EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 09.11.94 Bulletin 94/45

Int. Cl.5: G01N 33/579, C12Q 1/37

Application number: 89103104.9

Date of filing: 22.02.89

Process for measuring endotoxin.

Priority: 27.02.88 JP 45069/88

Date of publication of application: 06.09.89 Bulletin 89/36

Publication of the grant of the patent: 09.11.94 Bulletin 94/45

Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

References cited:
EP-A- 0 173 021
WO-A-83/02123
US-A- 4 038 029
DATABASE WPI/DERWENT, 15 February 1984; no. 84077721

References cited:
DATABASE WPI/DERWENT, 03 April 1987; no. 87132514
DATABASE WPI/DERWENT, 29 August 1990; no. 90307999
DATABASE WPI/DERWENT, 04 September 1990; no. 90310409

Proprietor: WAKO PURE CHEMICAL INDUSTRIES LTD
1-2 Doshomachi-3-chome
Chuo-ku Osaka (JP)

Inventor: Matuura, Shuji
2-E-1 Midorigai-7-chome
Kawanishi-shi (JP)
Inventor: Tsuchiya, Masakazu
60 Gyokicho-4-chome
Itami-shi (JP)

Representative: Baillie, lain Cameron et al
c/o Ladas & Parry
Altheimer Eck 2
D-80331 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
This invention relates to a process for measuring endotoxin by using a reaction of a hemocyte lysate (amoeboocyte lysate) of horseshoe crab (hereinafter abbreviated as "AL") with endotoxin, in which a factor present in AL which reacts with β-1,3-glucan to cause a coagulation reaction (hereinafter referred to as "β-1,3-glucan sensitive factor") is inactivated, and the endotoxin alone is specifically measured.

Endotoxins are lipopolysaccharides present mainly in cell wall of Gram-negative bacteria and are known as pyrogens. Therefore, the measurement of endotoxin concentration in a sample is one important measurement in the fields of medical science, pharmacy and microbiology.

At present, as a method for measuring endotoxin, the so-called Limulus test utilizing the phenomenon that an AL solution (hereinafter abbreviated as "AL solution") is activated by endotoxin to form gel clot is widely employed because of its simplicity, convenience, and low cost.

However, it was found that AL solution reacts not only with endotoxins but also with carboxymethylated β-1,3-glucan to undergo coagulation [Kakinuma et al., Biochem. Biophys. Research Communication, 101 (2), 434-439 (1981)]. It was also proved that this phenomenon is caused by the reaction of β-1,3-glucan sensitive factor present in AL solution with β-1,3-glucan or a derivative thereof (Iwanaga et al., Bacterial Endotoxin, published by Verlag Chemic, 385-382, 1984).

Therefore, most commercially available Limulus test reagents react not only with endotoxins but also with β-1,3-glucan, so that it is difficult to judge which of endotoxin, β-1,3-glucan and a mixture thereof is present in a sample, by the Limulus test. Thus, the specificity of such Limulus test reagents is a problem.

In order to solve this problem, there has been reported a method for preparing a reagent specific for endotoxins by removing β-1,3-glucan sensitive factor from AL solution [Japanese Patent Appln. Kokai (Laid-Open) Nos. 58-13516 and 59-27828]. However, all the methods disclosed in these references require a very troublesome procedure of treating AL solution, for example, by a gel filtration method or a chromatographic method using a carrier having heparin, or dextran sulfate attached thereto, to separate the AL solution into a fraction of procoagulant enzyme, a fraction of β-1,3-glucan sensitive factor, and a fraction of a factor which reacts with endotoxin to cause coagulation (hereinafter abbreviated as "endotoxin sensitive factor"), and to remove the β-1,3-glucan sensitive factor. Therefore, for preventing AL solution or the fractions obtained therefrom from being contaminated by endotoxin during the separation procedures, there are required, for example, facilities used exclusively for carrying out said procedures. Moreover, the above methods are further disadvantageous in that the individual fractions should be properly mixed again in order to obtain a reagent specific for endotoxin.

