EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 08.06.94

Application number: 89500017.2

Date of filing: 20.02.89

Adjusting potentiometer for electronic circuits, process for assembling the elements thereof, and process for obtaining the resistive plate thereof.

Priority: 21.03.88 ES 8800858

Date of publication of application: 08.11.89 Bulletin 89/45

Publication of the grant of the patent: 08.06.94 Bulletin 94/23

Designated Contracting States:
AT BE CH DE FR GB IT LI NL SE

References cited:
FR-A- 2 502 833
GB-A- 2 157 502
US-A- 3 729 817
US-A- 4 482 883

Proprietor: ARAGONESA DE COMPONENTES PASIVOS, S.A.
Plaza de Salamero, 14
E-50004 Zaragoza (ES)

Inventor: Chueca Mollá, Emilio
Las Torres, 47 - 2o B
E-50008 Zaragoza (ES)

Representative: Polo Flores, Carlos et al
c/ Profesor Waksman, 10
E-28036 Madrid (ES)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

OBJECT OF THE INVENTION

The present invention relates to a potentiometer of the type commonly known as "adjusting and semi-control" potentiometers, utilised for electronic applications, potentiometers which, although rather small in size, provide high services.

The invention also relates to the process for assembling the electromechanical elements or components thereof, as well as to the process for obtaining the resistive plate thereof.

BACKGROUND OF THE INVENTION

Conventional potentiometers of the said type are comprised of an electrically isolating body forming a cylindrical cup, inside which is housed the resistive plate which adopts the shape of an open circular ring, which plate is secured at its ends to the said cylindrical cup by means of rivets which simultaneously constitute the means for electrically connecting the said resistive plate to the corresponding connecting terminals. The said cup is closed by the complementary collector of the said resistive plate which, in turn, extends radially into the corresponding connecting terminal. A circular ring shaped cursor, which adapts itself to the inner face of the collector, is hinged to an axis of rotation, it is provided with an inclined arm and ends in a projection by means of which it contacts any point of the resistive plate, when the said axis is made to rotate. The said axis is provided at least one of its ends with means enabling any appropriate tool, such as for example a screwdriver, to operate it.

The problems derived from this structure are multiple and varied.

Its cylindrical configuration impedes handling thereof, specifically insofar as its correct positioning with respect to the printed circuit wafer in which it ought to be mounted, when the said assembly takes place automatically.

The angle of rotation of the cursor, which could theoretically be brought markedly closer to the complete turn, is reduced to a value close to 235°.

The collector offers a rather small thermal dissipational surface, which negatively affects operation of the potentiometer, and distortions may even be produced therein.

The roughnesses produced in the collector from the cutting operation to obtain the central hole, cause an irregular turning torque.

The plastic flanging for securing the collector to the casing offers a poor axial thrust resistance on the rotor or cursor.

The control of the turning torque of the rotor and the cursor on the resistive plate is difficult and irregular.

The part of the terminals which are coupled to the printed circuit, is short, obstructing insertion when the terminals have a greater thickness, as also, obviously, the subsequent welding thereof. Supplementarily, and since they are closer to the heating zones, the plastic parts of the component experience deformations during the welding process, which may alter the continuity of the electrical contacts.

With the present clamping system for securing the resistive plate to a surface difficult to control, since this relates to another pre-bent mechanical staple with the logical material recoveries, losses in contact are produced between the terminal and the resistive plate, in the event of a lack of pressure when bending the leg surrounding the resistive plate, whilst in the event of an overpressure, breakage of the said plate may be produced.

The system for clamping the terminals of the casing and the resistive plate causes, at the time of welding thereof to the circuit, when welding takes place manually, by heat radiation and specially due to the fact that the thermal level during manual heating is difficult to control, the plastics materials to become soft, therefore producing intermittent losses in the electric continuity.

DESCRIPTION OF THE INVENTION

The potentiometer of the invention, whether of the "carbon" or the "cermet" type, overcomes the aforesaid problems satisfactorily, whilst proportioning supplementary advantages.

Therefore, and more specifically, the resistive element is formed of agglomerated metal and ore loads, having a resistive action to the electric current, deposited on a dielectric which acts as the substrate.

In both cases, the ends of the resistive film are joined to metallic terminals which conduct electricity as far as the exterior of the potentiometer.

This further incorporates a flexible, metallic driving member capable of sludgingly brushing the resistive film, denominated cursor, whereby the resistive plate contacts the collector electrically, consisting of a static metal element which, in turn, has a metal appendix also acting as an electric terminal towards the exterior of the component.

Based on these metallic terminals joined to the resistive film and to the collector, the potentiometer may be implanted in printed circuit plates.

The outer appearance of the potentiometer adopts the configuration of a parallelepiped case or casing from which three metallic terminals or pieces emerge, which project in the proper length
and shape to be joined to or inserted in electronic circuits, for which purpose they are provided, at their ends furthest from the casing, with shapes or deformations permitting the maximum ease and security in the joining.

