COMPOSITION FOR TREATING OBESITY.

Priority: 05.12.86 US 938307

Date of publication of application: 04.10.89 Bulletin 89/40

Publication of the grant of the patent: 14.07.93 Bulletin 93/28

Designated Contracting States: AT BE CH DE FR GB IT LI LU NL SE

References cited:
GB-A- 1 239 345
US-A- 3 961 060
US-A- 4 598 094

Proprietor: SEROTONIN INDUSTRIES OF CHARLESTON
4130 Faber Place Drive
North Charleston, SC 29405 (US)

Inventor: HOHENWARTER, Mark, W.
2100 Ryegate Court
Mobile, AL 36609 (US)

Representative: Sheard, Andrew Gregory et al
Kilburn & Strode 30, John Street
London WC1N 2DD (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
DIALOG 0592965, MEDLINE 86230965: T. KATO et al.: "Reversal of the reserpine-induced ptosis by L-threo-3,4-dihydroxy-phenylserine (L-threo-DOPS), a (-)-norepinephrine precursor, and its potentiation by imipramine or nialamide", & NAUNYN SCHMIEDEBERGS ARCH PHARMACOL MAR 1986, 332 (3) pages 243-246

Neuropsychobiology, Volume 13, Issued 1985, S.E. MOLLER ET AL. "Biochemical and Diagnostic Classification and Serum Drug Levels: Relation to Antidepressive Effect of Imipramine", see page 161, column 1.
Description

This invention relates to compositions comprising a norepinephrine precursor, such as L-tyrosine or L-phenylalanine in combination with a norepinephrine reuptake inhibitor such as desipramine. The compositions are useful in controlling obesity in animals. The invention also relates to said compositions further comprising one or more enzymatic cofactors for the biosynthesis of norepinephrine. This invention further relates to the use of the compositions in a method of controlling obesity in an animal by administering an effective amount of the compositions of this invention to said animal.

The use of appetite suppressants such as diethylproprion and phenylpropanolamine operate by directly and/or indirectly stimulating noradrenergic receptors in the brain. However, long-term use of these drugs is met with increasing tolerance in most patients, requiring increased dosage and more frequent administration to achieve continued appetite suppression. Tolerance to these products occurs as the result of a depletion of norepinephrine from storage sites in the neuron with the use of indirect-acting agents.

Catecholamines are stored in subcellular granules and released by exocytosis in the adrenal medulla and sympathetic nerve endings. The biosynthesis of catecholamines proceeds from the amino acid phenylalanine which is sequentially hydroxylated to form tyrosine, then 3,4-dihydroxyphenylalanine (DOPA). DOPA is decarboxylated to form dopamine. Hydroxylation on the beta position of the side chain forms norepinephrine.

The initial step, the hydroxylation of tyrosine, was believed to be rate-limited and regulated so that synthesis was coupled to release. This regulation has been thought to be achieved by alterations in both the activity and the amount of tyrosine hydroxylase. Harrison's Principles of Internal Medicine, 10th edition, edited by Petersdorf, R.G. et al, page 410 (1983).

After release by exocytosis, much of the norepinephrine is recaptured by an active reuptake mechanism. Additionally, norepinephrine is metabolized by O-methylation of the meta-hydroxyl group and oxidative deamination. O-Methylation is catalyzed by the enzyme catechol-O-methyltransferase (COMT). Oxidative deamination is promoted by monoamine oxidase (MAO). MAO is important in regulating the catecholamine stores within the peripheral sympathetic nerve endings. For a more complete description of the biosynthesis and metabolism of the catecholamines, see Harrison, supra, pages 409-412.

The pyridoxines are a group of B6 vitamins which include pyridoxine, pyridoxal, and pyridoxamine and their five-phosphate esters. The coenzyme formed in vivo is pyridoxal-5-phosphate. The compound owes their enzymatic activity to conversion in vivo to pyridoxal-5-phosphate. Pyridoxal-5-phosphate acts as a cofactor for a large number of enzymes involved in amino acid metabolism, including transaminases, synthetases, and hydroxylases, and is a known enzyme cofactor in the biosynthesis of norepinephrine from phenylalanine and tyrosine. Ascorbic acid plays a role as an enzymatic cofactor in hydroxylation reactions. Accordingly, ascorbic acid participates in the biosynthesis of DOPA from tyrosine and in the biosynthesis of norepinephrine from dopamine. Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 7th Edition, edited by Gilman, A.G. et al, Macmillan Publishing Company, New York, NY (1985) pp. 82, 1559-1560.

Contrary to the idea that brain catecholamine levels cannot be effectively raised by tyrosine administration, it has been observed that increasing brain tyrosine levels does increase brain DOPA levels. Conversely, decreases in brain DOPA levels could be produced in rats by decreasing brain tyrosine levels. Wurtman et al., Science 185:183-184 (1974). Increased brain levels of tyrosine were achieved by administering tyrosine itself.

United States Patent No. 4,470,987 to Wurtman et al., discloses a composition for reducing the risk of ventricular fibrillation in animals by administering tyrosine or a tyrosine precursor, either alone or in combination with a further substance known to reduce the risk of ventricular fibrillation. According to the disclosure, increased synaptic norepinephrine levels are obtained by administering tyrosine. Wurtman also discloses that phenylalanine can, in low doses, be used in place of tyrosine. Phenylalanine and tyrosine act by increasing the release of catecholamines (dopamine, norepinephrine, or epinephrine) into synapses which in turn reduce the firing frequency of the sympathetic neurons running to the heart, thereby decreasing cardiac excitability and vulnerability.

