Mould with a single-block plunger for the moulding of electric accumulator boxes and boxes obtained with said mould.

Priority: 16.02.88 IT 8552088

Date of publication of application: 23.08.89 Bulletin 89/34

Publication of the grant of the patent: 07.09.94 Bulletin 94/36

Designated Contracting States: AT BE CH DE ES FR GB GR LI LU NL SE

References cited:
- GB-A- 1 292 463
- GB-A- 1 416 580
- US-A- 2 487 703
- US-A- 3 669 598

Proprietor: Stocchiero, Olimpio
5 Via Kennedy
I-36050 Montorso Vicentino (IT)

Inventor: Stocchiero, Olimpio
5 Via Kennedy
I-36050 Montorso Vicentino (IT)

Representative: Bonini, Ercole
c/o STUDIO ING. E. Bonini SRL,
Corso Fogazzaro 6
I-36100 Vicenza (IT)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The invention concerns a mould with a single-block plunger for the moulding of boxes for electric accumulators.

The boxes for electric accumulators, especially those for lead accumulators are containers preferably made of plastic material, the inner part of which is partitioned into equal cells which are parallel with each other and are suited to hold the plates and the electrolyte.

Nowadays one of the most economical and most widely used methods for the production of boxes for electric accumulators is the injection moulding process. Said process consists in injecting within a mould a thermoplastic material which has been turned into a soft paste through heating. The mould consists of several parts, which are solidly connected with each other and which, being joined, define the geometrical configuration of the box to be manufactured.

The known technique for the manufacture of the injection moulds for the production of accumulator boxes realizes a fixed plate counterposed to a mobile plate on which removable lateral cores defining the outer geometry of the box to be manufactured are assembled. On the other hand, the geometry of the inner cells of the box is obtained by means of a central plunger consisting of a plurality of cores, each defining one of the cells which will constitute the box after the moulding process.

The US-A-1 865 464 discloses an apparatus for moulding battery boxes of plastic material wherein the plunger of the mould is made of a single block of metal and the slots of this plunger are supposed to be made by sawing operation or the like, being the depth of these slots very short in respect of the height of the plunger and of the corresponding box.

In other known moulds the central plunger is obtained by joining together a plurality of cores facing each other, which are firmly bound together by the action of a constricting iron ring which surrounds them.

The moulds of the known type which have just been described present some inconveniences.

The main inconvenience arises from the fact that, since the central plunger consists of a plurality of cores, it presents a limited rigidity, so that while the plastic material is being injected, the cores constituting the plunger have a tendency to bend, with the consequence that the thickness of the walls of the cells constituting the box is not homogeneous. This inconvenience becomes particularly relevant when the boxes are rather deep, because of the considerable length of the cores.

Another inconvenience arises from the fact that the iron ring constricting the central plunger must be very sturdily built, due to the considerable strength which it must exert to keep the cores tightly bound together. For this reason, it must present large dimensions, thereby considerably increasing the overall dimensions and weight of the mould.

Moreover, the contact between the constricting iron ring and the cores constituting the central plunger occurs along a slanted ring-shaped surface and, in order for this contact to evenly transmit the binding force, it must be extremely precise. This entails, therefore, the other inconvenience of a high manufacturing cost, because of the difficulty of grinding slanted surfaces, particularly in the corner positions.

Notwithstanding the above-mentioned inconveniences, the experts in this field have always deemed it technically and factually impossible to obtain a single-block mould for the moulding of the above-mentioned accumulator boxes.

The purpose of the present invention is to eliminate the described inconveniences.

The main purpose of the invention is a mould, particularly suited for the injection moulding of boxes for electric accumulators, wherein the cores constituting the central plunger present, while the mould is being used, extremely reduced or almost negligible flexions, so as to guarantee the homogeneity of the thickness of the cell walls of the boxes, particularly in relation of the partition walls dividing one cell from another and in their upper section, particularly near the junction between the box and its lid. Another purpose of the invention is to obtain a mould, which, given the same dimensions of the box to be manufactured, presents, in comparison with the moulds of the known type, considerably smaller overall dimensions and weight. The last but not the least purpose of the invention is that of obtaining a mould for electric accumulator boxes which is easy and less costly to manufacture, particularly where the manufacturing of the constricting iron ring and of the central plunger is concerned.

The above-mentioned purposes and others which will be better described hereafter are fulfilled by a method for manufacturing a mould for boxes for electric accumulators which is in accordance with the claim 1, and by a moulding device made with such a method.