On the other hand, the above reference of Kakinuma et al. [Biochem. Biophys. Research Communication, 101 (2), 434-439 (1981)] describes the following fact. AL solution reacts not only with endotoxin but also with carboxymethylated β-1,3-glucan to undergo a coagulation reaction, but when carboxymethylated β-1,3-glucan is added in a large amount (10 µg/ml or more), it does not cause a coagulation reaction, and when a large amount (10 ng/ml) of endotoxin is further added to the solution, a coagulation reaction still occurred. However, the amount (10 ng/ml) of endotoxin added in said reference is as large as about 200 times the permissible concentration of endotoxin in distilled water for injection [for example, the standard value (the permissible concentration in a sample) of endotoxin according to the XX edition of U.S. Pharmacopeia (USP) is 0.25 EU/ml)]. Since such an amount is far greater than the amount which is normally measured as endotoxin using AL solution, application of the above fact for measuring endotoxin has been inconceivable. WO-A-83/02 123 discloses a method of detecting endotoxins and β-1,3-glucans by contacting a sample to be tested with (A) a blood cell lysate from a crustacean or an insect and (B) a detector substance in the form of a peptide compound having a specific terminal group, which through the enzymatic action of a blood cell lysate obtained from such an animal and activated by the endotoxins and β-1,3-glucans may be cleaved off to form a physically or chemically detectable compound. However, one skilled in the art would understand this disclosure to suggest that the properties of a blood cell lysate from a crustacean or insect were different in properties from the blood cell lysate of horseshoe crab.

SUMMARY OF THE INVENTION

This invention is intended to provide a process for measuring endotoxin alone specifically and quantitatively with ease and high efficiency without any influence of β-1,3-glucan sensitive factor present in AL.

This invention provides a process for specifically measuring endotoxin, which comprises mixing a solution of horseshoe crab hemocyte lysate with a sample in the presence of a water-soluble polysaccharide containing the β-1,3-glucosidic linkage and/or a water-soluble polysaccharide derivative containing the β-1,3-glucosidic
linkage, incubating the resulting mixture, and determining the concentration of endotoxin wherein the factor present in said solution of horseshoe crab hemocyte lysate which reacts with β-1,3-glucan to cause coagulation is inactivated so that the endotoxin alone is specifically measured.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows calibration curves for endotoxin which were obtained in Example 1 and Comparative Example 1.
Fig. 2 shows a calibration curve for curdian which was obtained in Comparative Example 1.
Fig. 3 shows a calibration curve for endotoxin which was obtained in Example 3.
Fig. 4 shows a calibration curve for endotoxin which was obtained in Example 5.
Fig. 5 shows a calibration curve for curdian which was obtained in Example 5.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the course of study on a method which permits easy and efficient preparation of a reagent specific for endotoxin by use of AL solution as starting material, the present inventors found the following fact. When a large amount of a water-soluble polysaccharide containing the β-1,3-glucosidic linkage (hereinafter abbreviated as "GLPS") and/or a water-soluble polysaccharide derivative containing the β-1,3-glucosidic linkage (hereinafter abbreviated as "GL-D") is present in a reaction solution for measuring endotoxin using AL solution, the coagulation reaction of the AL solution by β-1,3-glucan is inactivated, but endotoxin still causes a coagulation reaction. Because the β-1,3-glucan sensitive factor is inactivated, no coagulation reaction of the AL solution by β-1,3-glucan occurs. However, as the endotoxin factor sensitive and the procoagulating enzyme are not affected by the presence of GLPS and/or GL-D at all, surprisingly, endotoxin in a very slight amount of less than 0.01 EU/ml (0.002 ng/ml) can be detected specifically with high sensitivity. On the basis of the above finding, this invention has been accomplished.

As the GLPS and GL-D which are usable in this invention, any polysaccharides can be used without particular limitation so long as they contain the β-1,3 glucosidic linkage and are soluble in water. Preferable examples of GLPS include natural polysaccharides obtained from cell walls of, for example, various bacteria (e.g. Alcaligenes genus, and Agrobacterium genus), yeasts (e.g. Saccharomyces genus), and mushrooms (e.g. a shitake (Cortinellius shitake), Schizophyllum commune, and Coriolus versicolor), specific examples of natural polysaccharides including curdian, pachymann, scleratan, leutin, schizophyllan and coriolan; storage polysaccharides of algae, e.g. brown algae, Euglena, and diatoms, specific examples of storage polysaccharides include laminaran, laminarin, and paramillon; and preferable examples of GL-D include a polysaccharide derivative obtained by introducing at least one group selected from a carboxymethyl group, a carboxyethyl group, a methyl group, a hydroxymethyl group, a hydroxypropyl group, and a sulfopropyl group, into the natural polysaccharides or the storage polysaccharides according to a conventional method, for instance, any of the methods described, for example, in Munio Kotake "Daiyukikakaku" Vol. 19. 7th ed. Asakura Shoten, May 10, 1967, p. 70-101; A.E. Clarke et al., Phyto-chemistry, 1, 175-188 (1967); and T. Sasaki et al. Europ. J. Cancer, 15, 211-215 (1967). These natural polysaccharides, storage polysaccharides and derivatives thereof may be used singly or in combination of two or more of them.

