METHOD AND APPARATUS FOR EQUALIZATION OF DATA TRANSMISSION SYSTEM.

Priority: 21.11.86 US 933654

Date of publication of application: 26.08.88 Bulletin 89/38

Publication of the grant of the patent: 26.07.94 Bulletin 94/29

Designated Contracting States: DE FR GB NL

References cited:
EP-A- 0 096 943
US-A- 3 582 879
US-A- 4 333 245
US-A- 4 843 909
US-A- 4 516 269
US-A- 4 606 044
US-A- 4 669 090

Proprietor: RACAL-DATACOM INC.
1601 North Harrison Parkway
Sunrise, Florida 33323(US)

Inventor: MARTINEZ, Aldo, A.
21420 S.W. 102 Avenue
Miami, FL 33189(US)

Representative: Obee, Robert William
Racial Group Services Ltd.
Group Legal Department
Richmond Court
309 Fleet Road
Fleet, Hampshire GU13 8BU (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
In U.S. Patent No. 4,489,416 to Stuart, a system for providing automated transmitter equalization is provided. In this patent, a central modem individually polls a number of remotely located modems for data. An adaptive equalizer in the central modem is initially trained to minimize the communication link interference from the remote modem and develops a set of equalizer coefficients (based upon the initial training sequence) which is transmitted to the remote modem and stored there for future use. When the remote modem is later polled, the stored equalizer coefficients are used to set the adaptive equalizer of the remote modem.

Unfortunately, the above arrangement of Stuart requires that the actual coefficients be transmitted over the transmission line for use by the remote modem. Since such equalizers for high speed modems may require 48 or more such coefficients which are expressed as complex numbers, this requires the transmission of perhaps 96 or more 8-bit words before equalization can take place. Furthermore, if such coefficients are transmitted utilizing a highly robust secondary channel (typically operating at 75 bits per second) the transmission of the coefficients alone can take well over ten seconds to achieve. In addition, the Stuart patent requires that a special equalizer training sequence be transmitted in order to determine those equalizer coefficients. This further increases the overhead of the protocol resulting in further loss of efficient utilization of the transmission media.

The present invention alleviates these and other problems associated with the prior technology.

US-A-4606044 discloses a data transmission system in which in a training system the function of the receiver is tested by means of a training sequence to determine whether the receive station is capable of normally receiving data at the transmission rate.

In the document by C.F.N. Cowan et al: "Adaptive Filters", 1985, pages 144-178, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, US, a training mode is used for the purpose of channel equalization. In the training mode an isolated test pulse is transmitted through the channel and used as input to an adaptive equalizer. The equalizer is adjusted so that its output is as close as possible to a desired output (i.e. the transmitted test pulse shape).

Summary of the Invention

It is an object of the present invention to provide an improved automatic transmitter equalization system.

It is another object of the present invention to provide a method and apparatus for automatic transmitter equalization in a data communication system.

Description

Background

1. Field of the Invention

This invention relates generally to the field of amplitude equalizers for data transmission systems. More particularly it relates to an automatic equalization arrangement for use in data modems.

2. Background of the Invention

It is well known that transmission lines used for data communications have amplitude characteristics which vary widely from line to line. It is also known that the characteristics of a particular line are prone to changing as a result of age, weather, etc. As the speed of data transmission increases, it becomes more and more critical that the transmission line be provided with amplitude equalization in order to enhance the probability of minimizing errors in data transmission. This equalization is best carried out by pre-emphasizing the signal transmitted over the transmission medium at the transmitter output in order to correct the attenuation distortion. The reason for this is that, while the same or better degree of equalization can be achieved in the receiver, additional gain provided by equalization in the transmitter has the benefit of not amplifying channel noise. Thus, transmitter equalization is preferable so that signal to noise ratio degradation does not occur at the receiver.

Although receiver equalization can utilize adaptive filtering techniques which can be advantageously used to correct the transmission line characteristics, it is preferable that at least a coarse degree of transmitter equalization be provided for the reason outlined above. Receiver equalization can then be used as a fine tuning mechanism in order to achieve optimal equalization.