United States Patent No. 4,596,094, to Wurtman, discloses the concomitant administration of tyrosine with an indirect-acting sympathomimetic drug to increase the level of norepinephrine released in the sympathetic neuron synapses. The claimed invention is a composition and a process for preventing tachyphylaxis, caused by amphetamine administration, comprising concomitantly administering amphetamine with a catecholamine precursor such as L-tyrosine. L-tyrosine serves to replete norepinephrine which had been depleted by the indirect acting sympathomimetic drugs.
Desipramine is a member of the tricyclic family of antidepressants, which block the presynaptic re-uptake of norepinephrine in the central nervous system. Other tricyclic antidepressants include imipramine hydrochloride, imipramine pamoate, amitriptyline hydrochloride, and protriptyline hydrochloride. These compounds have anti-anxiety and sedative properties which make them useful in the treatment of mild depression. See Remington's Pharmaceutical Sciences, edited by R. Osol, Mack Publishing Company, Easton, Pennsylvania, page - 1038 (1980).

Desipramine has been reported to be effective in decreasing depressive symptoms of phencyclidine and cocaine abusers. Phencyclidine and cocaine have been shown to release dopamine and norepinephrine presynaptically and are equipotent to amphetamine in blocking catecholamine reuptake. Giannini, A.J., et al., J. Clin. Pharmacol. 26:211-214 (1986). The authors hypothesize that the tricyclic antidepressants are effective in treating cocaine abuse due to the induction of receptor subsensitivity. The suggestion that desipramine is effective in PCP withdrawal because of its ability to block reuptake of norepinephrine was not supported by their findings. Re-uptake blockade is felt to occur rather quickly, whereas alteration of receptors occurs after three to four weeks. The authors report that a two-week time period after starting desipramine was necessary in order to obtain the therapeutic effect in both cocaine and PCP abusers.

Desipramine has also been reported to enhance the anorectic effects of d-amphetamine, phentermine, and diethylpropion, but did not modify those of phenmetrazine and chlorphentermine. Menon, M.K., et al., Eur. J. Pharmacol. 12:156-160 (1970). The authors hypothesize that potention and prolongation of the effects of d-amphetamine, phentermine, and diethylpropion by desipramine are probably due to interference with their metabolism, leading to an increase in the half-life of the substances in the body.

The clinical effect of desipramine and imipramine in depressed patients has been found to be related to the plasma ratios of tryptophan and tyrosine to competing amino acids. Miller, S.E., et al., Neuropsychobiology 13:160-166 (1985). The authors concluded that determination of pretreatment plasma ratios of tryptophan and tyrosine to competing amino acids may serve as a useful and convenient direction for the adjustment of serum imipramine and desipramine to optimal therapeutic levels in individual depressives.

Thus, a medicament comprising the combination of a norepinephrine precursor and a norepinephrine re-uptake inhibitor, said medicament useful for the treatment of obesity, is not taught or suggested by the prior art.

This invention relates to compositions and their use in the treatment of obesity. The compositions comprise a norepinephrine precursor, such as L-tyrosine or L-phenylalanine, in combination with a tricyclic antidepressant which acts as a norepinephrine re-uptake inhibitor, such as desipramine. The compositions may further comprise an effective amount of enzymatic cofactors for the biosynthesis of norepinephrine.

The invention relates as well to the use of these compositions in the treatment of obesity in an animal. Treatment comprises administration of a norepinephrine precursor in combination with the tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor, optionally with enzymatic cofactors for the biosynthesis of norepinephrine, to the animal in amounts effective to treat obesity.

In response to the longstanding need for treating obesity the present invention was developed. The objective of this invention is to increase the synthesis of brain norepinephrine to normal to supranormal levels by administering a norepinephrine precursor and then to maintain this therapeutic concentration at the synaptic cleft by blocking its re-uptake into the presynaptic nerve terminals by co-administration of a tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor. A further objective of this invention comprises the co-administration of enzyme co-factors in the biosynthetic pathway for in vivo norepinephrine biosynthesis.

By the term "norepinephrine precursor" is intended L-tyrosine, L-phenylalanine, and the pharmaceutically acceptable salts of L-tyrosine and L-phenylalanine.

L-Tyrosine is a widely distributed amino acid, classified as nonessential in respect to the growth effect in rats. See The Merck Index, supra page 1406. L-Tyrosine is a natural product which can be isolated from silk waste (Abder Halem et al., D. Physiol. Chem. 48:528 (1906), from casein (Marshal, J. Biol. Chem. 15:85 (1913), and from corn (U.S. Patent No. 2,178,210 (1940)).

By the term "norepinephrine re-uptake inhibitor" is intended compounds which block the re-uptake of norepinephrine into the presynaptic nerve terminals. Norepinephrine re-uptake inhibitors include, but are not limited to, desipramine, imipramine, amoxapine, amitriptyline, protriptyline, and maprotiline and pharmaceuti-

The synthesis of the antidepressant protriptyline is described in United States Patents 3,244,748 and 3,271,451, and in Belgium Patent No. 617,967. Protriptyline has also been reported to be useful in treatment of sleep apnea (Clark, R.W., et al., Neurology 29:1287 (1979); Brownell, L.G., et al., N. England J. Med. 307:1037 (1982)).