As the AL solution usable in this invention, any one can be exemplified without particular limitation. Preferably it is extracted from hemocytes of horseshoe crab belonging to the Limulus genus, the Tachypleus genus or the Carcinoscorpius genus and reacts with endotoxin to undergo the coagulation reaction. It is, of course, possible to use AL solution prepared from freeze-dried products of AL solutions which are commercially available, for example, from Associates of Cape Cod Inc. (ACC).

As method for allowing GLPS and/or GL-D to exist in a reaction solution of AL and endotoxin, there are exemplified, for example, a method comprising dissolving the GLPS and/or GL-D thereof in water, a buffer solution, or a diluted alkali solution, and dissolving a freeze-dried product of AL in the resulting solution; a method comprising adding a solution of the GLPS and/or GL-D which is prepared by such a method as described above, to an AL solution prepared by dissolving a freeze-dried product of AL in distilled water for injection or a buffer solution; a method comprising adding the GLPS and/or GL-D to a sample; and a method comprising dissolving a reagent obtained by freeze-drying an AL solution containing a required amount of the GLPS and/or GL-D previously added, in distilled water for injection or a buffer solution. The method for allowing GLPS and/or GL-D to exist in a reaction solution of AL and endotoxin is not limited to these methods, and any method may be employed so long as the GLPS and/or GL-D is finally present in the reaction solution for reacting AL with endotoxin, in such an amount that the GLPS and/or GL-D inhibits the β-1,3-glucan sensitive factor in AL solution but does not inhibit the reaction of endotoxin with the endotoxin sensitive factor and the coagulation reaction.
of the AL solution which is caused by that reaction.

Although the concentration of GLPS and/or GL-D in the reaction solution is varied a little depending on, for example, production lot and detection sensitivity (EU/ml) for endotoxin of AL solution freeze-dried product or AL solution, it is usually 100 ng/ml to 100 mg/ml, preferably 10 μg/ml to 10 mg/ml in the reaction solution. AL solutions for measuring endotoxin which are prepared from the above-mentioned commercially available freeze-dried products of AL have a detection sensitivity for endotoxin of 0.03 to 5 EU/ml, and they undergo the coagulation reaction when a polysaccharide containing β-1,3-glucosidic linkage and/or a derivative thereof is added in an amount of 0.1 to 1000 ng/ml. The concentration of GLPS and/or GL-D added to such AL solutions for the object of this invention is preferably 1000 times or more as high as a concentration of a polysaccharide containing β-1,3-glucosidic linkage and/or a derivative thereof at which the polysaccharide and/or derivative thereof causes coagulation reaction of the AL solutions.

In the method for measuring endotoxin of this invention, endotoxin may be measured according to a conventional endotoxin measuring method using AL solution, except for the presence of a predetermined amount of GLPS and/or GL-D in a reaction solution for reacting AL with endotoxin. Other reagents used in the method of this invention may be properly chosen in accordance with reagents used in a conventional endotoxin measuring method. More in detail, endotoxin can be measured as follows.

(i) Gel-clot technique:

This technique comprises mixing AL solution with a sample in the presence of GLPS and/or GL-D, incubating the resulting mixture at a temperature of 0º to 40ºC, preferably 25º to 40ºC, for a predetermined time, and judging with the naked eye whether a gel is produced by coagulation or not.

(ii) End point-turbidimetric technique:

This technique comprises mixing AL solution with a sample in the presence of GLPS and/or GL-D, incubating the resulting mixture at a temperature of 0º to 40ºC, preferably 25º to 40ºC, for a predetermined time, and measuring a turbidity due to coagulation using a coagulometer, a nephometer, or a spectrophotometer.

(iii) Kinetic turbidimetric technique:

This technique comprises mixing AL solution with a sample in the presence of GLPS and/or GL-D, incubating the resulting mixture at a temperature of 0º to 40ºC, preferably 25º to 40ºC, for a predetermined time, and measuring a time required for a turbidity change due to coagulation to reach a designated value or a ratio in change of the turbidity using a coagulometer, a nephometer, or a spectrophotometer.