The potentiometer incorporates an axial opening occupied by an electrically isolating element, the adjusting rotor, which permits rotating movements jointly with the said cursor and which, at its end directly accessible from the outside, is configured so as to enable different operating tools, such as for example a slot for a screwdriver, a hexagonal recess for an allen screw, etc., to be coupled.

The connecting legs or terminals thereof could adopt various positions, depending on the different assemblies contemplated in an electronic circuit.

The briefly described structure has been designed for an automatic mounting to its components by means of transfer, linear, and high cycle-type machines.

In accordance with another aspect of the invention, the process for assembling the potentiometer itself is conducted utilising the said machines, by means of electric and pneumatic drives, the said machines being controlled by a microprocessor which will control the operating sequence thereof, as well as all the parameters fixed for checking the product in the final phase.

The process is carried out on metal bands previously stamped for obtaining the collectors, terminals and cursors which, in turn, serve as a support for the plastic pieces automatically fed throughout the entire process of assembly.

The invention also relates to the process for obtaining the resistive plate, which constitutes a further aspect of the invention. This process consists in the application of one or more conducting resistive pastes, physiochemically adhered to a flexible plastic support previously cut into bands having a suitable width, the main feature of which is centered on the fact that application takes place continuously.

DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an upper view of an adjusting potentiometer for electronic circuit according to the present invention.

Figure 2 illustrates a side elevation sectional view.

Figure 3 illustrates a plan view.

Figure 4 and 5 illustrate respective possibilities or alternatives for housing the connecting terminals in the potentiometer.

Figure 6 illustrates a sectional detail of the system for securing the collector to the casing.

Figure 7 illustrates another sectional detail corresponding to the clamping and riveting of each terminal to the casing.

Figure 8 illustrates another sectional detail of the mutual clamping between the resistive plate, the casing and the terminal.

Figure 9 illustrates a plan view of the potentiometer casing.

Figure 10 illustrates a section taken along the line A-A of figure 9.

Figure 11 illustrates another plan view of the casing face opposite that shown in figure 9.

Figure 12 illustrates another cross-sectional view of the casing, taken along the cut line B-B of figure 9.

Figure 13 illustrates a plan view of the resistive plate.

Figures 14, 15 and 16 illustrate, respectively, an elevational, a profile and a plan view of one of the connecting terminals incorporated in the said potentiometer.

Figure 17 illustrates a perspective detail of the joining of a connecting terminal to the resistive plate, when the said resistive plate is of the "cermet" type.

Figures 18, 19 and 20 illustrate an elevational, a profile and a plan view of the type of connector used in the case shown in figure 17.

Figures 21, 22 and 23 illustrate, respectively, elevational and sectional views of the cursor, in which figure 22 is a section along the line A-A of figure 21 and figure 23 is a section along the line B-B of figure 21.

Figures 24 and 25, on the one hand, and figures 26 and 27, on the other, illustrate respective details of the contact between the cursor and the collector and between the said cursor and the resistive plate.

Figures 28 and 29 illustrate respective axial views of the rotor.

Figures 30 and 31 illustrate the said rotor, the former is a sectional view and the latter a side elevational view.

Figures 32 and 33 illustrate, respectively, an elevational and a profile view of the collector.

Figure 34 illustrates a sectional detail of the flanging of the central opening of the collector, which guarantees the proper sliding of the rotor.

Figure 35 illustrates a perspective, exploded view of the contact terminals corresponding to the resistive plate, of the casing and of the resistive plate itself, during the assembly phase between these elements.

Figure 36 illustrates the unit of the preceding figure, duly assembled and forming part of a continuous line.

Figure 37 illustrates, according to a representation similar to that of figure 35, a perspective, exploded view of the shaft or rotor, of the cursor also forming part of a continuous band, and of the
collector also forming part of a continuous band.

Figure 38 illustrates the unit of the preceding figure, duly assembled.

Figure 39 illustrates a profile view of the pre-assemblies shown in figures 36 and 38, duly faced for their definite assembly.

Figure 40 illustrates a front elevational view of the unit of the preceding figure, duly assembled and always within the continuous manufacturing line.

Figures 41, 42, 43, 44, 45 and 46 illustrate, finally, the successive operative phases of the process for obtaining the resistive plate.

PREFERRED EMBODIMENT OF THE INVENTION

Referring to the drawings, it can be seen that the adjusting potentiometer for electronic circuits of the invention is comprised of a casing or case 1 having a parallelepiped configuration and a quadrangular plan and is provided with the dimensions necessary and sufficient for housing the operative elements of the potentiometer. The structural materials of the casing are comprised of charged polymers having a high dielectric strength which insures the thermal, mechanical and chemical stability thereof.

The casing 1 is provided with recesses 2 for the joining and positioning of terminals 3, which joining is carried out with the help of rectangular-shaped studs 4 which, on the one hand, serve to automatically position and feed the casing in question during the process of assembly, which will subsequently be described, and on the other, by plastic deformation as can be seen specially in the detail of figure 7, to insure joining of the terminals.