By the term "animal" is intended all animals in which norepinephrine is manufactured biosynthetically and for which the re-uptake of norepinephrine at the synaptic cleft can be blocked. Foremost among such animals are humans; however, it being within the contemplation of the invention to treat any and all animals which may experience the beneficial effects of the invention.

In the invention pyridoxine is not only contemplated but also naturally occurring pyridines that are metabolically and functionally interrelated. These include pyridoxine, pyridoxal, and pyridoxamine and the pharmaceutically acceptable salts thereof, such as pyridoxine hydrochloride. The synthesis of pyridoxine hydrochloride is described in U.S. Patents 2,680,743; 2,734,063; 2,904,551; and 3,024,244.

As well as ascorbic acid the synthetic and natural analogues of ascorbic acid, which can be converted to the active form in vivo, and the pharmaceutically acceptable salts thereof, are also included. A synthetic procedure for producing ascorbic acid is described in U.S. Patent No. 2,702,808.

By the term "pharmaceutically acceptable salts" is intended salts with pharmaceutically acceptable acids or bases, e.g., acids such as sulphuric, hydrochloric, nitric, phosphoric acid, etc., or bases such as alkali or alkaline earth metal hydroxides, ammonium hydroxides, alkylammonium hydroxides etc.

By the term "supranormal levels" is intended levels of norepinephrine in excess of those normally found as a result of the body's natural production of norepinephrine or the levels induced by the administration of a norepinephrine re-uptake inhibitor or a norepinephrine precursor alone.

By the term "co-administrated" is intended that each of at least two compounds will be administered during a time frame wherein the respective periods of pharmacological activity overlap.

The compositions of the present invention comprise a norepinephrine precursor in combination with a tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor. The composition may further comprise amounts of one or more enzymatic cofactors effective for the biosynthesis of norepinephrine or the pharmaceutically acceptable salts thereof.

Tyrosine is formed in vivo from phenylalanine by a hydroxylation reaction catalyzed by phenylalanine hydroxylase, which requires NADPH as co-reductant and dihydrobipterin as co-factor. See Lehninger, A.L. Biochemistry, worth Publishers, New York, NY (1970), pp. 542. Ascorbic acid is involved in the synthesis of norepinephrine by facilitating the hydroxylation of tyrosine to form DOPA, and the hydroxylation of dopamine to form norepinephrine. The decarboxylation of DOPA to give dopamine involves a pyridoxine catalyzed enzymatic reaction. Thus, the addition of at least one of pyridoxine and ascorbic acid, in an amount effective to cofactor the biosynthesis of norepinephrine from its precursor, to the composition containing a norepinephrine precursor and a tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor, ensures that a predictable maximum biosynthesis of norepinephrine will result in all animals being treated, regardless of their individual nutritional status.

Compositions within the scope of this invention include all compositions wherein each of the components thereof is contained in an amount sufficient to achieve its intended purpose. Thus, the compositions contain one or more norepinephrine precursors in an amount sufficient to result, upon administration, in the biosynthesis of norepinephrine in supranormal levels.

Similarly, the compositions contain one or more tricyclic antidepressants that act as norepinephrine reuptake inhibitors in an amount sufficient to inhibit the re-uptake of norepinephrine at the synapse. Further, where the precursor and inhibitor are co-administered separate and apart from one another, the same criteria for determining levels of administration apply. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art.

Typical unit dosage forms contain 125-2000 mg of a norepinephrine precursor or an equivalent amount of the pharmaceutically acceptable salt thereof, 10-75 mg of the norepinephrine re-uptake inhibitor or an equivalent of the pharmaceutically acceptable salt thereof, and, where present, 10-100 mg of pyridoxine (or pyridoxal or pyridoxamine) or an equivalent amount of a pharmaceutically acceptable salt thereof, 50-500 mg of ascorbic acid (or analogue thereof as previously stated) or an equivalent amount of a pharmaceutically acceptable salt thereof.

Typical compositions of the present invention contain, per unit of the norepinephrine reuptake inhibitor or an equivalent amount of the pharmaceutically acceptable salt thereof, 0.5 to 500, preferably 2 to 200, parts by weight of the norepinephrine precursor or an equivalent amount of the pharmaceutically
acceptable salt thereof, and, if present 0.02-4 parts by weight of pyridoxine (or pyridoxal or pyridoxamine) or an equivalent amount of a pharmaceutically acceptable salt thereof, and 0.4-20 parts by weight of ascorbic acid (or an analogue thereof as previously stated) or an equivalent amount of a pharmaceutically acceptable salt thereof.

In addition to the pharmacologically active compounds, the new pharmaceutical preparations may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Preferably, the preparations, particularly those preparations which can be administered orally and which can be used for the preferred type of administration, such as tablets, dragees, and capsules, and also preparations which can be administered rectally, such as suppositories, as well as suitable solutions for administration by injection or orally, contain from 0.1 to 99 percent, preferably from 25-85 percent of active compound(s), together with the excipient.