(iv) Chromogenic technique:

This technique comprises mixing AL solution with a sample in the presence of GLPS and/or GL-D and a synthetic substrate (such as Boc-Val-Leu-Gly-Arg-p-nitroaniline, Boc-Val-Leu-Gly-Arg-[N-ethyl-N-2-hydroxyethyl] aminooaniline), of protease which is activated by the reaction of a component of the AL solution with endotoxin, incubating the resulting mixture at a temperature of 0º to 40ºC, preferably 25º to 40ºC, for a predetermined time, then if necessary adding a stopper for protease reaction, and measuring a substance released from the synthetic substrate by protease activity for example colorimetrically. The range of application of this invention is not limited to these methods, and this invention is applicable to any measuring method utilizing a reaction of AL with endotoxin.

In the measuring method of this invention, as the pH at the time of measurement, any pH may be employed so long as it does not inactivate the factors which reacts with endotoxin in AL solution to cause the coagulation reaction, though a pH in the range of 8 to 8 is usually preferably employed. As the temperature at the time of measurement, any temperature may be employed so long as it does not inactivate the factors which reacts with endotoxin in AL solution to cause the coagulation reaction, though a temperature of 0º to 40ºC, preferably 25º to 40ºC is usually employed.

This invention is more concretely illustrated by way of the following examples, in which percents are all by weight unless otherwise specified.

Reference Example 1

Preparation of carboxymethylated curdian
To 60 g of curdian (available from Wako Pure Chemical Industries, Ltd.) were added 540 ml of toluene and 60 ml of ethanol, followed by adding thereto dropwise 61 g of a 50% aqueous sodium hydroxide solution, and the resulting mixture was heated at 50°C and stirred for 1 hour. A solution of 35 g of monochloroacetic acid in 100 ml of a mixed solvent of toluene and ethanol in the ratio of 9:1 was added to the mixture, and the resulting mixture was stirred at 50°C for another 1 hour. This reaction mixture was subjected to two repetitions of the above procure of adding aqueous sodium hydroxide solution and monochloroacetic acid solution, thereafter cooled, and allowed to stand overnight. The reaction mixture was then poured into 1 liter of 90% methanol, and the precipitate formed was collected by filtration and dried to obtain 142 g of crude crystals. The crude crystals obtained were dissolved in 1420 ml of distilled water, and the pH of the resulting solution was adjusted to 8 with diluted hydrochloric acid. To this solution was added dropwise 12.78 liters of methanol with stirring, and the precipitate formed was collected by filtration, washed with 500 ml of 90% methanol, and then dried to obtain the desired compound carboxymethylated curdian (hereinafter abbreviated as "CMCU").

Example 1

[Samples]

The following curdian solutions and endotoxin solutions were used as samples.

- Curdian solutions

There were used solutions prepared by dissolving curdian containing non-detectable amount of endotoxin (available from Wako Pure Chemical Industries, Ltd.) in a 50 mM endotoxin free aqueous sodium hydroxide solution, to a concentration of 5 mg/ml, and diluting the resulting solution properly with distilled water for injection.

- Endotoxin solutions

There were used solutions prepared by dissolving Escherichia coli control standard endotoxin (a lipopolysaccharide derived from E. coli UKT-B strain, available from Wako Pure Chemical Industries, Ltd.; each vial contained the lipopolysaccharide in an amount corresponding to 500 ng of FDA reference standard endotoxin EC-2; for dissolution in 5 ml) in 5 ml of distilled water for injection, and diluting the resulting solution properly with distilled water for injection.

[Preparation of CMCU-LAL solution]

A freeze-dried product of AL solution derived from horseshoe crab belonging to Limulus genus (hereinafter the freeze-dried product being abbreviated as "LAL"; available from Wako Pure Chemical Industries, Ltd.; coagulation sensitivity 0.5 EU/ml; for dissolution in 5 ml) was dissolved in 5 ml of a solution prepared by dissolving the CMCU obtained in Reference Example 1 in distilled water for injection to a concentration of 0.2 mg/ml, whereby a CMCU-LAL solution was obtained.

[Measuring procedure]

To 0.1 ml of the CMCU-LAL solution was added 0.1 ml of each sample, and after sufficient mixing, a time (minutes) required for reducing the transmittance by 5% (hereinafter abbreviated as "Tg") was measured at 37°C by means of a Toxinometer ET-201 (mfd. by Wako Pure chemical Industries, Ltd.).