Besides, the casing 1 is provided with holes for the insertion of the terminals, specifically two holes 5 for securing the terminals 3 to the case, and two more, referenced 6, for the subsequent joining to the resistive plate 33, as can be seen in figures 7 and 8, respectively.

The casing 1 is provided on its sides with recesses 7, shown in turn in figures 9 and 12, for clamping the collector to the casing, as can be seen in turn in figure 6.

It is also provided with indentations 8 for the correct positioning of the collector.

It incorporates, at one of its bases, a dial 18 which, jointly with an arrow established in the rotor, enables the position at which the cursor is encountered on the resistive strip, to be clearly identified. This cursor, obviously, encloses the coupling hole of the rotor, a wide-mouthed entrance hole 19, to facilitate assembly of the said rotor.

The resistive plate 33, illustrated in detail in figure 13, is fixed to the bottom of the casing 1, which plate is comprised of various agglomerated metal and ore loads, depending on whether the potentiometers are of the carbon or cermet type, a plate consisting of a resistive film deposited on an insulating substrate, such as plastic, phenolic papers, ceramics or the like and which, as a whole, constitute the said resistive plate.

The resistive plate has the shape of an open circular ring with flat endings 9, enabling it to be positioned in the casing 1, and an inwardly oriented radial projection 10 in the form of a key with rounded edges for facilitating its automatic positioning, to which projection will be riveted by plastic deformation, the indentations 34 of the casing 1, thus insuring a perfect joining of the resistive plate 33 of the casing.

The surface of the resistive film may include one or more areas having different electric conductivities.

Reverting again to the terminals 3, these terminals could be of iron, brass or copper alloys, totally or partially coated with nickel, tin or tin-lead alloys. The said terminals present themselves in the casing 1 through the holes 5 of the casing and are clamped therein by the deformed studs 4 as shown in the detail of figure 7, housed in the corresponding slots 11 of the casing. Furthermore, they are also clamped, with electrical contact, to the resistive plate 33 itself, as can be seen in detail 12 of figure 8. The imaginary axes corresponding to the two said clampings are perpendicular to each other, a fact which permits a higher heat dissipation at the time of assembly to the electronic circuit, thereby preventing plastic deformations of the casing 1 and insuring the electrical contact, since it remains stable and unaltered in the said assembly in which, as previously mentioned, the terminal, the casing and the resistive plate intervene.

It should also be emphasised that the part of the terminal 3 which is clamped to the resistive plate 33 has a deformation or countersunk 28, clearly visible in figure 16, which insures the electrical contact according to detail 28 of figure 8. The terminals will be secured to the casing by plastic deformation of the pivots 4 and will be housed exteriorly, as illustrated in the view of the assembly of figure 3, in a cavity 2 of the casing, which anatomically adapts itself to the perimeter of the terminal at this joining zone thereof.

When the resistive element of the potentiometer is of the cermet or carbon type, which involves a ceramic substrate as that represented in figure 17 and referenced 32, the terminal will present slight modifications, in accordance with the representation of figures 18 to 20, ending specifically in a tapering 30 which rests on the end of the resistive element according to the detail of figure 17. In this case the joining between this part of the termi-
nal and the area corresponding to the resistive element takes place with the help of an electric conveying polymer or an electric conveying thermal cutout cement 31.

The cursor, illustrated in detail in figures 21 to 23, consists of an element made of metal, brass, bronze or other alloys, and is designed to electrically bridge the resistive plate 33 and the collector 23. Its constitution and shape confer thereto a flexible action when supported on the resistive plate 33 in a variable range of from 30 to 250 grams-force.

This cursor 13, when supported on the resistive plate 33, determines a dual contact 14, with rivet snap 15 and a half round-shaped contact tile 14, in order to facilitate contact and to prevent the ribbons and ragged edges, typical of a cutting operation, from scratching the resistive strip.

On the contrary and similarly, it makes an electrical contact with the collector 23, by means of a dual contact 38, with rivet snap and half round-shaped contact tile 37, in order to facilitate contact and to also prevent the ribbons and ragged edges, typical of a cutting operation, from scratching the collector.

This cursor 13 turns jointly with a rotator 16, thanks to the key-like adjustment defined by indentations 36 of the cursor which fit into homologous cavities 35 of the rotor which, subsequently and by plastic deformation of projections 17 of the rotor, is riveted guaranteeing a perfect joining, in such a manner that it could be positioned from the outside on any area of the resistive strip by a rotating movement.

The rotor 16 may be of thermoplastic polymers or of any other material having a high dielectric strength.

Its turn is limited to a certain angle by a butt 20 operatively established therein and complementary of another butt 21 existing in the casing 1.

The rotor could be turned with any suitable tool towards its central recess 22, which recess could be rectangular or it could adopt any other geometry. To this recess 22 could be coupled, in a fixed manner, other pieces, such as pins or knobs, in order to facilitate movement thereof, in accordance with the practical requirements of each case.