The pharmaceutical preparations of the present invention are manufactured in a manner which is itself known, for example, by means of conventional mixing, granulating, dragee-making, dissolving, or lyophilizing processes. Thus, pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipients, optionally grinding a resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores.

Suitable excipients are, in particular, fillers such as sugars, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch or starch paste, using, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone. If desired, disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, cross-linked polyvinyl pyrrolidone, agar, or algenic acid or a salt thereof, such as sodium alginate. Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol. Dragee cores are provided with suitable coatings which, if desired, are resistant to gastric juices. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. In order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used. Dye stuffs or pigments may be added to the tablets or dragee coatings, for example, for identification or in order to characterize different combinations of active compound doses.

Other pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol. The push-fit capsules can contain the active compounds in the form of granules which may be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds are preferably dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added.

Possible pharmaceutical preparations which can be used rectally include, for example, suppositories, which consist of a combination of the active compounds with a suppository base. Suitable suppository bases are, for example, natural or synthetic triglycerides, paraffin hydrocarbons, polyethylene glycols or higher alkanols. In addition, it is also possible to use gelatin rectal capsules which consist of a combination of the active compounds with a base. Possible base materials include, for example, liquid triglycerides, polyethylene glycols, or paraffin hydrocarbons.

Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides.

Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. Optionally, the suspension may also contain stabilizers.

The compositions of the present invention, in and of themselves, find utility for appetite suppression. One postulate for appetite suppression is related to mediation via noradrenergic stimulation. Many prescription (e.g., diethylpropion) and over-the-counter (e.g., phenylpropanolamine) products currently marketed indirectly and/or directly stimulate noradrenergic (norepinephrine) receptors and thus suppress appetite. Tolerance to these products can occur, however, because of depletion of norepinephrine from storage sites in the neuron which occurs with the use of indirect acting agents. The unique mechanism of
action of this invention results in appetite suppression with minimal tolerance potential.

The composition of the present invention may be administered by any means that affects appetite suppression. For example, administration may be parenterally, subcutaneously, intravenously, intramuscularly, or intraperitoneally. Alternatively, or concurrently, administration can be by the oral route. The dosage administered will be dependant upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

Administration of the composition is desirably effected in from one to eight dosage units daily, depending on the mode of administration, preferably by oral administration, e.g., liquids, capsules, or tablets. Each dosage contains 125-2000 mg (1-16 g per day) of the norepinephrine precursor, 10-75 mg (80-600 mg per day) of the norepinephrine re-uptake inhibitor, 10-100 mg (80-800 mg per day) of pyridoxine, if present, and 50-500 mg (400-4000 mg per day) of ascorbic acid, if present.

The following examples are illustrative, but not limiting of the method and composition of the present invention. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in clinical therapy and which are obvious to those skilled in the art are within the spirit and scope of this invention.

Example 1

The patient was a thirty year old white female (1,78m, 68,5kg (5' 10", 151 lbs)). A licensed physician initiated desipramine (25mg) and L-tyrosine (1 g) therapy beginning September 10, 1986. The patient was six months post-partum and desired to attain her pre-pregnancy weight of 66kg 145 lbs). Before initiation of therapy, she was unable to lose this desired 2,3-4,5kg five to ten pounds), despite voluntary attempts at controlling appetite. She daily self-administered 1 dose of desipramine/L-tyrosine orally, every morning from September 10, 1986 to October 1, 1986. She did not advance the daily dose beyond the initial starting regimen of desipramine (25mg) and L-tyrosine (1 g). During this period of treatment, she reported a marked decrease in appetite and lost a total of seven pounds. Weight loss was achieved during therapy as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Patient's Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 10, 1986</td>
<td>68,5kg (151 lbs.)</td>
</tr>
<tr>
<td>September 16, 1986</td>
<td>67,1kg (148 lbs.)</td>
</tr>
<tr>
<td>September 24, 1986</td>
<td>66,2kg (146 lbs.)</td>
</tr>
<tr>
<td>October 1, 1986</td>
<td>65,3kg (144 lbs.)</td>
</tr>
</tbody>
</table>

Therapy was discontinued October 1, 1986 as the patient reached her desired weight loss goal.

Example 2

A thirty year old white male (1,98m, 101,2kg) (6' 6", 223 lbs.) had gradually increased in weight from approximately 91,6kg (205 lbs.) to his current weight 101,2kg (223 lbs.) over the prior two years. Under the supervision of a licensed physician, therapy for appetite suppression was initiated (desipramine 25mg, L-tyrosine 1 g, 1 dose/day) every morning beginning September 2, 1986 until September 30, 1986. Desipramine/L-tyrosine therapy was administered via the oral route with the desipramine in tablet form and the L-tyrosine in capsule form. Upon initiating therapy, the patient's appetite subjectively decreased with a corresponding decrease in caloric consumption. The patient exhibited a fifteen pound weight loss during the ensuing four week period while receiving desipramine/L-tyrosine therapy. The patient was weighed prior to initiating therapy and twice weekly during therapy. Weight loss was achieved during therapy as follows:
EP 0 334 889 B1