[Results]

In Fig. 1, a calibration curve shown by -O- is obtained by plotting Tg value on the axis of ordinate corresponding to individual endotoxin concentrations (EU/ml) on the axis of abscissa. When the curdian solutions were used as samples, the transmittance of the sample was not reduced by 5% in 80 minutes at any of the curdian concentrations (data was not shown).

Comparative Example 1

Measurement was carried out for the same samples as in Example 1 in exactly the same manner as in Example 1, except that a LAL solution prepared by dissolving LAL of the same lot as in Example 1 in 5 ml of
distilled water for injection (hereinafter abbreviated as "untreated LAL solution") was used in place of the CMCU-LAL solution used in Example 1.

[Results]

In Fig. 1, a calibration curve shown by -●- is obtained by plotting Tg value on the axis of ordinate corresponding to individual endotoxin concentrations on the axis of abscissa. In Fig. 2 is shown a calibration curve obtained by plotting Tg value on the axis of ordinate corresponding to individual curdian concentrations (ng/ml) on the axis of abscissa.

As is clear from Fig. 1, when the endotoxin solutions were used as samples, a calibration curve having a good linearity could be obtained by using either the CMCU-LAL solution or untreated LAL solution as a reagent for measuring endotoxin.

However, as is clear from Fig. 2, untreated LAL solution reacts also with the curdian solutions to result in a calibration curve having a good linearity.

It can be seen that as is clear from the above results, a reagent specific for endotoxin can be obtained by adding CMCU to LAL solution.

Example 2

In Table 1 are shown the results of measurement carried out by the same measuring procedure as in Example 1 by using the sample containing 1.5 EU/ml of endotoxin prepared in Example 1 (sample-1) and a mixture of equal amounts of the sample containing 20 ng/ml of curdian and the sample containing 3.0 EU/ml of endotoxin which had been prepared in Example 1 (sample-2).

Comparative Example 2

In Table 1 are also shown the results of measurement carried out for the same samples as in Example 2 in exactly the same manner as in Example 2, except that the same untreated LAL solution as used in Comparative Example 1 was used in place of the CMCU-LAL solution used in Example 2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Example 2</th>
<th>Comparative Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample-1</td>
<td>21.9</td>
<td>22.2</td>
</tr>
<tr>
<td>Sample-2</td>
<td>21.2</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Table 1

It can be seen that as is clear from the results shown in Table 1, when the CMCU-LAL solution is used as a reagent for measuring endotoxin, a Tg value substantially equal to that obtained for the endotoxin solution is obtained for the sample containing both endotoxin and curdian, thereby indicating that, the CMCU-LAL solution does not react with curdian. It can also be seen that when measurement is carried out using the untreated LAL solution as a reagent for measuring endotoxin, Tg is greatly reduced by the addition of curdian to endotoxin solution, indicating that the untreated LAL solution reacts both endotoxin and curdian.

Example 3

[Samples]

The following curdian solutions and endotoxin solutions were used as samples.
• Curdlan solutions

There were used solutions prepared by dissolving curdlan containing non-detectable amount of endotoxin (available from Wako Pure Chemical Industries, Ltd.) in a 50 mM aqueous sodium hydroxide solution (endotoxin free but containing 0.2 mg/ml of CMCU) to a concentration of 5 mg/ml, and diluting the resulting solution properly with distilled water for injection containing 0.2 mg/ml of CMCU.

• Endotoxin solutions

There were used solutions prepared by dissolving Escherichia coli control standard endotoxin (a lipopolysaccharide derived from E. coli UKT-B strain, available from Wako Pure Chemical Industries, Ltd.; each vial contained the lipopolysaccharide in an amount corresponding to 500 ng of FDA reference standard endotoxin EC-2; for dissolution in 5 ml) in 5 ml of distilled water for injection containing 0.2 mg/ml of CMCU, and diluting the resulting solution properly with distilled water for injection containing 0.2 mg/ml of CMCU.

[Measuring procedure]

To 0.1 ml of the same untreated LAL solution as used in Comparative Example 1 was added 0.1 ml of each sample, and after sufficient mixing, Tg was measured at 37°C by means of a Toxinometer ET-201.

[Results]

In Fig. 3 is shown a calibration curve obtained by plotting Tg value on the axis of ordinate corresponding to individual endotoxin concentrations on the axis of abscissa. When the curdlan solutions were used as samples, the transmittance of the sample was not reduced by 5% in 80 minutes at any of the curdlan concentrations (data was not shown).