Finally, the collector 23 will be obtained from the same materials and with the same coatings indicated for the terminals 3 and it will be provided, at its edges, with projections 24 which facilitate the automatic process of assembling it. Specifically, it is secured to the casing by means of four clamp-like stamped arms 25 complementary to the cavities 7 provided in the casing 1 and according to the detail of figure 6.

Its position within the casing is guaranteed by the indentations 8 of this latter.

It incorporates a flanged central hole 26 which guarantees the uniform and regular sliding of the rotor 16, serving as a guide bearing therefor.

The outer edge of the rotor 16 is folded by plastic deformation, as can clearly be seen in figure 2, in which the said folded edge is referenced 27.

The rotor incorporates three indentations 29 which, by overpressure in the collector flanging, guarantee a regular and uniform turning torque, whilst insuring the firm and static position of the contact of the cursor on the resistive element and the collector itself. Due to its shape, it is provided with a large surface which contributes to a higher thermal dissipation in its operation within the electronic circuits.

The processes for assembling the described pieces or elements is clearly represented in figures 35 to 40, and in accordance therewith it departs from a support band 40 on which, continuously, the terminals 3 are duly stamped, in such a manner that in a first machine each resistive plate 33 is incorporated to each casing 1 and each casing 1, in turn, is coupled to the bent arms of the pair of corresponding terminals of the continuous support band of the said terminals, in accordance with the facing position illustrated in figure 35 and up to the definite assembling position illustrated in figure 36. Simultaneously in this operation, the two legs of the terminal are clamped according to the details of figures 7 and 8.

Then, analogously and independently, the cursors 13 which also form part of a continuous band 41, the rotors 16 and the collectors 23, which also form part of a continuous band 42, are proceeded with, carrying out a process of assembly similar to the former and in accordance with the representation of figures 37 and 38. More specifically, in this second machine the first operation consists in mounting the cursor 13 on the rotor 16, within a housing incorporated in the said rotor, whereas the surplus sector of the said band, which is collected as waste, is cut off as in the former case. The rotor-cursor subassembly is then jointed to the collector 23 by plastic deformation of the rotor head.

Once the casing-terminal-resistive plate subassemblies, on the one hand, and the rotor-cursor-collector subassemblies, on the other hand, have been obtained, these two subassemblies, in accordance with the representation of figures 10 and 11, are definitely secured together, but maintaining a continuous manufacturing line, at the expanse of the band 40 corresponding to the terminals for the first subassembly, and of band 42 corresponding to the collectors 23 for the second subassembly.

Finally, the remnants corresponding to these two bands 40 and 42 are eliminated and the termi-
nals are folded, as can be seen in figure 40, whereby the potentiometers are totally finished and physically independent of one another.

In the folding of the terminals, these terminals would have adopted the most suitable orientation in accordance with the specific application of the potentiometer, finally proceeding with the automatic selection or quality control of the potentiometers, whereby the process is concluded.

Finally, and referring to the process for obtaining the resistive plate 33, in a first activating station 43, as illustrated in figure 41, a physical-chemical affinity is provoked between the plastic band 44 and a resistive paint to be deposited. This can be achieved by utilising an electric discharge on the plastic, which produces an activation of the functional molecular groups of the former, or by means of a special acid treatment which leads to the same results. These actions involve the production of microcavities which enable the physical fixing or adherence, by roughness, of the resistive pastes applied.

In any case an activated plastic band is obtained, which is then subjected to a painting operation, in accordance with figure 42, by introducing the activated band through the lower part of an instrument set with different gauges 45 disposed horizontally and vertically, thereby enabling the resistive paints to be introduced by means of a system of injectors 46 coupled at different areas of the said instrument. This assembly enables various resistive pastes to be simultaneously deposited, synchronously with the passing speed of the band and with a perfect thickness control, on the plastic band 44, the different areas being perfectly defined in the longitudinal and transversal direction of the band, as can be seen in the said figure 42 in which the band has been referenced 47 at its outlet from the instrument.

Then the moist painted band 47 is continuously introduced in a drying and curing furnace 48, as illustrated in figure 3, in which the applied resistive paste is polymerised and, consequently, a "cured" band 49 is obtained.

The band 49 is then subjected to the action of a roller mechanism 50, as illustrated in figure 44, for the application of silver glaze, which device 50 may point narrow bands strategically positioned in the longitudinal direction of the band. This process is also continuous and results in the obtention of a plastic band with a cured resistive paste 51 provided with layers of moist silver 52.

The band 51-52 is then subjected to the effects of a curing furnace 53, as illustrated in figure 45, to polymerise the deposited silver glaze 52, obtaining a plastic band 54 with cured resistive paste and silver.

Once all these operations have been conducted continuously, as illustrated in figure 46, the band 54 is wound in the form of a coil with the help of a winding machine 55 to which the corresponding wound coil 56 is joined, the band being in a position to resist the subsequent stamping operation to obtain the resistive plates 33, which should intervene in the potentiometers, individually.