<table>
<thead>
<tr>
<th>Date</th>
<th>Patient’s Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2, 1986</td>
<td>101.2kg (223 lbs.)</td>
</tr>
<tr>
<td>September 5, 1986</td>
<td>100.2kg (221 lbs.)</td>
</tr>
<tr>
<td>September 9, 1986</td>
<td>99.7kg (220 lbs.)</td>
</tr>
<tr>
<td>September 12, 1986</td>
<td>98.9kg (218 lbs.)</td>
</tr>
<tr>
<td>September 16, 1986</td>
<td>97.5kg (215 lbs.)</td>
</tr>
<tr>
<td>September 19, 1986</td>
<td>97.1kg (214 lbs.)</td>
</tr>
<tr>
<td>September 23, 1986</td>
<td>96.2kg (212 lbs.)</td>
</tr>
<tr>
<td>September 26, 1986</td>
<td>95.3kg (210 lbs.)</td>
</tr>
<tr>
<td>September 30, 1986</td>
<td>94.4kg (208 lbs.)</td>
</tr>
</tbody>
</table>

Therapy was discontinued September 30, 1986 upon patient’s request as the goal of therapy was obtained.

Example 3

A thirty-one year old white male (1.83m, 79.4kg, (6’ 0”, 175 lbs.)) had recently dieted and most recently (May 1986) weighed 88.6kg (191 pounds) three months prior to initiating therapy. This patient did particularly well in losing weight over a two month period beginning in May 1986, after which his weight stabilized at 79.4kg (175 pounds). His goal was to achieve his ideal body weight of 77.1kg (170 pounds). He continued his voluntary efforts to lose additional weight but after a one month period was unsuccessful in achieving this.

Starting on August 28, 1986 the patient self-administered a desipramine tablet (25mg) and a L-tyrosine capsule (1 g) orally every morning. He continued therapy until October 2, 1986 at this same dosage regimen except from September 2, 1986 until September 19, 1986 when he self administered desipramine (25mg) and L-tyrosine (1 g) orally twice a day. During the total timespan, he reported a strong appetite suppressant effect and lost a total of 2.3kg (five pounds). Weight loss was achieved during therapy as follows:

<table>
<thead>
<tr>
<th>Date</th>
<th>Patient’s Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 28, 1986</td>
<td>79.4kg (175 lbs.)</td>
</tr>
<tr>
<td>September 4, 1986</td>
<td>78.5kg (173 lbs.)</td>
</tr>
<tr>
<td>September 11, 1986</td>
<td>78.5kg (173 lbs.)</td>
</tr>
<tr>
<td>September 18, 1986</td>
<td>78.0kg (172 lbs.)</td>
</tr>
<tr>
<td>September 25, 1986</td>
<td>78.0kg (172 lbs.)</td>
</tr>
<tr>
<td>October 2, 1986</td>
<td>77.1kg (170 lbs.)</td>
</tr>
</tbody>
</table>

Therapy was discontinued October 2, 1986 as the patient reached his desired weight loss goal.

Example 4

A 53 year old white female 1.80, 79.4 kg; (5’3, 175 lbs.) under the supervision of a licensed physician was prescribed desipramine (25mg tablets) and L-tyrosine (1 g capsules); one of each to be taken every morning for appetite suppression. Therapy began September 3, 1986 and continued to September 24, 1986. During this timeframe, the patient described a definite appetite suppressant effect. She recorded daily intakes of food which were below what she had taken prior to therapy. Her weight decreased from 79.4kg to 74.8 kg (from 175 pounds to 165 pounds) during therapy. Weight loss during therapy was as follows:
Claims

1. A composition useful for the treatment of obesity comprising:-
 (a) a norepinephrine precursor; and
 (b) a tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor.

2. A composition as claimed in Claim 1 comprising an effective amount of one or more enzymatic cofactors for the biosynthesis of norepinephrine, and/or a pharmaceutically acceptable carrier.

3. A composition as claimed in Claim 1 or 2 which is in the form of a liquid, a suspension, a tablet, a dragee, an injectable solution, or a suppository.

4. A composition as claimed in any of Claims 2 to 4 wherein the enzymatic cofactor is pyridoxine pyridoxal, pyridoxamine, ascorbic acid, or a synthetic or natural analogue of ascorbic acid that can be converted to the active form in vivo or a pharmaceutically acceptable salt thereof in an amount effective to enzymatically cofactor biosynthesis of norepinephrine.

5. A composition as claimed in any of Claims 1 to 4 where in the norepinephrine precursor is L-tyrosine, L-phenylalanine or a pharmaceutically acceptable salt thereof and/or the norepinephrine re-uptake inhibitor is imipramine, protriptyline, preferably desipramine, or a pharmaceutically acceptable salt thereof.

6. A composition as claimed in any of Claims 1 to 5, comprising, per part by weight of the tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor or an equivalent amount of a pharmaceutically acceptable salt thereof, 0.5-500 parts by weight of the norepinephrine precursor, or an equivalent amount of a pharmaceutically acceptable salt thereof and optionally 0.05-4 parts by weight of pyridoxine, pyridoxal or pyridoxamine or an equivalent amount of a pharmaceutically acceptable salt thereof and 0.4-20 parts by weight of ascorbic acid, or a synthetic or natural analogue of ascorbic acid that can be converted to the active form in vivo or an equivalent amount of a pharmaceutically acceptable salt thereof.