In conventional data communications systems such as those based upon data modems, plurality of such transmitter equalizers may be provided each having a distinct equalization characteristic. Generally, the procedure for setting up such a system consists of manually selecting, either on the basis of line measurements or by trial and error, the fixed amplitude equalizer that best fits the attenuation distortion characteristics of the line. This particular equalizer is then strapped selected into the transmitter. This process requires operator intervention and can be quite time consuming. Also, it is evident that such a technique is not very useful in adapting to changing line conditions. Such equalization can only practically be handled by an automatic equalization scheme.
System which may be implemented with minimal departure from conventional modem hardware and protocol.

It is a further object of the present invention to provide a method and apparatus for automatic transmitter amplitude equalization which requires minimal overhead to implement.

The invention accordingly resides in a data communication system and method as defined in the appended claims. This invention, both as to organization and method of operation, together with further objects and advantages thereof, may be best understood by reference to the following description taken in conjunction with the accompanying drawing.

Brief Description of the Drawing

FIG. 1 shows a basic data communication system utilizing data modems.

FIG. 2 shows a circuit arrangement for measuring the channel characteristics.

FIG. 3 is a simple modem constellation used to illustrate the present invention.

FIG. 4 is a table describing the operation of the low frequency quantizer of FIG. 2.

FIG. 5 is a table describing the operation of the high frequency quantizer of FIG. 2.

FIG. 6 is a table illustrating the operation of the mapper of FIG. 2.

FIG. 7 is a diagram of the transmitter equalizer of the present invention.

FIG. 8 shows one embodiment of the transmitter equalizer of the present invention.

FIG. 9 shows another embodiment of the transmitter equalizer of the present invention.

FIG. 10 shows another embodiment of a transmitter equalizer according to the present invention.

FIG. 11 is a flow chart describing the operation of a system according to the present invention.

Detailed Description of the Invention

Turning now to FIG. 1, the present invention can be understood by considering by way of example the simple data communication system shown. In this system, two modems, labeled modem A and modem B and designated 20 and 22 respectively, are coupled together via a transmission channel 24.

According to the present invention a training sequence is initially transmitted for example, from modem A to modem B. This training sequence can be the same training sequences frequently used to establish modem synchronization. The training sequence includes preferably upper and lower band edge energy as well as energy at the center frequency or carrier frequency of the system. This signal passes through channel 24 where the amplitude distortion of the channel affects the signal received by modem B. Modem B separates the received frequencies into upper band edge, lower band edge and carrier frequencies. Modem B then compares the amplitudes the signals and maps those amplitudes to a predetermined code. This code relates to the characteristics of channel 24, and the code transmitted back to modem A. Modem A then decodes the transmitted code and appropriately selects one of a plurality of equalizers for use in future transmissions to modem B. Preferably, the code is transmitted via a highly robust secondary channel such as is commonly used in such data communications. Preferably such secondary channel data is transmitted with a very high degree of reliability at a very low rate such as 75 or 150 bps but this is not to be limiting as primary channel can also be used. Secondary channel communications are known and described, for example, in U.S. Patent No. 4,385,384 to Rosbury et al..

Turning now to FIG. 2, an arrangement is shown for analyzing the training sequence transmitted by modem A in the procedure described above. Transmission channel 24 is coupled to a transmission line interface 30 which may include line drivers, amplifiers, matching circuitry, loop back circuitry as well as other known circuitry used to interface a modem transmitter and receivers to a transmission line. The received signal is delivered to node 32 which is in turn coupled to each of three filters 34, 36 and 38. Filter 34 is a bandpass filter centered around the lower band edge. Filter 36 is a bandpass filter centered about the carrier frequency and filter 38 is a bandpass filter centered about the upper band edge.

Filters 34 and 38 are frequently already present in the modem for extracting timing or other information as described in U.S. Patent No. 4,455,665 to Kromer and U.S. Patent Application Serial No. 654,187 to Martinez.