The main advantages of the invention consist of an improvement of the product quality, while the manufacturing cost of the mould becomes considerably lower than the manufacturing costs of the moulds of the known types. The manufactured product obtained with this mould presents partition walls of a uniform thickness, both when the mould is new and after a high number of mouldings, due to the inherent structures of the mould plunger.
The mentioned purposes and advantages are better explained hereafter in the description of a preferred form of execution of the invention, which is given by way of example only, but is not meant to limit its scope and which is represented in the tables of drawing, wherein:

- Fig. 1 shows the mould according to the invention in its closed position;
- Fig. 2 shows the mould according to the invention in its open position;
- Fig. 3 shows the mould according to the invention with the stripper in the action of expelling the moulded box;
- Fig. 4 shows in a perspective view the detail of the fixed central plunger.

With reference to the mentioned figures, it can be observed that the mould according to the invention, which is indicated as a whole with 1, consists of a fixed plate 2 and of a mobile plate 3, the latter being opposite to the former, in relation to which it moves co-axially and is guided by the cylindrical columns 4, which are rigidly connected with the mobile plate 2.

The two plates 2 and 3 are called mobile plate and fixed plate respectively because plate 2 is rigidly connected with the fixed structure of the injection machine (not represented in the drawing), while plate 3 is rigidly connected with the mobile part of the injection machine which is set in motion by a pneumatic system opening and closing the mould (also not represented in the drawing).

In Fig. 1 it can also be observed that the lateral cores 5 are lodged on the mobile plate 3 and that they limit the outer surface of the box to be moulded, when the die is closed. Said lateral cores are generally four in number, they are arranged so as to shape the four outer sides of the box and each of them is provided with a hydraulic jack 6 which causes them to move in an oblique direction in relation to the axis of the mould. On the other hand, as can be observed in Fig. 3, the fixed plate 2, presents in its central part an impression 9, suited to receive the box angle-plate 11 constituting the attachment stand of the central plunger 7, which, as can be observed in Fig. 4, presents in its upper section 20 a plurality of cores 8, suited to create the cells of box 22 during the moulding process. Moreover, the box angle-plate 11 and the upper section 20 of the central plunger 7 are connected with each other through a peripheral surface 12 with a slanted profile.

The fixed plate 2 also houses a stripper 10 consisting of a plate with a hole in the middle, whose inner surface matches the peripheral surface 12 with a slanted profile which is positioned on the central plunger 7. Stripper 10 is, moreover, co-axially mobile in relation to the central plunger 7 because of the hydraulic jacks 13 which are lodged within the fixed plate 2.

In the just described inventive solution, the hydraulic jacks 6 and 13 are used respectively for the driving of the lateral cores 5 and of stripper 10. This is, in any case, only one of several possible 5 driving systems and it is given by way of example only, since both the driving of the cores 5 and of stripper 10 may also be obtained by means of fixed strikers or of a springs-and-slides system.

As far as the central plunger 7 is specifically concerned, it can be observed in Fig. 4, that it is obtained from a single steel block, which is machined so as to present a box angle-plate 11 for its coupling with the fixed plate 2 and an upper section 20 consisting of a plurality of cores 8, preferably obtained by working on the original block with wire-cutting spark erosion process. Moreover, as has already been said, the upper section 20 and the box angle-plate 11 are joined together by a peripheral slanted band 12, which acts as a supporting surface for stripper 10.

The mould works as follows.

It is mounted in its closed position on the injection machine, as it is shown in Fig. 1 and its plates 2 and 3 are secured on the fixed part and on the mobile part of the injection machine respectively.

The hydraulic system of the injection machine generates a force which keeps the fixed plate 2 and the mobile plate 3 pressed against each other with a strength, the value of which must be such as to prevent the plates 2 and 3 from separating while the plastic material is being injected.

At this point the injection operation can begin. It consists of forcing the plastic material, which has been heated to a paste, through the injection channels 30 and 31.

The injection process continues until the mould has been completely filled, so as to form the desired box 22.

After the injection has been completed and the time necessary for the plastic material to solidify has elapsed, the mobile plate 3, as can be observed in Fig. 2, is driven in the direction indicated by arrow 32, and, at the same time, the lateral cores 5 are driven in the oblique direction 37 by the hydraulic jacks 6.

The exterior of box 22 is thereby released, but its interior is still held in place by the impressions 21 of the cores 8 of the central plunger 7.

The removal phase of the moulded box 22 consists, as can be observed in Fig. 3, in the displacement, which occurs co-axially in relation to the mould, of stripper 10 which is driven by the action of the hydraulic jacks 13, which are connected with it.

It will be observed that surface 34 of stripper 10 interferes with the top 35 of the peripheral
edges 36 of box 22, which is, however, lifted so as to clear the cores 8 of the central plunger 7. It will be pointed out that the Figs. 2 and 3 only represent the movements and the positions of the mould components in relation to each other, while the given distances have no reference to the actual distances in the machine, these being considerably greater in order to allow the removal of the moulded boxes 22.