7. A composition as claimed in any of Claims 1 to 6 comprising, per unit dose, 125-2000 mg of the norepinephrine precursor, 10-75 mg of the tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor, and optionally 10-100 mg of pyridoxine and 50-500 mg of ascorbic acid, or a synthetic or natural analogue of ascorbic acid that can be converted to the active form in vivo or pharmaceutically acceptable salts thereof.

8. A composition as defined in any of Claims 1 to 7 for use in medicine.

9. The use of a composition comprising:-
 (a) a norepinephrine precursor; and
 (b) a tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor;
 in the preparation of an agent in the treatment of obesity.

10. The use as claimed in Claim 9 wherein the composition comprises one or more enzymatic cofactors for the biosynthesis of norepinephrine, which is pyridoxine, pyridoxal, or pyridoxamine or ascorbic acid, or a synthetic or natural analogue of ascorbic acid that can be converted to the active form in vivo or a pharmaceutically acceptable salt thereof.
11. The use as claimed in Claim 9 or 10 wherein the norepinephrine precursor is L-phenylalanine, L-tyrosine or a pharmaceutically acceptable salt thereof and/or the norepinephrine re-uptake inhibitor is desipramine, imipramine, or protriptyline, or a pharmaceutically acceptable salt thereof.

12. The use as claimed in any of Claims 9 to 11 wherein the composition comprises, per part by weight of the tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor or an equivalent amount of a pharmaceutically acceptable salt thereof 0 5-500 parts by weight of the norepinephrine precursor and optionally 0.05-4 parts by weight of pyridoxine, pyridoxal or pyriodoxamine or an equivalent amount of a pharmaceutically acceptable salt thereof and 0.4-20 parts by weight of ascorbic acid, or a synthetic or natural analogue of ascorbic acid that can be converted to the active form in vivo or an equivalent amount of a pharmaceutically acceptable salt thereof.

13. The use as claimed in any of Claims 9 to 12 wherein the composition is adapted to be administered to an animal one to eight times per day, each unit dose containing 125-2000 mg of the tricyclic antidepressant that acts as a norepinephrine precursor or an equivalent amount of a pharmaceutically acceptable thereof, 10-75 mg of the norepinephrine re-uptake inhibitor or an equivalent amount of a pharmaceutically acceptable salt thereof, and optionally 10-100mg of pyridoxine, pyridoxal or pyriodoxamine, or an equivalent amount of a pharmaceutically acceptable salt thereof, and 50-500 mg of ascorbic acid, or a synthetic or natural analogue of ascorbic acid that can be converted to the active form in vivo or an equivalent amount of a pharmaceutically acceptable salt thereof.

14. The use as claimed in any of Claims 9 to 13 wherein the composition comprises, per unit dose, 1 g L-tyrosine, 25 mg desipramine, and optionally 50 mg pyridoxine and 250 mg ascorbic acid.

15. Product comprising a norepinephrine precursor and a tricyclic antidepressant that acts as a norepinephrine re-uptake inhibitor as a combined preparation for simultaneous, separate or sequential use in obesity therapy.

Patentansprüche

1. Zusammensetzung zur Behandlung von Fettleibigkeit, bestehend aus:
 a) einem Norepoinphrinvorläufer; und
 b) einem tricyclischen Antidepressivum, das als Norepinephrin-Wiederaufnahmeinhibitor wirkt.

2. Zusammensetzung nach Anspruch 1, bestehend aus einer wirksamen Menge eines oder mehrerer enzymatischer Kofaktoren für die Biosynthese von Norepinephrin und/oder einem pharmaceutisch annehmbaren Träger.

3. Zusammensetzung nach Anspruch 1 oder 2 in Form einer Flüssigkeit, einer Suspension, einer Tablette, eines Dragees, einer injizierbaren Lösung oder eines Zäpfchens.

4. Zusammensetzung nach einem der Ansprüche 2 bis 4, wobei der enzymatische Kofaktor Pyridoxin, Pyridoxal, Pyriodoxamin, Ascorbinsäure oder ein synthetisches oder natürliches Analog von Ascorbinsäure, das in vivo in die aktive Form umgewandelt werden kann, oder ein pharmaceutisch annehmbares Salz davon ist, in einer Menge, die als enzymatischer Kofaktor für die Biosynthese von Norepinephrin wirksam ist.

5. Zusammensetzung nach einem der Ansprüche 1 bis 4, wobei der Norepinephrinvorläufer L-Tyrosin, L-Phenylalanin oder ein pharmaceutisch annehmbares Salz davon ist und/oder der Norepinephrin-Wiederaufnahmeinhibitor Imipramin, Protriptylin, vorzugsweise Desipramin oder ein pharmaceutisch annehmbares Salz davon ist.

6. Zusammensetzung nach einem der Ansprüche 1 bis 5, bestehend aus, pro Gewichtsteil des tricyclischen Antidepressivums, das als Norepinephrin-Wiederaufnahmeinhibitor wirkt, oder einer äquivalenten Menge eines pharmaceutisch annehmbaren Salzes davon, 0.5-500 Gewichtsteilen des Norepinephrinvorläufers oder einer äquivalenten Menge eines pharmaceutisch annehmbaren Salzes davon und gegebenenfalls 0,05-4 Gewichtsteilen Pyridoxin, Pyridoxal oder Pyriodoxamin oder einer äquivalenten Menge eines pharmaceutisch annehmbaren Salzes davon und 0,4-20 Gewichtsteilen Ascorbinsäure.
7. Zusammensetzung nach einem der Ansprüche 1 bis 6, pro Einheitsdosis bestehend aus 125-2000 mg des Norepinephrinvorläufers, 10-75 mg des tricyclischen Antidepressivums, das als Norepinephrin-Wiederaufnahmeinhibitor wirkt, und wahlweise 10-100 mg Pyridoxin und 50-500 mg Ascorbinsäure oder eines synthetischen oder natürlichen Analogs von Ascorbinsäure, das in vivo in die aktive Form umgewandelt werden kann, oder pharmaceutisch annehmbaren Salzes davon.