A series of advantages are derived from the described structure of the potentiometer of the invention and from the process for assembling the same, from which may be emphasised:

- The parallelepiped shape of the casing enables positioning and feeding for the automatic insertion or assembly of the component in the electronic circuits.
- Clamping of the terminals to the casing with shafts, perpendicular to one another, and the shape thereof, permits a higher thermal dissipation, preventing possible plastic deformations which would alter the electrical contact.
- The shape itself of the clamping permits the path travelled by the electric and mechanical turn to be longer, as compared with conventional potentiometers having the same size.
- The larger surface of the collector facilitates a higher thermal dissipation, guaranteeing a better operation of the component.
- The bearing formed by the collector flanging guarantees a constant and uniform turning torque.
- The collector flanging permits an overpressure to be applied to the rotor, simultaneously achieving a uniform turning torque, in an exact and maintained position of the cursor contacts on the resistive strip, this strip not being altered by vibrations or extraneous effects to which the component may be subjected.
- The staple of the terminal surrounding the resistive strip permits an overpressure guaranteeing the electrical contact without deterioration of the resistive plate. This is due to the fact that the said pressure is applied on a solid molded surface, easy to control.
- The dial of the casing enables the mechanical turning point at which the cursor is encountered, and consequently the position of the potentiometer, to be controlled.
- The dual contact of the cursor on the collector and the resistive plate, since it is flexible, permits assembling irregularities, without electrical variation in the contact.
- The wideness of the mouth of the casing hole facilitates entrance of the tool for automatically adjusting the component.
- Due to its shape and design it permits a high degree of automation in its construction pro-
cess, with the consequent reduction in costs.
The shape, dimensions and materials, and in
general any accessory may be varied, provided
that the main feature of the described object is not
altered, changed or modified.

Claims

1. A potentiometer, comprising a parallelepiped
casing (1) formed from charged polymers hav-
ing a high dielectric strength, a resistive plate
(33) housed in said casing (1), a rotor-actuated
cursor (13) acting on said resistive plate (33),
two terminals (3) and a collector (23), wherein
said casing (1) comprises first holes (5) for
securing portions of the two terminals (3) to
the casing (1) and second holes (6) at positions
<corrected>corresponding to the ends of the resistive plate (33) for joining the terminals (3) to
the resistive plate (33), thereby effecting elec-
trical contact between the terminals (3) and
the resistive plate (33), said casing (1) further comprising externally projecting studs (4) of a plast-
ically deformable material clamping the two
 terminals (3) on the casing (1), said collector
(23) extending across one face of said casing
(1) and having arms (25) clamped into cor-
responding recesses (7) formed on adjacent
faces of said casing (1), said casing (1) com-
prising a face opposite to that across which the
collector (23) extends, said opposite face com-
prising a dial (18) enclosing a hole (19) in
which the rotor (16) moves, said hole (19)
having a beveled mouth to facilitate assembly
of the rotor (16) in the casing (1).

2. The potentiometer according to claim 1,
wherein said casing (1) comprises a pair of plas-
tically deformed studs (4) for each of the
two terminals (3), each pair of plasticly de-
formed studs (4) straddling and overlying its
respective terminal (3).

3. The potentiometer according to claim 1,
wherein said collector (23) comprises a qua-
drangular portion substantially coextensive
with one face of the parallelepiped casing (1).

4. The potentiometer according to claim 1,
wherein the resistive plate (33) comprises a
resistive film comprising an agglomerated met-
al and ore charges, said resistive film being
deposited on an electrically insulating sub-
strate (32), and wherein the resistive plate (33)
has the shape of an open circular ring with flat
ends (9) and a radially inwardly extending pro-
jection (10) in the shape of a key having
rounded edges for permitting positioning of the
resistive plate (33) in the casing (1).

5. The potentiometer according to claim 1,
wherein each of the two terminals (3) com-
prises an additional portion extending into the
casing through a second hole (6) perpendicu-
larly to the portion of the terminal (33) estab-
lishing electrical contact with the resistive plate
(33).

6. The potentiometer according to claim 1,
wherein the two terminals (3) have surface
deformations promoting improved contact with
the resistive plate (33).

7. The potentiometer according to claim 1,
wherein the rotor-actuated cursor (13) com-
prises a dual contact (14) with rivet snaps (15)
and half round-shaped contact tiles (37) at its
diametrically opposed ends, for electrically
contacting the collector (23) and resistive plate
(33), respectively, and wherein said cursor (13)
and said rotor (16) comprise cooperating inter-
fitting projections and indentations (36) secur-
ing the cursor (3) to the rotor (16) in a fixed
angular position.