Based on what has been said, it can be remarked that the cores 8 constituting the central plunger 7 present a considerable rigidity, since they are an integral part of the box angle-plate 11. It is obvious that a high rigidity of the cores 8 entails their decreased deformation and, as a consequence, a decreased deformation of the walls of box 22. More specifically, it will be noticed that the cores 8 are completely rigid near the junction surface 12, since the construction consists of a single block and, therefore, the moulded box has an absolute dimensional constancy. Thus the thickness of all the vertical walls moulded in the box is also constant in the area of the upper edge and of the edge connecting the box with its lid. This construction of the mould insures a long range dimensional constancy, since the possible wear-and-tear of the plunger can not involve the junction base of the cores 8 to the peripheral surface 12.

No additional means for the securing and the stiffening of the central plunger 7 are necessary since, as been said, it already has a sufficient inherent rigidity arising from the fact that it is manufactured from a single steel block.

It is therefore sufficient that along the peripheral surface 12 constituting the contact surface between stripper 10 and the central plunger 7 the tightness be such as to prevent the seepage of the plastic material during the moulding process, since no action or strength is necessary on the part of stripper 10 to restrain the central plunger 7. As a consequence, stripper 10 may present a noticeably reduced thickness, thereby contributing to the reduction of the weight and overall dimensions of the mould, given the same overall dimensions of box 22 to be moulded, in comparison with the moulds of the known type, wherein the plunger consists of bound-together cores.

Moreover, the fact that stripper 10 matches the central plunger 7 along surface 12 without any need for a restraining force, makes it possible to machine the matching surfaces with a lower degree of precision, which therefore, entails a decrease in the manufacturing time and costs of the mould.

On the base of what has been described, it can be understood that the mould according to the invention achieves all the proposed purposes and also permits to obtain all the ensuing advantages.

In the description of the mould some accessories which are indispensable for the performance of the mould, but which do not characterize the idea of the present invention have purposefully not been described or represented in the tables of drawing, since they belong to already known techniques and are in any case common in the injecting moulds for plastic materials.

The mould according to the invention can also be made in different forms of execution, based however, on the same inventive idea and during its manufacture modifications can be performed, which will not exceed the scope of the patent protection of the present invention.

Claims

1. Method for manufacturing a mould for producing electric accumulator boxes by injection moulding of a thermoplastic material, said mould comprising a fixed plate (2) on which a plunger (7) is fastened, a movable die plate (3) and a stripper (10) for separating the moulded box (22) from the plunger (7), said plunger (7) having a series of cores (8) separated by slots (21), the depth of which corresponds with the height of the cell partition walls of the box (22), characterised in that said plunger (7) is obtained from a single metal block into which the deep slots (21) are cut by wire-cutting spark erosion, such that said slots (21) have a constant with over their entire depth.

2. Moulding device for producing electric accumulator boxes, comprising a fixed plate (2) on which a plunger (7) is fastened, a movable die plate (3) slidably mounted on guiding columns (4) and a stripper (10) for separating the moulded box (22) from the plunger (7), said plunger having a series of cores (8) separated by slots (21), characterised in that the plunger (7), made by wire-cutting spark erosion from a single block, comprises a base plate (11) and an upper part (20) interconnected by an intermediate section having a tapered peripheral surface (12) for the abutment of corresponding tapered inner surfaces of the stripper (10) during the injection moulding process, the upper part (20) being provided with the series of cores (8) separated by deep slots (21) which have a constant with over their entire depth.

3. Moulding device according to claim 2, characterised in that the stripper (10) is a bored plate which is mounted in a seat (9) provided in the fixed plate (2) and having a depth that corresponds to the height of the stripper plate, which is longitudinally movable along the out-
side surface of the intermediate section of the plunger (7).

4. Moulding device according to claim 2 or 3, characterized in that the movable die plate (3) is provided with a seat connected to injection channels (30, 31) of the die plate (3) and housing lateral holding plates (5) for the completion of the die, said holding plates (5) being slidably mounted in the seat of the die plate (3) in a direction inclined with respect to the movement of the die plate (3).

Patentansprüche

1. Methode zur Herstellung einer Form, um Klästen für Elektroakkumulatoren durch Spritzgießen von thermoplastischen Kunststoffen herzustellen, wobei die genannte Form folgendes einschließt: eine feste Platte (2) worauf ein Stempel (7) befestigt ist, eine bewegliche Platte (3) und einen Auszieher (10) zur Trennung des geformten Kastens vom Stempel (7), wobei der genannte Stempel eine Serie von Kern (8) aufweist, die durch Hohlräume (21) getrennt werden, deren Tiefe der Höhe der Zellen-Trennwände des Kastens (22) entspricht, dadurch gekennzeichnet, daß der genannte Stempel (7) aus einem einzigen Metallblock besteht, worin die tiefen Hohlräume (21) mittels drahtschneidendem Funkenerosion erhalten werden, so daß die genannten Hohlräume eine gleichbleibende Breite über ihre gesamte Tiefe aufweisen.