In the example shown in FIG. 2, the example of a 1700 HZ carrier frequency is used. Such carrier is common on, for example, a four phase QAM 2400 symbols per second modem having a constellation such as that shown in FIG. 3. The training sequence used for the present invention may be generated from the constellation of FIG. 3 by simply transmitting the repeating pattern ABABABAB...

for a sufficiently long period of time. This transmitter output signal can be modeled by equation 1 as follows:

\[V(t) = A \cos (\omega_c t + \phi) + B \cos (\omega_c + \omega_2 t + \theta) + C \cos (\omega_2 t) \]

where:

- \(A \) = amplitude of lower band edge signal
- \(B \) = amplitude of upper band edge signal
The speed of the modem (and thus the amount of amplitude distortion and noise which can be tolerated by the modem), the number of equalizers which can be efficiently implemented as well as the amount of variation present in the types of transmission lines to be corrected. By way of example, FIGS. 4, 5 and 6 describe the operation of mapper encoder 110 for a transmission line which may be subject to amplitude distortion of low frequency signals ranging from gain of several DB down to attenuation of perhaps approximately 6DB. In this illustrative example shown in FIG. 4, signal DL is quantized to a value of plus 1 for signals greater than zero DB relative to the reference signal at node 86. (It should be noted that a mapping of the DC voltages at nodes 84, 86 and 88 to actual DB level should be generated to correlate the actual DB values to relative DC levels). Attenuation as great as minus 3DB relative to the carrier is quantized to zero at L1 and attenuation greater than 3DB is quantized to minus 1 at L1.

Turning to FIG. 5, the high frequency quantization assumes that attenuation will generally be present for the high frequencies. This has generally been found to be the case in most data communications transmission lines. The quantization shown in FIG. 5 will accommodate attenuation from approximately zero DB down to approximately minus 12 or 14 DB relative to the carrier frequency. Signals greater than minus 3DB are quantized to pulse 1 at L2. Signals between minus 3DB and minus 9DB are quantized to 0 at L2 and signals less than minus 9DB are quantized to minus 1 at L2.

 Turning now to FIG. 6, it is seen that with the quantization shown in FIG. 4 and 5 nine possible equalizers may be utilized depending upon the measured values quantized to L1 and L2. By way of example, for L1 equals zero and L2 equals zero, equalizer number 5 would be selected. This equalizer would preferably have approximately one and a half DB of gain at the lower band edge and approximately 6DB of gain at the upper band edge. This allows for correct equalization of signals falling in the central region of the ranges corresponding to L1 equals zero and L2 equals zero. Those skilled in the art will readily appreciate that other quantizations and other mappings may be suitable for various applications. In the present example nine possible equalizers may be accommodated but this should not be limiting. Since nine equalizers may be uniquely characterized in the present example, the desired equalizer may be encoded as a four bit binary number as shown. Thus, only four bits of information need be transmitted to establish the equalizer to be used in the remote transmitter. Those skilled in the art will also recognize that the codes as well
as the relative levels of attenuation, etc. in the present example are merely illustrative and not to be limiting. It will also be appreciated that some amount of overhead will likely be needed in order to effect transmission of an entire message so that more than four bits of information will likely change hands in order to actually implement the present invention. More exact equalization can be achieved by providing more levels of quantization as well as an associated increase in the number of available equalizers.

Turning now to FIG. 7, a block diagram of circuitry used to process the coded signal transmitted by secondary channel transmitter 112 is shown. Line interface 30 is coupled to a primary channel receiver 120 which is used to process incoming user data. A secondary channel receiver 122 is also coupled in parallel to primary channel receiver 120 and coupled to line interface 30. Secondary channel receiver 122 provides the coded signal transmitted by transmitter 112 to a decoder 126. Decoder 126 controls a switch bank 128 which is used to couple one of a plurality of equalizers 130, 132 and 134 into the transmitter signal path. Depending upon the switch selection, any one of N equalizers may be placed between a primary channel transmitter 138 and line interface 30. The selected equalizer may be also be used to process the transmissions from secondary channel transmitter 140.

The system shown in FIG. 7 may be viewed either as a conceptual description of the present invention or may be viewed as an operable physical embodiment where equalizers 1 through N are separate and distinct analog equalizer filters or digital equalizer filters. The block diagram shown in FIG. 7 is helpful in understanding the principle of the present invention. However, in preferred embodiments of the present invention digital technology is used for implementing the transmitter equalizer and the selection of equalizers is accomplished by modification or selection of digital filter coefficients. One such implementation is shown in FIG. 8.

