre d’entraînement de façon à assurer l’entraînement de cet arbre, et un second mécanisme à courroie (144, 148, 148) accouplé entre l’arbre d’entraînement et le compresseur pour assurer l’entraînement du compresseur, caractérisée en ce que :
- ladite enceinte définit une structure allongée comportant des sections séparées et latéralement espacées (60, 78, 92, 84), contenant respectivement une source d’énergie, un évaporateur, un comprésseur et un condenseur et disposées dans l’ordre précité de la première à la seconde extrémité de l’enceinte,
- ledit unique arbre d’entraînement comportant un axe longitudinal (118) disposé parallèlement et espacé de l’axe longitudinal (30) de l’enceinte,
- ledit unique arbre d’entraînement étant commun à toutes les sections précitées de l’enceinte, en s’étendant de la section-source d’énergie à la section-condenseur, à travers ladite section-éva- porateur et ladite section-compresseur,
- ledit évaporateur étant logé complètement à l’intérieur de ladite section-éva- porateur,
- ledit ensemble latéral formé par les sections-source d’énergie, - évaporateur, - compresseur et - condenseur s’étendant horizontalement le long de la paroi avant du camion, les axes longitudinaux de l’enceinte et de l’arbre d’entraînement étant sensiblement parallèles à la paroi avant, de façon à réduire les dimensions de hauteur et de profondeur de l’unité sur le côté extérieur de la paroi avant, tandis que l’agencement de l’évaporateur fait en sorte que l’unité de réfrigération pour transport ne pénètre essentiellement pas sur le côté intérieur de la paroi avant.

2. Unité de réfrigération pour transport selon la revendication 1, dans laquelle l’enceinte comprend une base (36), des premier et second côtés verticaux (46, 82) fixés sur ladite base respectivement à la première et à la seconde extrémité de l’enceinte, et une structure intermédiare d’enceinte (52) comportant des premi- ère, seconde et troisième parties de paroi verticales (54, 56, 58) fixées sur ladite base,
- ledit premier côté vertical (46) définissant une section (48) de commande de réfrigération,
- ledit second côté vertical (82) définissant la section
- condenseur (84) et un capot (90) du ventilateur de condenseur,
3. Unité de réfrigération pour transport selon la revendication 2, où l'unité comprend des premier et second paliers (74, 76) supportés par les première et seconde parties de paroi de la partie intermédiaire d'enclaire, l'arbre d'entraînement étant supporté par les premier et second paliers, caractérisée en ce qu'un des premier et second paliers est un palier fixé qui fixe longitudinalement la position de l'arbre d'entraînement et l'autre palier est un palier glissant qui s'adapte à une dilatation et à une contraction de l'arbre d'entraînement lors de variations de la température dans la section-evaporateur.

4. Unité de réfrigération pour transport selon la revendication 1, où l'unité comprend un couvercle (24) prévu sur l'enclaire (22) et qui définit une partie supérieure (25), une partie avant (27), une partie de base (9) ainsi qu'un premier côté (31) et un second côté (33) de l'unité de réfrigération pour transport ; caractérisée en ce que :

- ledit couvercle définit une ouverture d'entrée d'air (176) dans la section-condenseur (84) sur le second côté de l'unité de réfrigération, et des ouvertures de sortie d'air (182, 188) hors de la section-compresseur et de la section-source d'énergie dans la partie supérieure (25) de l'unité de réfrigération, tout en fermant d'autres ouvertures externes de la section
- source d'énergie afin de diriger vers le haut le bruit produit par la source d'énergie,
- et en ce que le couvercle et l'enclaire définissent en coopération un passage (62) pour l'air qui passe dans la section-compresseur et qui sort par les deux orifices de sortie d'air prévus dans la partie supérieure de l'unité de réfrigération.

5. Unité de réfrigération pour transport selon la revendication 4, où l'unité comprend un couvercle (24) placé sur l'enclaire (22) et qui définit une partie supérieure (25), une partie avant (27), une partie de base (9) et un premier côté (31) et un second côté (33) de l'unité de réfrigération ; caractérisée en ce que :

- ledit couvercle définit une ouverture d'entrée d'air (176) dans la section-condenseur (84) sur le second côté de l'unité de réfrigération pour transport, et des ouvertures de sortie d'air (182, 188) hors de la section-compresseur et de la section-source d'énergie (92, 80) dans la partie supérieure (25) de l'unité de réfrigération, tout en fermant d'autres ouvertures externes de la section-source d'énergie afin de diriger vers le haut le bruit produit par la source d'énergie,
- et en ce que le couvercle (24) et la troisième partie de paroi verticale (32) du passage intermédiaire (62) relient la section-compresseur et la section-source d'énergie afin de permettre à l'air pénétrant dans le passage d'entrée d'air de sortir par les deux orifices de sortie d'air qui sont prévus dans la partie supérieure (25) de l'unité de réfrigération pour transport.