8. Zusammensetzung nach einem der Ansprüche 1 bis 7 zur Verwendung in der Medizin.

9. Verwendung einer Zusammensetzung, bestehend aus:
 a) einem Norepinephrinvorläufer; und
 b) einem tricyclischen Antidepressivum, das als Norepinephrin-Wiederaufnahmeinhibitor wirkt, bei der Herstellung eines Mittels zur Behandlung von Fettleibigkeit.

10. Verwendung nach Anspruch 9, wobei die Zusammensetzung einen oder mehrere enzymatische Kofaktoren für die Biosynthese von Norepinephrin aufweist, der Pyridoxin, Pyridoxal oder Pyridoxamin oder Ascorbinsäure oder ein synthetisches oder natürliches Analog von Ascorbinsäure, das in vivo in die aktive Form umgewandelt werden kann, oder ein pharmaceutisch annehmbares Salz davon ist.

12. Verwendung nach einem der Ansprüche 9 bis 11, wobei die Zusammensetzung pro Gewichtsteil des tricyclischen Antidepressivums, das als Norepinephrin-Wiederaufnahmeinhibitor wirkt, oder einer äquivalenten Menge eines pharmaceutisch annehmbaren Salzes davon, 0,5-500 Gewichtsteile des Norepinephrinvorläufers und wahlweise 0,05-4 Gewichtsteile Pyridoxin, Pyridoxal oder Pyridoxamin oder eine äquivalente Menge eines pharmaceutisch annehmbaren Salzes davon und 0,4-20 Gewichtsteile Ascorbinsäure oder eines synthetischen oder natürliches Analogs von Ascorbinsäure, das in vivo in die aktive Form umgewandelt werden kann, oder eine äquivalente Menge eines pharmaceutisch annehmbaren Salzes davon enthält.

13. Verwendung nach einem der Ansprüche 9 bis 12, wobei die Zusammensetzung zur ein- bis achtmaligen täglichen Gabe an ein Tier angepaßt ist und jede Einheitsdosis 125-2000 mg des tricyclischen Antidepressivums, das als Norepinephrin-Wiederaufnahmeinhibitor wirkt, oder eine äquivalente Menge eines pharmaceutisch annehmbaren Salzes davon, 10-75 mg des Norepinephrin-Wiederaufnahmeinhibitors oder eine äquivalente Menge eines pharmaceutisch annehmbaren Salzes davon und gegebenenfalls 10-100 mg Pyridoxin, Pyridoxal oder Pyridoxamin oder eine äquivalente Menge eines pharmaceutisch annehmbaren Salzes davon und 50-500 mg Ascorbinsäure oder ein synthetisches oder natürliches Analog von Ascorbinsäure, das in vivo in die aktive Form umgewandelt werden kann, oder eine äquivalente Menge eines pharmaceutisch annehmbaren Salzes davon enthält.

14. Verwendung nach einem der Ansprüche 9 bis 13, wobei die Zusammensetzung pro Einheitsdosis 1 g L-Tyrosin, 25 mg Desipramin und gegebenenfalls 50 mg Pyridoxin und 250 mg Ascorbinsäure enthält.

15. Produkt, welches einen Norepinephrinvorläufer und einen tricyclischen Antidepressivum, das als Norepinephrin-Wiederaufnahmeinhibitor wirkt, aufweist und als Kombinationspräparat zur gleichzeitigen, getrennten oder aufeinanderfolgenden Verwendung in der Therapie von Fettleibigkeit wirkt.

Reverendications
1. Composition utile pour le traitement de l'obésité comprenant :
 a) un précurseur de la norépinéphrine et
 b) un antidépresseur tricyclique qui agit comme inhibiteur de la réabsorption de la norépinéphrine.
2. Composition suivant la revendication 1, comprenant une quantité efficace d'un ou plusieurs cofacteurs enzymatiques pour la biosynthèse de la norépinéphrine et/ou un excipient pharmaceutiquement acceptable.

3. Composition suivant la revendication 1 ou 2, qui est présentée sur la forme d'un liquide, d'une suspension, d'un comprimé, d'une dragée, d'une solution injectable ou d'un suppositoire.

4. Composition suivant l'une quelconque des revendications 2 à 4, dans laquelle le cofacteur enzymatique est la pyridoxine, le pyridoxal, la pyridoxamine, l'acide ascorbique ou un analogue naturel ou synthétique de l'acide ascorbique qui peut être converti en la forme active in vivo ou un sel pharmaceutiquement acceptable correspondant, en une quantité efficace pour la fonction de cofacteur enzymatique de la biosynthèse de la norépinéphrine.