In this implementation, a coded signal from secondary channel 122 is provided to a decoder 150 which decodes the signal and passes it on to a microprocessor 152. Microprocessor 152 is coupled to a memory 156 which may be a read only memory. Memory 156 stores a plurality of sets of equalizer coefficients for use by an equalizer 160. In accordance with the coded signal received by microprocessor 152, the microprocessor unloads a predetermined set of equalizer coefficients from memory 156 and transfers that set of coefficients to a coefficient memory 162 which may be a random access memory. The desired filter characteristics may thus be implemented by appropriately selecting from a predetermined group of equalizers characterized by a plurality of sets of equalizer coefficients. Of course those skilled in the art will recognize that the currently available high speed powerful microprocessors are capable of performing many of the functions shown in the functional blocks of FIG. 8. For example, decoder 150, microprocessor 152, and equalizer 160 may all be implemented by a single microprocessor. Processors such as the TMS 320 series digital signal processors by Texas Instruments® are well suited to this type of application.

Turning now to FIG. 8, an alternative embodiment is shown in which the coded signal from secondary channel receiver 122 is passed to a decoder 180 this decoder 180 is used to map the coded signal to a memory address pointer. This pointer is then transmitted to a digital equalizer 182 which is coupled to a coefficient memory 186 which includes a plurality of sets of equalizer coefficients in different locations thereof. In this embodiment, the pointer is utilized to instruct equalizer 182 what portion of the coefficient memory contains the desired equalizer coefficients needed to affect equalization.

Of course those skilled in the art will recognize that numerous architectures may be utilized for effecting implementation of a variety of different equalizers without departing from the present invention. Accordingly, the present invention is not limited to the specific examples shown herein.

Turning now to FIG. 10, another embodiment of the present invention is shown. This embodiment contemplates the use of separate equalizers for the upper frequency range and for the lower frequency range. In accordance with this embodiment, the coded signal received by secondary channel receiver 122 may actually be a coded form of the individual quantized levels L1 and L2 or alternatively it can be a code as previously described. This coded signal is decoded by decoder 200 in order to ascertain which type of equalization is to be utilized for both high frequencies and for low frequencies. The high frequency equalization is selected by appropriate closure of one of the switches in a switch bank 202. Depending on the switch which is closed, any of high frequency filters 204, 206 through 208 may be selected to be interpolated in the signal path. In a similar manner any of the switches in switch bank 220 may be selectively closed in order to route the signal to be equalized through any of equalizers 222, 224 through 228. It should be noted that the embodiment shown in FIG. 10 may be viewed in a manner similar to that of the embodiment shown in FIG. 7 in that it may be interpreted as a conceptual block diagram or an actual physical embodiment.
The actual process for the present invention may be summarized by the flow diagram shown in Fig. 11. The process starts at step 300 after which a training sequence is transmitted from modem A to modem B at step 302. At step 304, the training sequence is received by modem B and the upper and lower band edge and carrier frequencies are separated. At step 306 the relative amplitudes of the three separate signals are compared and in step 310 the relative amplitudes are mapped to a code. At step 312 the code is transmitted from modem B back to modem A and at step 314 modem A decodes the received code and selects and appropriate equalizer which it then interposes in its transmit signal path. The process terminates at step 316. Many variations are of course possible without departing from the present invention.

Thus it is apparent that in accordance with the present invention an apparatus that fully satisfies the objectives, aims and advantages is set forth above. While the invention has been described in conjunction with a specific embodiment, it is evident that many alternatives, modifications and variations will become apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended that the present invention embrace all such alternatives, modifications and variations as fall within the scope of the appended claims.

Claims

1. A data communication system, comprising:
 a first transceiver (22) and a second transceiver (20) coupled together through a transmission channel (24), said transmission channel having transmission characteristics;
 said first transceiver including a first transmitter and a first receiver (30);
 said second transceiver including a second transmitter (138) and a second receiver (30, 120);
 said first transceiver comprising:
 measurement means (34, 36, 38, 54, 56, 58, 74, 76, 78, 90, 96, 100, 106), coupled to said first receiver, for measuring the effects of said transmission characteristics upon a known training signal transmitted from said second transmitter to said first receiver, said known training signal having predetermined spectral characteristics known to said first receiver;
 mapping means (110) coupled to said measurement means, for mapping said measured transmission characteristics to a predetermined code; and
 means (30, 112) for transmitting said code from said first transmitter to said second receiver;

said second transceiver comprising:
 filtering means (130, 132, 134; 152, 156, 160, 162; 182, 186; 222, 224, 228, 204, 206, 208) for providing a plurality of predetermined filter characteristics for use in filtering signals to be transmitted by said second transmitter; and
 decoding means (126, 128; 150; 180; 200, 220, 202) for receiving said code and for selecting an unique one of said predetermined filter characteristics corresponding to said transmitted code for use by said second transmitter.