It can be seen that as is clear from these results, when CMCU is previously included in the samples, the untreated LAL solution does not react with curdlan but reacts only with endotoxin specifically.

Example 4

In Table 2 are shown the results of measurement carried out by the same measuring procedure as in Example 3 by using the sample containing 1.5 EU/ml of endotoxin prepared in Example 3 (containing 0.2 mg/ml of CMCU) (sample-1) and a mixture of equal amounts of the sample containing 20 ng/ml of curdlan (containing 0.2 mg/ml of CMCU) and the sample containing 3.0 EU/ml of endotoxin (containing 0.2 mg/ml of CMCU) which had been prepared in Example 3 (sample-2).

Comparative Example 3

By use of the same untreated LAL solution as used in Comparative Example 1, measurement was carried out by the same measuring procedure as in Example 4 by using, in place of the samples used in Example 4, the same samples as used in Example 2, i.e., the sample containing 1.5 EU/ml of endotoxin (containing no CMCU) (sample-3) and the mixture of equal amounts of the sample containing 230 ng/ml of curdlan (containing no CMCU) and the sample containing 3.0 EU/ml of endotoxin (containing no CMCU) (sample-4). The results obtained are also shown in Table 2.
Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Example 4</th>
<th>Comparative Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tg (min.)</td>
<td></td>
</tr>
<tr>
<td>Sample-1</td>
<td>21.6</td>
<td>-</td>
</tr>
<tr>
<td>Sample-2</td>
<td>21.0</td>
<td>-</td>
</tr>
<tr>
<td>Sample-3</td>
<td>-</td>
<td>22.2</td>
</tr>
<tr>
<td>Sample-4</td>
<td>-</td>
<td>13.5</td>
</tr>
</tbody>
</table>

It can be seen that as is clear from the results shown in Table 2, when the sample containing CMCU is measured, a Tg value substantially equal to that obtained for the endotoxin solution is obtained even in the case where said sample contains curdian in addition to endotoxin, namely, indicating that the inclusion of CMCU in the sample prevents the untreated LAL solution from reacting with curdian. On the contrary when measurement is carried out using the sample containing no CMCU, Tg is greatly reduced by the addition of curdian to endotoxin solution, indicating that the untreated LAL solution reacts also with curdian.

Example 5

[Samples]
 The same as in Example 1.

[CMCU-LAL solution]
 The same as in Example 1.

[Measuring reagent]

A measuring reagent was prepared by adding 1 ml of 0.45 M N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid buffer (pH 7.5) and 1 ml of a substrate solution (containing 1.02 mM Boc-Val-Leu-Gly-Arg-[4-N-ethyl-N-2-hydroxyethyl]aminoanilide (mfd. by Wako Pure Chemical Industries, Ltd.), 2.25 mM diethylaniline, and 0.12 M magnesium chloride) to 1 ml of the CMCU-LAL solution.

[Measuring procedure]

To 0.2 ml of the measuring reagent was added 0.1 ml of each sample, followed by sufficient mixing. The mixture was incubated at 37°C for 30 minutes. After incubation, the reaction was stopped by adding 1 ml of a reaction stopper solution containing 0.17% sodium metaperiodate and 0.25% of sodium lauryl sulfate (SDS), and then absorbance at 730 nm of the reaction solution was measured.

[Results]

In Fig. 4 is shown a calibration curve obtained by plotting absorbance on the axis of ordinate corresponding to individual endotoxin concentrations on the axis of abscissa. In Fig. 5 is shown a calibration curve obtained by plotting absorbance on the axis of ordinate corresponding to individual curdian concentrations on the axis of abscissa.

As is clear from Fig. 4 and Fig. 5, the CMCU-LAL solution according to this invention reacted with endotoxin and showed a calibration relation having a good linearity, but it did not react with curdian at any concentration.

When measurement was carried out using a mixture of equal amounts of the sample containing 20 ng/ml
of curdian and the sample containing 1.0 EU/ml of endotoxin, absorbance at 730 nm of the reaction solution was 0.490, which was the same as that (0.486) measured for the sample containing 0.5 EU/ml of endotoxin alone.

It can be seen that as is clear from these results, the CMCU-LAL solution does not react with curdian but is activated only by endotoxin.

As described above, this invention provides a process for measuring endotoxin using AL solution, which makes it possible to measure endotoxin alone specifically by inhibiting the β-1,3-glucan sensitive factor contained in AL solution easily and efficiently without any special procedure such as fractionation and recombination of components in the AL solution. Thus, this invention contributes greatly to the art.