8. The potentiometer according to claim 1,
wherein the collector (23) comprises four
stamped arms (25) clamped to corresponding
cavities (7) in the casing (1), and wherein said
 collector (23) further comprises a flanged cen-
tral hole (26) in sliding contact with the rotor
(16) and acting as a guide-gearing therefor,
said rotor (16) comprising three indentations
(29) resting on the flanging of the central hole
(26) of the collector (23), thereby to ensure
regular and uniform turning torque and a stable
position of the contact of the cursor (13) on the
resistive plate (33) and the collector (23).

9. Process for producing a potentiometer accord-
ing to one of claims 1 to 8, comprising placing
a resistive plate (33) in each of a plurality of
parallelepiped casings (1), fitting the plurality
of casings (1) to a continuous band (40) of
stamped terminals (3) such that portions of two
terminals (3) are received in each casing (1),
mating the continuous band (40) of terminals
(3) having the resistive plate-containing cas-
ings (1) fitted thereon to a continuous array
(42) of collectors (23) having fitted thereon a
 rotor (16) and cursor (13) corresponding to
each collector (23), and clamping each collector
(23) of the continuous array (42) to a cor-
responding casing (1) of the continuous band
(40).
10. The process according to claim 9, wherein the resistive plates (33) are produced by causing a physicochemical affinity in a first activating station (43) between a plastic band (44) and a resistive paint to be deposited on said plastic band (44), using an electric discharge on the plastic band (44) which causes activation of functional molecular groups thereof, or by acid treatment, applying the paint immediately and continuously to the activated plastic band (44) introduced in an instrument (45) enabling various paints or resistive pastes (51) to be applied simultaneously to the activated plastic band (44), polymerizing the applied resistive paste (51) in a drying and curing furnace (48), and applying a silver glaze (52) to the cured paste (51) by means of a roller device (50), and polymerizing the applied glaze (52).

 Patentansprüche

1. Potentiometer mit einem quaderförmigen Gehäuse (1), das aus geladenen Polymeren mit einer hohen dielektrischen Festigkeit gebildet ist, einer in dem Gehäuse (1) angeordneten Widerstandplatte (33), einem die Widerstandspaste (51) beaufschlagenden, durch einen Läufer betätigten Schleifer (13), zwei Anschlußklemmen (3) und einem Kollektor (23), wobei das Gehäuse (1) erste Öffnungen (5) zur Befestigung von Teilbereichen der beiden Anschlußklemmen (3) an das Gehäuse (1) aufweist sowie zweite Öffnungen (6) an solchen Positionen, die den Enden der Widerstandsplatte (33) entsprechen, um die Anschlußklemmen (3) mit der Widerstandsplatte (33) zu verbinden, wodurch ein elektrischer Kontakt zwischen den Anschlußklemmen (3) und der Widerstandsplatte (33) bewirkt wird, wobei das Gehäuse (1) des weiteren nach außen ragende Nasen (4) aus einem plastisch verformbaren Material aufweist, die die beiden Anschlußklemmen (3) am Gehäuse (1) befestigen, wobei der Kollektor (23) sich über eine Fläche des Gehäuses (1) erstreckt und Arme (25) besitzt, die in entsprechenden Ausnehmungen (7) befestigt sind, die in benachbarten Flächen des Gehäuses (1) ausgebildet sind, wobei das Gehäuse (1) eine Fläche aufweist, die gegenüber der Fläche angeordnet ist, über die sich der Kollektor (23) erstreckt, wobei die gegen überliegende Fläche eine Skalenscheibe (18) aufweist, die eine Öffnung (19) umschließt, in der sich der Läufer (18) bewegt, wobei die Öffnung (19) für eine leichtere Montage des Läufers (16) im Gehäuse (1) eine abgeschragte Mündung besitzt.

2. Potentiometer nach Anspruch 1, wobei das Gehäuse (1) ein Paar von plastisch verformbaren Nasen (4) für jede der beiden Anschlußklemmen (3) aufweist, wobei jedes Paar der plastisch verformbaren Nasen (4) seine entsprechende Anschlußklemme (3) übergreift und überlagert.

3. Potentiometer nach Anspruch 1, wobei der Kollektor (23) einen viereckigen Bereich aufweist, der sich im wesentlichen parallel zu einer Fläche des quaderförmigen Gehäuses (1) erstreckt.

4. Potentiometer nach Anspruch 1, wobei die Widerstandsplatte (33) eine Widerstandsschicht umfaßt, die aus einem Sintermetall und Erzschlägen gebildet ist, wobei die Widerstandsschicht auf einem elektrisch isolierenden Substrat (32) aufgebracht ist, und wobei die Widerstandsplatte (33) in Form eines offenen, kreisrunden Rings mit flachen Enden (9) und einem sich radial nach innen erstreckenden Vorsprung (10) ausgebildet ist, der die Form eines Keils mit abgerundeten Kanten aufweist, um ein Positionieren der Widerstandsplatte (33) im Gehäuse (1) zu ermöglichen.