2. The apparatus of claim 1, wherein said filtering means further comprises a digital filter (152, 156, 160, 162, 182, 186) having a plurality of sets of filter coefficients, and wherein said decoding means (150; 180) selects one of said sets of filter coefficients in order to effect said selection of said filter characteristics.

3. The apparatus of claim 1, wherein said first (22) and second (20) transceivers communicate using a predetermined frequency range and wherein said known training signal includes energy near the upper and lower edges of said frequency range as well as energy near the center frequency of said frequency range.

4. The apparatus of claim 3, wherein said measurement means includes:
 upper edge filtering means (38, 58, 78) for extracting said upper edge energy from said known training signal;
 lower edge filtering means (34, 54, 74) for extracting said lower edge energy from said known training signal;
 center filtering means (36, 56, 76) for extracting said center frequency energy for said known training signal; and
 comparing means (90, 96) for comparing the relative amplitudes of said upper edge, lower edge and center frequency energy.

5. The apparatus of claim 4, wherein said mapping means (105) further includes means for mapping the relative amplitudes of said upper edge, lower edge and center frequency energy to said code.

6. The apparatus of claim 1, wherein said filtering means includes a plurality of low frequency equalizing filters (222, 224, 228) and a plurality of high frequency equalizing filters (204, 206, 208), and wherein said decoding means includes means (200, 202, 220) for selecting one of each of said low and high frequency equal-
izing filters in response to said code.

7. The apparatus of claim 2, wherein said digital filter includes means (152), in response to said decoding means (150), for unloading said selected set of filter coefficients stored in a first memory (156) and for moving said selected set of filter coefficients to a second memory (162).

8. The apparatus of claim 2, wherein said decoder means (180) includes means for translating said code to a memory pointer and wherein said memory pointer points to a memory location in a coefficient memory (188), said memory location storing said selected set of filter coefficients.

9. A method of operating a data communication system, characterized by the steps of:
 - providing a first transceiver (22) and a second transceiver (20) coupled together through a transmission channel (24), said transmission channel having transmission characteristics;
 - at said first transceiver measuring (304, 306) the effects of said transmission characteristics upon a known training signal transmitted (302) from said second transceiver to said first transceiver, said known training signal having predetermined spectral characteristics known to said first transceiver;
 - at said first transceiver mapping (310) said measured transmission characteristics to a predetermined code;
 - transmitting (312) said code from said first transceiver to said second transceiver;
 - at said second transceiver providing a plurality of predetermined filter characteristics for use in filtering signals to be transmitted by said second transceiver; and
 - at said second transceiver receiving said code and selecting (314) an unique one of said predetermined filter characteristics corresponding to said transmitted code for use by said second transceiver.

10. The method according to claim 9, wherein said step of measuring includes separating (304) said received known training signal into upper band edge, lower band edge and carrier frequency signals and comparing (306) the relative amplitudes of said upper band edge, lower band edge and carrier frequency signals to provide said measured transmission characteristics.

11. The method according to claim 9, wherein said step of providing said plurality of predetermined filter characteristics includes providing a set of filter coefficients for each of said predetermined filter characteristics.