2. Spritzform zur Herstellung von Elektroakkumulator-Klästen, die folgendes einschließt: eine feste Platte (2), worauf ein Stempel (7) befestigt ist, eine bewegliche Platte (3), die auf Säulenschiene (4) gleitet, und einen Auszieher (10) zur Trennung des geformten Kastens (22) vom Stempel (7), wobei der genannte Stempel eine Serie von Kernen (8) aufweist, die durch Hohlräume (21) getrennt werden, dadurch gekennzeichnet, daß der Stempel (7), der aus einem einzigen durch drahtschneidenden Funkenerosion erhaltenen Metallblock besteht, eine Grundplatte (11) und einen oberen Teil (20) einschließt, die miteinander durch einen dazwischenliegenden Schnitt verbunden sind, wobei der genannte Schnitt eine konische Rand-Oberfläche aufweist (12), die zur Unterstützung von entsprechenden konischen Innenoberflächen des Ausziehers (10) während des Spritzform-Verfahrens dient, wobei der obere Teil (20) mit einer Serie von Kernen (8) ausgerüstet ist, die durch tiefe Hohlräume (21) getrennt werden, die eine konstante Breite über ihre gesamte Tiefe aufweisen.

3. Spritzform nach Anspruch 2, dadurch gekennzeichnet, daß der Auszieher (10) aus einer gebohrten Platte besteht, die innerhalb eines in der festen Platte (2) vorhandenen Sitzes (9) eingebaut wird, der eine der Höhe der Ausziehersplatte entsprechende Tiefe aufweist, wobei die genannte Ausziehersplatte longitudinal entlang der äußeren Oberfläche des zwischenliegenden Schnitts des Stempels (7) beweglich ist.

4. Spritzform nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die bewegliche Formplatte (3) mit einem Sitz versehen ist, der mit Spritzkanälen (30, 31) der Formplatte (3) verbunden ist und der seitliche Halteplatten (5) zur Ergänzung der Form behält, wobei die genannten Halteplatten (5) im Sitz der Formplatte (3) eingebaut werden und in eine Richtung gleiten, die schräg im Verhältnis zur Bewegung der Formplatte (3) verläuft.

Revindicaciones

1. Método para la fabricación de una moldura para producir boîtes pour accumulateurs eléctriques por moldeo a presión de materiales termoplásticos, la dite moldura comprendiéndose una porción fija (2) en la cual se encuentra un descargador (7) a este se une una placa móvil (3) y un guía (10) para separar la boîte moluda (22) del descargador (7), lo mismo ocurre con una serie de armazones (8) separadas por rasnuras (21), la profundidad de las rasnuras (21) son constantes en todo el largo de la misma.

2. Dispositivo de moldeo para la producción de boîtes pour accumulateurs électriques, comprenant une plaque fixe (2) sur laquelle un plongeur (7) est attaché, une plaque mobile (3) montée et glissante sur des colonnes de glissement (4) et un guide (10) pour séparer la boîte moluda (22) du plongeur (7), le dit plongeur ayant une série d’armatures (8) séparées par des rasnuras (21), caractérisé en ce que le dit plongeur (7) est obtenu en monobloc de métal dans lequel les profondes rasnuras (21) sont coupées par érosion à étincelle coupe-fil, tel que les dites rasnuras (21) ont une largeur constante le long de toute leur profondeur.
l'aboutement de correspondantes surfaces coniques intérieures du strieur (10) pendant le procédé de moulage à injection, la partie supérieure étant pourvue d'une série d'âmes (8) séparées par de profondes rainures (21) qui ont une largeur constante le long de toute leur profondeur.

3. Dispositif de moulage selon la revendication 2, caractérisé en ce que le strieur (10) est une plaque alésée qui est montée dans une siège (9) pourvu en la plaque fixe (2) et ayant une profondeur qui correspond à l'hauteur de la plaque du strieur, qui est mobile longitudinalement le long de toute la surface extérieure de la section interposée du plongeur (7).

4. Dispositif de moulage selon la revendication 2 ou 3, caractérisé en ce que la plaque mobile (3) est pourvue d'un siège joint à de canaux d'injection (30, 31) de la plaque mobile (3) et logeant des plaques latérales de blocage (5) pour compléter la moule, les dites plaques de blocage (5) étant montées glissantes dans le siège de la plaque (3) en une direction inclinée par rapport au mouvement de la plaque (3).