5. Potentiometer nach Anspruch 1, wobei jede der beiden Anschlußklemmen (3) einen zusätzlichen Bereich aufweist, der sich in das Gehäuse durch eine zweite Öffnung (6) senkrecht zu dem Bereich der Anschlußklemme (3) erstreckt, der den elektrischen Kontakt mit der Widerstandsplatte (33) herstellt.

6. Potentiometer nach Anspruch 1, wobei jede der beiden Anschlußklemmen (3) Oberflächenverformungen aufweist, die einen verbesserten Kontakt mit der Widerstandsplatte (33) ermöglichen.

7. Potentiometer nach Anspruch 1, wobei der durch einen Läufer betätigten Schleifer (13) einen Doppelkontakt (14) mit Niet-Schnappgliedern (15) und halbrund ausgebildeten Kontaktelementen (37) an seinen diametral gegenüberliegenden Enden umfaßt, um einen elektrischen Kontakt zum Kollektor (23) oder der Widerstandsplatte (33) zu bilden, und wobei die Schleifer (13) und der Läufer (16) zusammenwirkende, einander beaufschlagende Vorsprünge und Zahnräder (36) aufweisen, die den Schleifer (13) an dem Läufer (16) in einer festen Winkelposition befestigen.

8. Potentiometer nach Anspruch 1, wobei der Kollektor (23) vier gestanzte Arme
(25) aufweist, die in entsprechenden Ausnehmungen (7) im Gehäuse (1) befestigt sind, und wobei der Kollektor (23) des weiteren ein mittiges, mit einem Flansch versehenes Loch (26) umfaßt, das sich in gleitendem Kontakt mit dem Läufer (16) befindet und als Führung für diesen dient, wobei der Läufer (16) drei Vorsprünge (29) aufweist, die auf dem Flansch des mittigen Loches (26) des Kollektors (23) aufliegen, wodurch ein regelmäßiges und gleichmäßiges Drehmoment sowie ein stabiler Kontakt des Schleifers (13) auf der Widerstandsplatte (33) und dem Kollektor (23) gewährleistet sind.

9. Verfahren zur Herstellung eines Potentiometers nach einem der Ansprüche 1 bis 8, bestehend aus den folgenden Schritten:
Anordnen einer Widerstandsplatte (33) in jedem einer Anzahl von quadrförmigen Gehäusen (1),
Montage der Anzahl von Gehäusen (1) auf einem durchgehenden Band (40) von gestanzten Anschlußklemmen (3) derart, daß Teilbereiche von zwei Anschlußklemmen (3) in jedem Gehäuse (1) aufgenommen sind,
Passen des durchgehenden Bands (40) von Anschlußklemmen (3), auf denen die die Widerstandsplatte enthaltenden Gehäuse (1) montiert sind, auf eine durchgehende Reihe (42) von Kollektoren (23), auf denen ein Läufer (16) und entsprechend dem jeweiligen Kollektor (23) ein Schleifer (13) angeordnet ist, und Befestigen jedes Kollektors (23) durchgehenden Reihe (42) an ein entsprechendes Gehäuse (1) des durchgehenden Bands (40).

10. Verfahren nach Anspruch 9, wobei die Widerstandsplatten (33) hergestellt werden durch Erzeugung einer physikalischchemischen Affinität in einer ersten Aktivierungsstation (43) zwischen einem Kunststoffband (44) und einer auf dem Kunststoffband (44) aufzubringenden Widerstandsfarbe,
Anwendung einer elektrischen Entladung auf das Kunststoffband (44), wodurch eine Aktivierung von dessen funktionellen Molekulargruppen bewirkt wird, oder durch Süurebehandlung, durch sofortiges und kontinuierliches Aufbringen der Farbe auf das in eine Vorrichtung (45) eingeführte aktivierte Kunststoffband (44), die ein gleichzeitiges Aufbringen von verschiedenen Farben oder Widerstandspansten (51) auf das aktivierte Kunststoffband (44) ermöglicht,
Polymerisierung der aufgebrachten Widerstandspansten (51) in einem Trocken- und Härteofen (48), und Aufbringen einer Silberglasur (52) auf die mitigation einer Rollvorrichtung (50) gehärtete Paste (51), und
Polymerisierung der aufgebrachten Glasur.

Reivendications

1. Un potentiomètre comprenant un boîtier parallélépipédique (1) formé à partir de polymères chargés présentant une forte résistance diélectrique, une plaque résistante (33) montée dans ledit boîtier (1), un curseur actionné par rotor (13) agissant sur ladite plaque résistante (33), deux bornes (3) et un collecteur (23), dans lequel ledit boîtier (1) comprend de premiers trous (5) pour fixer des parties des deux bornes (3) au boîtier (1) et de seconds trous (6) à des emplacements correspondant aux extrémités de la plaque résistante (33) pour relier les bornes (3) à la plaque résistante (33), en effectuant ainsi un contact électrique entre les bornes (3) et la plaque résistante (33), ledit boîtier (1) comprenant en outre des plots (4) faisant saillie vers l’extérieur, en une matière déformable plastiquement et serrant les deux bornes (3) sur le boîtier (1), ledit collecteur (23) s’étendant transversalement à une face dudit boîtier (1) et présentant des bras (25) serrés dans des logements correspondants (7) formés sur des faces adjacentes dudit boîtier (1), ledit boîtier (1) comprenant une face opposée à celle transversalement à laquelle s’étend le collecteur (23), ladite face opposée comprenant un cadran (18) entourant un trou (19) dans lequel le rotor (16) se déplace, ledit trou (19) présentant une embouchure biseauté pour faciliter l’assemblage du rotor (16) dans le boîtier (1).