Patentansprüche

1. Datenkommunikationssystem, umfassend:
 - einen ersten Sendeempfänger (22) und einen zweiten Sendeempfänger (20), welche durch einen Übertragungskanal (24) miteinander verbunden sind, der Übertragungseigenschaften aufweist;
 - wobei der erste Sendeempfänger einen ersten Sender und einen ersten Empfänger (30) umfaßt;
 - wobei der zweite Sendeempfänger einen zweiten Sender (138) und einen zweiten Empfänger (30, 120) umfaßt;
 - wobei der erste Sendeempfänger aufweist:
 - eine Meßvorrichtung (34, 36, 38, 54, 56, 58, 74, 76, 78, 90, 96, 100, 106), welche mit dem ersten Empfänger verbunden ist, zur Messung der Auswirkungen der Übertragungseigenschaften auf ein bekanntes Trainingssignal, welches von dem zweiten Sender an den ersten Empfänger übertragen wird, wobei dieses bekannte Trainingssignal vorbestimmt. dem ersten Empfänger bekannte spektrale Eigenschaften aufweist;
 - eine Codiervorrichtung (110), welche mit der Meßvorrichtung verbunden ist, zur Abbildung der gemessenen Übertragungseigenschaften auf einen vorbestimmten Code; und
 - eine Vorrichtung (30, 112) zur Übertragung dieses Codes von dem ersten Sender zu dem zweiten Empfänger;
 - wobei der zweite Sendeempfänger aufweist:
 - eine Filtervorrichtung (130, 132, 134; 152, 156, 160, 162; 182, 186; 222, 224, 228, 204, 206, 208) zur Bereitstellung einer Vielzahl vorbestimmter Filtereigenschaften für die Filterung von Signalen. welche von dem zweiten Sender übertragen werden; und
 - eine Decodiervorrichtung (126, 128; 150; 180; 200, 220, 202) zum Empfang dieses Codes und zur Auswahl einer dieser vorbestimmten Filtereigenschaften entsprechend dem übertragenen Code zur Verwendung durch den zweiten Sender.

2. Vorrichtung nach Anspruch 1, wobei die Filtervorrichtung darüberhinaus ein digitales Filter (152, 156, 160, 162; 182, 186) mit einer Vielzahl von Filterkoeffizientensätzen umfaßt und wobei die Decodiervorrichtung (150; 180) einen
dieser Filterkoeffizientensätze zur Bewirkung der Auswahl der Filtereigenschaften auswählt.

3. Vorrichtung nach Anspruch 1, wobei der erste (22) und der zweite (20) Sendeempfänger unter Verwendung eines Vorbestimmten Frequenzbereiches miteinander kommunizieren und wobei das bekannte Trainingssignal einen Signalanteil im oberen und im unteren Bereich dieses Frequenzbandes sowie einen Signalanteil im mittleren Bereich dieses Frequenzbandes umfaßt.

4. Vorrichtung nach Anspruch 3, wobei die Maßvorrichtung umfaßt:
eine Oberkantenfiltervorrichtung (38, 58, 78) zur Extraktion des Signalanteils im oberen Bereich des Frequenzbandes aus dem bekannten Trainingssignal;
eine Unterkantenfiltervorrichtung (34, 54, 74) zur Extraktion des Signalanteils im unteren Bereich des Frequenzbandes aus dem bekannten Trainingssignal;
eine Zentrumsfiltervorrichtung (36, 56, 76) zur Extraktion des mittelfrequenten Signalanteils aus dem bekannten Trainingssignal; und
eine Vergleichsvorrichtung (90, 96) zum Vergleich der relativen Amplituden der Signalanteile im oberen Bereich des Frequenzbandes, im unteren Bereich des Frequenzbandes und im Bereich der Mittelfrequenz.

5. Vorrichtung nach Anspruch 4, wobei die Codiervorrichtung (105) darüberhinaus eine Vorrichtung zur Abbildung der relativen Amplituden der Signalanteile im oberen Bereich des Frequenzbandes, im unteren Bereich des Frequenzbandes und im Bereich der Mittelfrequenz auf diesen Code umfaßt.

6. Vorrichtung nach Anspruch 1, wobei die Filtervorrirtung eine Vielzahl niederfrequenten Entzerrerrfilter (122, 124, 128) umfaßt und eine Vielzahl hochfrequenten Entzerrerrfilter (204, 206, 208) wobei die Decodiervorrichtung eine Vorrichtung (200, 202, 220) zur Auswahl jeweils eines dieser niederfrequenten und hochfrequenten Entzerrerrfilter entsprechend des Codes umfaßt.

7. Vorrichtung nach Anspruch 2, wobei das digitale Filter eine Vorrichtung (152) umfaßt, welche als Antwort auf die Decodiervorrichtung (150) den ausgewählten, in einem ersten Speicher (156) abgespeicherten Filterkoeffizientensatz abruft und einem zweiten Speicher (162) zuführt.