Claims

1. A process for specifically measuring endotoxin, which comprises mixing a solution of horseshoe crab hemocye lysate with a sample in the presence of a water-soluble polysaccharide containing the β-1,3-glucosidic linkage and/or a water-soluble polysaccharide derivative containing the β-1,3-glucosidic linkage, incubating the resulting mixture, and determining the concentration of endotoxin wherein the factor present in said solution of horseshoe crab hemocye lysate which reacts with β-1,3-glucan to cause coagulation is inactivated so that the endotoxin alone is specifically measured.

2. A process according to claim 1, wherein the water-soluble polysaccharide containing the β-1,3-glucosidic linkage and/or the water-soluble polysaccharide derivative containing the β-1,3-glucosidic linkage is present in the reaction solution in an amount of 100 ng/ml to 100 mg/ml.

3. A process according to any preceding claim, wherein the water-soluble polysaccharide containing the β-1,3-glucosidic linkage is at least one member selected from curdian, pachyman, sclerotan, lentinan, schizophyllan, coriolan, laminaran, laminarin and paramilon.

4. A process according to any preceding claim, wherein the water-soluble polysaccharide derivative containing the β-1,3-glucosidic linkage is that obtained by introducing at least one group selected from a carboxyethyl group, a carboxymethyl group, a methyl group, a hydroxyethyl group, a hydroxypropyl group and a sulfopropyl group into curdian, pachyman, sclerotan, lentinan, schizophyllan, coriolan, laminaran, laminarin or paramilon.

5. A process according to any preceding claim, wherein the determination of the concentration of endotoxin in the sample is conducted by judging a gel produced.

6. A process according to any one of preceding claims 1-4, wherein the determination of the concentration of endotoxin in the sample is conducted by measuring a turbidity due to coagulation.

7. A process according to any one of preceding claims 1-4, wherein the determination of the concentration of endotoxin in the sample is conducted by measuring a time required for a turbidity change due to coagulation to reach a designated value or a ratio in change of the turbidity.

8. A process according to any one of preceding claims 1-4, wherein said mixing takes place together with a synthetic substrate of protease wherein the determination of the concentration of endotoxin in the sample is conducted by measuring a substance released from the synthetic substrate by protease activity.

Patentansprüche

1. Verfahren zum spezifischen Messen von Endotoxin welches umfaßt:
 Mischen einer Lösung von Königskrabben-Hämatozytlysat mit einer Probe in Gegenwart eines wasserlöslichen Polysaccharides, enthaltend die wasserlösliche β-1,3-glucosidische Bindung, und/oder eines wasserlöslichen Polysacchariderivats, enthaltend die wasserlösliche β-1,3-glucosidische Bindung, Inkubieren der resultierenden Mischung und Bestimmen der Konzentration des Endotoxins, bei welchem Verfahren der in der genannten Lösung von Königskrabben-Hämatozytlysat vorhandene Faktor, der mit β-1,3-Glucan unter Herbeiführen von Koagulation reagiert, inaktiviert wird, so daß
das Endotoxin spezifisch allein gemessen wird.

2. Verfahren nach Anspruch 1, bei welchem das wasserlösliche Polysaccharid, enthaltend die β-1,3-gluco-
sidische Bindung, und/oder das wasserlösliche Polysaccharidderivat, enthaltend die β-1,3-gluco-
sidische Bindung, in der Reaktionslösung in einer Menge von 100 ng/ml bis 100 mg/ml vorliegt.

3. Verfahren nach einem der vorgenannten Ansprüche, bei welchem das wasserlösliche Polysaccharid, ent-
haltend die β-1,3-glucosidische Bindung, mindestens ein Vertreter ist, ausgewählt aus Curdian,
Pachyman, Sclerotan, Lentinan, Schizophyllan, Coriolan, Laminaran, Laminarin und Paramilon.

4. Verfahren nach einem der vorgenannten Ansprüche, bei welchem das wasserlösliche Polysaccharidde-
rivat, enthaltend die β-1,3-glucosidische Bindung, erhalten wird durch Einführen von mindestens einer
Gruppe, ausgewählt aus einer Carboxymethyl-Gruppe, einer Carboxyethyl-Gruppe, einer Methyl-
Gruppe, einer Hydroxyethyl-Gruppe, einer Hydroxypropyl-Gruppe und einer Sulfopropyl-Gruppe, in Curdian,
Pachyman, Sclerotan, Lentinan, Schizophyllan, Coriolan, Laminaran, Laminarin oder Paramilon.