2. Le potentiomètre selon la revendication 1, dans lequel ledit boîtier (1) comprend une paire de plots déformés plastiquement (4) pour chacune des deux bornes (3), chaque paire de plots déformés plastiquement (4) chevauchant et recouvrant sa borne respective (3).

3. Le potentiomètre selon la revendication 1, dans lequel ledit collecteur (23) comprend une partie quadrangulaire pratiquement de même étendue qu’une face du boîtier parallélépipédique (1).

4. Le potentiomètre selon la revendication 1, dans lequel la plaque résistante (33) comprend un film résistant comportant un métal alloméré et des charges minérales, ledit film résistant étant déposé sur un substrat électriquement isolant (32), et dans lequel la plaque résistante (33) a la forme d’une bague circulaire ouverte présentant des extrémités (8) planes et une
saillie (10) s’étendant radialement vers l’intérieur sous la forme d’une clé présentant des bords arrondis pour permettre la mise en place de la plaque résistante (33) dans le boîtier (1).

5. Le potentiomètre selon la revendication 1, dans lequel chacune des deux bornes (3) comprend une partie supplémentaire s’étendant dans le boîtier à travers un second trou (6) perpendiculairement à la partie de la borne (3) établissant un contact électrique avec la plaque résistante (33).

6. Le potentiomètre selon la revendication 1, dans lequel les deux bornes (3) présentent des déformations de surface favorisant un meilleur contact avec la plaque résistante (33).

7. Le potentiomètre selon la revendication 1, dans lequel le curseur actionné par rotor (13) comprend un double contact (14) présentant des parties à délic avec des plaques de contact semi-arondies (37) à ses extrémités diamétralement opposées, afin de mettre électriquement en contact le collecteur (23) et la plaque résistante (33), respectivement, et en ce que le rotor curseur (13) et le rotor (16) comprennent des saillies et des creux se correspondant mutuellement en fixant le curseur (13) au rotor (16) dans une position angulaire fixe.

8. Le potentiomètre selon la revendication 1, dans lequel le collecteur (23) comprend quatre bras embouts (25) serra sur des cavités correspondantes (7) du boîtier (1), et dans lequel le collecteur (23) comprend en outre un trou central à rebord (26) en contact de glissement avec le rotor (16) agissant en tant que transmission de guidage pour ce dernier, le rotor (16) comprenant trois creux (29) reposant sur le rebord du trou central (26) du collecteur (23), de manière ainsi à assurer un couple de rotation régulier et uniforme ainsi qu’une position stable du contact du curseur (13) sur la plaque résistante (33) et le collecteur (23).

9. Procédé pour la réalisation d’un potentiomètre selon l’une des revendications 1 à 8, comprenant le fait de placer une plaque résistante (33) dans chaque boîtier d’un ensemble de boîtiers parallélipépédiques (1), adapter l’ensemble des boîtiers (1) à une bande continue (40) de bornes embouts (3) de telle manière que des parties de deux bornes (3) sont reçues dans chaque boîtier (1), faire se correspondre la bande continue (40) de bornes (3), présentant les boîtiers (1) contenant la plaque résistante montée dessus à un réseau continu (42) de collecteurs (23) présentant adaptés dessus, un rotor (16) et un curseur (13) correspondant à chaque collecteur (23), et serrer chaque collecteur (23) du réseau continu (42) à un boîtier correspondant (1) de la bande continue (40).

10. Le procédé selon la revendication 9, dans lequel les plaques résistantes (33) sont réalisées en provoquant une affinité physiochimique dans un premier poste d’activation (43) entre une bande plastique (44) et une peinture résistante devant être déposée sur ladite bande plastique (44), en utilisant une décharge électrique sur la bande plastique (44) qui provoque une activation de ses groupes moléculaires fonctionnels, ou par un traitement acide, en appliquant la peinture immédiatement et de manière continue sur la bande plastique activée (44) introduite dans un appareil (45) permettant à diverses peintures ou pâtes résistantes (51) d’être appliquées simultanément sur le bande plastique activée (44), en polymérisant la pâte résistante (51) ainsi appliquée dans un four de séchage et de cuisson (48), et en appliquant, sur la pâte polymérisée (51), un vernis à l’argent (52) au moyen d’un dispositif à rouleaux (50), et en polymérisant le vernis appliqué (52).