8. Vorrichtung nach Anspruch 2, wobei die Decodiervorrichtung (180) eine Vorrichtung zur Übersetzung des Codes auf einen Speicherzeiger umfaßt und wobei dieser Speicherzeiger auf eine Speicherstelle in einem Koeffizientenspeicher (186) zeigt, in welcher der ausgewählte Filterkoeffizientensatz abgespeichert ist.

9. Verfahren zum Betrieb eines Datenkommunikationssystems, gekennzeichnet durch die folgenden Verfahrensschritte:
Bereitstellung eines ersten Sendeempfängers (22) und eines zweiten Sendeempfängers (20), welche durch einen Übertragungskanal (24) miteinander verbunden sind, Welcher Übertragungseigenschaften aufweist;
Messung (304, 306) der Auswirkungen der Übertragungseigenschaes auf ein bekanntes Trainingssignal, welches von dem zweiten Sendeempfänger an den ersten Sendeempfänger übertragen (302) wird an dem ersten Sendeempfänger, wobei das bekannte Trainingssignal vorbestimmte, dem ersten Sendeempfänger bekannte spektrale Eigenschaften aufweist;
Abbildung (310) der gemessenen Übertragungseigenschaften auf einen vorbestimmten Code bei dem ersten Sendeempfänger;
Übertragung (312) dieses Codes von dem ersten Sendeempfänger zu dem zweiten Sendeempfänger;
Bereitstellung einer Vielzahl vorbestimmter Filtereigenschaften zur Verwendung für die Filterung von Signalen, welche von dem zweiten Sendeempfänger übertragen werden an dem zweiten Sendeempfänger; und
Empfang dieses Codes und Auswahl (314) einer der vorbestimmten Filtereigenschaften, welche dem übertragenen Code entsprechen zur Verwendung durch den zweiten Sendeempfänger bei dem zweiten Sendeempfänger.

11. Verfahren nach Anspruch 9, wobei der Verfahrensschritt der Bereitstellung der Vielzahl vorbestimmter Filtereigenschaften die Bereitstellung eines Filterkoeffizientensatzes für jede der
vorbestimmten Filtereigenschaften umfaßt.

Revendications

1. Système de communication de données, comprenant :
 un premier émetteur-récepteur (22) et un second émetteur-récepteur (20) couplés l'un à l'autre par un canal de transmission (24) qui a des caractéristiques de transmission,
 le premier émetteur-récepteur comprenant un premier émetteur et un premier récepteur (30),
 le second émetteur-récepteur comprenant un second émetteur (138) et un second récepteur (30, 120),
 le premier émetteur-récepteur comprenant :
 un dispositif de mesure (34, 36, 38, 54, 56, 58, 74, 76, 78, 90, 96, 100, 106) couplé au premier récepteur et destiné à mesurer les effets des caractéristiques de transmission sur un signal connu d'apprentissage transmis du second émetteur au premier récepteur, le signal connu d'apprentissage ayant des caractéristiques spectrales prédéterminées connues du premier récepteur,
 un dispositif (110) de mappage couplé au dispositif de mesure et destiné à mapper des caractéristiques mesurées de transmission sur un code prédéterminé, et
 un dispositif (30, 112) de transmission du code du premier émetteur au second récepteur,
 le second émetteur-récepteur comprenant :
 un dispositif de filtrage (130, 132, 134 ; 152, 156, 160, 162 ; 182, 186 ; 222, 224, 228, 204, 206, 208) destiné à donner plusieurs caractéristiques prédéterminées de filtrage destinées à être utilisées pour le filtrage des signaux qui doivent être transmis par le second émetteur, et
 un dispositif de décodage (126, 128 ; 150 ; 180 ; 200, 220, 202) destiné à recevoir le code et à sélectionner une caractéristique unique parmi les caractéristiques prédéterminées de filtrage correspondant au code transmis afin qu'elle soit utilisée par le second émetteur.

2. Appareil selon la revendication 1, dans lequel le dispositif de filtrage comporte un filtre numérique (152, 156, 160, 162 ; 182, 186) ayant plusieurs ensembles de coefficients de filtrage, et dans lequel le dispositif de décodage (150, 180) sélectionne l'un des ensembles de coefficients de filtrage pour assurer la sélection des caractéristiques de filtrage.