5. Composition suivant l'une quelconque des revendications 1 à 4, dans laquelle le précurseur de la norépinéphrine est la L-tyrosine, la L-phénylalanine ou un sel pharmaceutiquement acceptable correspondant et/ou l'inhibiteur de la réabsorption de la norépinéphrine est l'imipramine, la protriptyline, de préférence la désipramine, ou un sel pharmaceutiquement acceptable correspondant.

6. Composition suivant l'une quelconque des revendications 1 à 5, comprenant par partie en poids de l'antidépresseur tricyclique qui agit comme inhibiteur de la réabsorption de la norépinéphrine ou une quantité équivalente d'un sel pharmaceutiquement acceptable de celui-ci, 0,5 à 500 parties en poids du précurseur de la norépinéphrine ou une quantité équivalente d'un sel pharmaceutiquement acceptable de celui-ci et facultativement 0,05 à 4 parties en poids de pyridoxine, de pyridoxal ou de pyridoxamine ou une quantité équivalente d'un sel pharmaceutiquement acceptable un correspondant et 0,4 à 20 parties en poids d'acide ascorbique ou d'un analogue naturel ou synthétique de l'acide ascorbique qui peut être converti en la forme active in vivo ou une quantité équivalente d'un sel pharmaceutiquement acceptable correspondant.

7. Composition suivant l'une quelconque des revendications 1 à 6, comprenant, par dose unitaire, 125 à 2000 mg du précurseur de la norépinéphrine, 10 à 75 mg de l'antidépresseur tricyclique qui agit comme inhibiteur de la réabsorption de la norépinéphrine et facultativement 10 à 100 mg de pyridoxine et 50 à 500 mg d'acide ascorbique ou d'un analogue naturel ou synthétique de l'acide ascorbique qui peut être converti en la forme active in vivo ou de sels pharmaceutiquement acceptables correspondants.

8. Composition suivant l'une quelconque des revendications 1 à 7, à utiliser en médecine.

9. Utilisation d'une composition comprenant :
 a) un précurseur de la norépinéphrine et
 b) un antidépresseur tricyclique qui agit comme inhibiteur de la réabsorption de la norépinéphrine;

 dans la préparation d'un agent pour le traitement de l'obésité.

10. Utilisation suivant la revendication 9, dans laquelle la composition comprend un ou plusieurs cofacteurs enzymatiques pour la biosynthèse de la norépinéphrine qui sont la pyridoxine, le pyridoxal, la pyridoxamine ou l'acide ascorbique, ou un analogue naturel ou synthétique de l'acide ascorbique qui peut être converti en la forme active in vivo ou un sel pharmaceutiquement acceptable correspondant.

11. Utilisation suivant la revendication 9 ou 10, dans laquelle le précurseur de la norépinéphrine est la L-phénylalanine, la L-tyrosine ou un sel pharmaceutiquement acceptable correspondant et/ou l'inhibiteur de la réabsorption de la norépinéphrine est la désipramine, l'imipramine ou la protriptyline ou un sel pharmaceutiquement acceptable correspondant.

12. Utilisation suivant l'une quelconque des revendications 9 à 11, dans laquelle la composition comprend, par partie en poids de l'antidépresseur tricyclique qui agit comme inhibiteur de la réabsorption de la norépinéphrine ou une quantité équivalente d'un sel pharmaceutiquement acceptable de celui-ci, 0,5 à 500 parties en poids du précurseur de la norépinéphrine et facultativement 0,05 à 4 parties en poids de pyridoxine, de pyridoxal ou de pyridoxamine ou une quantité équivalente d'un sel pharmaceutiquement acceptable correspondant et 0,4 à 20 parties en poids d'acide ascorbique ou d'un analogue naturel ou
synthétique de l'acide ascorbique qui peut être converti en la forme active in vivo ou une quantité équivalente d'un sel pharmaceutiquement acceptable correspondant.

13. Utilisation suivant l'une quelconque des revendications 9 à 12, dans laquelle la composition est adaptée pour être administrée à un animal une à huit fois par jour, chaque dose unitaire contenant 125 à 2000 mg de l'antidépresseur tricyclique qui agit comme précurseur de la norépinéphrine ou une quantité équivalente d'un sel pharmaceutiquement acceptable de celui-ci, 10 à 75 mg de l'inhibiteur de la réabsorption de la norépinéphrine ou une quantité équivalente d'un sel pharmaceutiquement acceptable de celui-ci et facultativement 10 à 100 mg de pyridoxine, de pyridoxal ou de pyridoxamine ou une quantité équivalente d'un sel pharmaceutiquement acceptable correspondant et 50 à 500 mg d'acide ascobicque ou d'un analogue naturel ou synthétique de l'acide ascobicque qui peut être converti en la forme active in vivo ou une quantité équivalente d'un sel pharmaceutiquement acceptable correspondant.

14. Utilisation suivant l'une quelconque des revendications 9 à 13, dans laquelle la composition comprend, par dose unitaire, 1 g de L-tyrosine, 25 mg de désipramine et facultativement 50 mg de pyridoxine et 250 mg d'acide ascorbique.

15. Produit comprenant un précurseur de la norépinéphrine et un antidépresseur tricyclique qui agit comme inhibiteur de la réabsorption de la norépinéphrine à l'état de préparation combinée pour l'utilisation simultanée, distincte ou séquencée dans le traitement de l'obésité.