5. Verfahren nach einem der vorgenannten Ansprüche, bei welchem die Bestimmung der Konzentration von
Endotoxin in der Probe durch Bewertung eines erzeugten Gels durchgeführt wird.

6. Verfahren nach einem der Ansprüche 1 bis 4, bei welchem die Bestimmung der Konzentration von En-
dotoxin in der Probe durch Messen einer Trübung infolge Koagulation durchgeführt wird.

7. Verfahren nach einem der Ansprüche 1 bis 4, bei welchem die Bestimmung der Konzentration von En-
dotoxin in der Probe durchgeführt wird, indem eine Zeit gemessen wird, die zum Erreichen eines vorbe-
stimmteten Wertes einer Trübsungsänderung infolge Koagulation oder eines Verhältnisses der Trübs-
änderung benötigt wird.

8. Verfahren nach einem der Ansprüche 1 bis 4, bei welchem das Mischen gemeinsam mit einem synthetis-
chen Substrat von Protease erfolgt, wobei die Bestimmung der Konzentration von Endotoxin in der Pro-
be durch Messen einer von dem synthetischen Substrat durch Proteaseaktivität freigesetzten Substanz
durchgeführt wird.

Revendications

1. Procédé de dosage spécifique de l’endotoxine, qui comprend le fait de mélanger une solution de lysat
d’hémocytes de limule avec un échantillon, en présence d’un polysaccharide soluble dans l’eau contenant
la liaison β-1,3-glucosidique et/ou d’un dérivé de polysaccharide soluble dans l’eau contenant la liaison
β-1,3-glucosidique, de faire incuber le mélange obtenu et de déterminer la concentration de l’endotoxine,
dans lequel le facteur présent dans cette solution de lysat d’hémocytes de limule qui réagit avec le β-1,3-
glucone pour provoquer la coagulation, est inactif, de telle sorte que seule l’endotoxine est spécifiquement
dosée.

2. Procédé selon la revendication 1, dans lequel le polysaccharide soluble dans l’eau contenant la liaison
β-1,3-glucosidique et/ou le dérivé de polysaccharide soluble dans l’eau contenant la liaison β-1,3-gluco-
sidique est présent dans la solution réactionnelle dans une proportion de 100 ng/ml à 100 mg/ml.

3. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le polysaccharide
soluble dans l’eau contenant la liaison β-1,3-glucosidique est au moins un polysaccharide choisi parmi le
curdiane, le pachymane, le sclérotane, le lentinane, le schizophyllane, le coriolane, le laminaran, la la-
marine et le paramilon.

4. Procédé selon l’une quelconque des revendications précédentes, dans lequel le dérivé de polysaccharide
soluble dans l’eau contenant la liaison β-1,3-glucosidique est obtenu en introduisant au moins un groupe
choisi parmi un groupe carboxyméthyle, un groupe carboxyéthyle, un groupe méthyle, un groupe hy-
droxyéthyle, un groupe hydroxypropyle et un groupe sulfopropyle dans le curdiane, le pachymane, le sclé-
rotane, le lentinane, le schizophyllane, le coriolane, le laminaran, la laminarine ou le paramilon.

5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que la détermination
de la concentration en endotoxine de l'échantillon est effectuée en appréciant un gel produit.

6. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la détermination de la concentration de l'endotoxine dans l'échantillon est effectuée en mesurant une turbidité due à une coagulation.

7. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la détermination de la concentration de l'endotoxine dans l'échantillon est effectuée en mesurant le temps nécessaire pour que la modification de turbidité due à la coagulation atteigne une valeur désirée, ou un rapport de modification de la turbidité.

8. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel ce mélange s'effectue avec un substrat synthétique de protéase dans lequel la détermination de la concentration de l'endotoxine dans l'échantillon est effectuée en dosant une substance libérée du substrat synthétique sous l'effet de la protéase.
FIG. 3

![Graph showing the relationship between Tg (min) and endotoxin concentration (EU/mL).](image)

FIG. 4

![Graph showing the relationship between absorbance (730 nm) and endotoxin concentration (EU/mL).](image)
FIG. 5

ABSORBANCE (730 nm)

0 0.2 0.4 0.6 0.8 1.0

1 2 3 4 5 6 50

CURDLAN CONCENTRATION (ng/ml)