3. Appareil selon la revendication 1, dans lequel le premier (22) et le second (20) émetteur-récepteur communiquent dans une plage prédéterminée de fréquences, et le signal connu d'apprentissage comprend de l'énergie proche des bords supérieur et inférieur de la plage de fréquences ainsi que de l'énergie proche de la fréquence centrale de la plage de fréquences.

4. Appareil selon la revendication 3, dans lequel le dispositif de mesure comprend :
 un dispositif (38, 58, 78) de filtrage du son supérieur destiné à extraire l'énergie du son supérieur du signal connu d'apprentissage,
 un dispositif de filtrage du son inférieur (34, 54, 74) destiné à extraire l'énergie du son inférieur du signal d'apprentissage connu ;
 un dispositif de filtration central (36, 56, 76) destiné à extraire de l'énergie à la fréquence centrale du signal connu d'apprentissage ; et
 un dispositif de comparaison (90, 98) des amplitudes relatives des énergies aux fréquences du bord supérieur, du bord inférieur et centrale.

5. Appareil selon la revendication 4, dans lequel le dispositif de mappage (105) comporte en outre un dispositif de mappage des amplitudes relatives des énergies des fréquences du bord supérieur et du bord inférieur et de la fréquence centrale sur le code.

6. Appareil selon la revendication 1, dans lequel le dispositif de filtrage comprend plusieurs filtres d'égalisation à basses fréquences (222, 224, 228) et plusieurs filtres d'égalisation à hautes fréquences (204, 206, 208), et dans lequel le dispositif de décodage comporte un dispositif (200, 202, 220) de sélection de l'un des filtres d'égalisation à basses fréquences et à hautes fréquences dans fonction dudit code.

7. Appareil selon la revendication 2, dans lequel le filtre numérique comporte un dispositif (152) qui, en réponse au dispositif de décodage (150), décharge l'ensemble sélectionné de coefficients de filtrage conservé dans la première mémoire (158) et déplace l'ensemble sélectionné de coefficients de filtrage vers une seconde mémoire (162).

8. Appareil selon la revendication 2, dans lequel le dispositif de décodage (180) comporte un dispositif destiné à transformer le code en un pointeur sur une mémoire, et le pointeur sur une mémoire pointe sur un emplacement d'une mémoire (186) de coefficients, l'empla-
cement de mémoire contenant l'ensemble sélectionné de coefficients de filtrage.

9. Procédé de mise en oeuvre d'un système de communication de données, caractérisé par les étapes suivantes :
 - la disposition d'un premier émetteur-récepteur (22) et d'un second émetteur-récepteur (20) couplés l'un à l'autre par un canal de transmission (24), le canal de transmission ayant des caractéristiques de transmission,
 - au premier émetteur-récepteur, la mesure (304, 306) des effets des caractéristiques de transmission sur un signal connu d'apprentissage transmis (302) du second émetteur-récepteur au premier, le signal connu d'apprentissage ayant des caractéristiques spectrales prédéterminées connues du premier émetteur-récepteur,
 - au premier émetteur-récepteur, le mappage (310) des caractéristiques mesurées de transmission sur un code prédéterminé,
 - la transmission (312) du code du premier émetteur-récepteur au second,
 - au niveau du second émetteur-récepteur, la disposition de plusieurs caractéristiques prédéterminées de filtrage destinées à être utilisées dans le signal de filtrage destiné à être transmis par le second émetteur-récepteur, et
 - au niveau du second émetteur-récepteur, la réception du code et la sélection (314) d'une caractéristique unique parmi les caractéristiques prédéterminées de filtrage, correspondant au code transmis, afin que la caractéristique soit utilisée par le second émetteur-récepteur.

10. Procédé selon la revendication 9, dans lequel l'étape de mesure comprend la séparation (304) du signal connu d'apprentissage qui est reçu en signaux aux fréquences du bord supérieur de la bande, du bord inférieur de la bande et de la fréquence portéeuse, et la comparaison (306) des amplitudes relatives des signaux à la fréquence du bord supérieur de la bande, à la fréquence du bord inférieur de la bande et à la fréquence portéeuse pour l'obtention des caractéristiques mesurées de transmission.

11. Procédé selon la revendication 9, dans lequel l'étape de disposition de plusieurs caractéristiques prédéterminées de filtrage comprend la disposition d'un ensemble de coefficients de filtrage pour chacune des caractéristiques prédéterminées de filtrage.