EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 11.09.91 Bulletin 91/37

Int. Cl.: D01H 9/18, D01H 1/38

Application number: 88810836.2

Date of filing: 07.12.88

Apparatus for transporting roving bobbins.

Priority: 10.12.87 JP 312942/87

Date of publication of application: 05.07.89 Bulletin 89/27

Publication of the grant of the patent: 11.09.91 Bulletin 91/37

Designated Contracting States: CH DE IT LI

References cited:
PATENT ABSTRACTS OF JAPAN vol. 11, no. 53 (C-404) 2500 19 February 1987

Proprietor: HOWA MACHINERY, LTD. 32-3, Meieki 2-chome Nakamura-ku Nagoya-shi Aichi (JP)

Inventor: Sasaki, Kenji 82, Bonten Fujishima-cho Komaki-shi Aichi (JP)
Ito, Shunji 2-233, Kamilai Nishi-ku Nagoya-shi Aichi (JP)

Representative: Dousse, Blasso et al 7, route de Drize CH-1227 Carouge/Genève (CH)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an apparatus for delivering roving bobbins from a roving process to a spinning process and returning the same to the roving process through a roving stripper.

2. Description of the Related Art

In a conventional roving bobbin transporting system for delivering full roving bobbins from a roving process comprising a plurality of roving frames to a spinning process comprising a plurality of spinning frames and returning empty bobbins from the spinning process to the roving process, as is well-known from JP-A-61-215724, the full bobbin formed in the roving frame is delivered to the spinning process while hung down from a bobbin hanger of a bobbin carriage and exchanged with an empty bobbin with residual roving on a creel of a spinning frame. The empty bobbin is then transferred, while hung down from the bobbin hanger of the bobbin carriage, to a roving stripper arranged on a path of the bobbin carriage, in which the residual roving is cleared off from the roving bobbin. Thereafter, the empty bobbin loaded on the bobbin carriage is transferred to the roving process and exchanged with a full bobbin formed on a bobbin wheel of the roving frame to be doffed. In this system, it often happens that the roving is still left on the empty bobbin even after passing through the roving stripper. If such the bobbin (mis-bobbin) is doffed on the roving frame, loading mis of a roving on the bobbin at the initial stage of winding is liable to occur. To avoid this mistake, according to the conventional system, a detector is provided for detecting the mis-bobbin. If the mis-bobbin is found, transfer of the bobbin carriage is made to stop and simultaneously an operator is informed of the presence of the mis-bobbin. Then the mis-bobbin is manually exchanged with a normal empty bobbin without residual roving. Thereafter, a reset button is depressed to restart the bobbin carriage.

As stated above, according to the conventional system, when the mis-bobbin is detected by the detector, the delivery of the roving bobbins is interrupted for a considerable time until the bobbin exchange is completed by the operator, whereby the efficiency of the system is reduced. In addition, if the frequency of the presence of the mis-bobbin is high, other bobbin carriages running on a common transportation rail must be stopped, which causes the interruption of the supply of full roving bobbins to the spinning frame with the result of reduction of the throughput of the spinning process. So far as the existent roving stripper is used, mis-bobbins often appear, and reduction of the delivery efficiency of roving bobbins is a serious problem to be solved.

SUMMARY OF THE INVENTION

Thus, it is an object of the present invention to solve the above-mentioned drawbacks of the prior arts and provide an improved apparatus for transporting roving bobbins between a spinning process and a roving process, having a high efficiency.

This object is achievable by an apparatus for transporting roving bobbins along a transportation rail arranged between a spinning process and a roving process, comprising bobbin carriages, each having a plurality of bobbin hangers for suspendingly holding roving bobbins and moveably supported by the transportation rail; a driving device for intermittently displacing the bobbin carriage; and a roving stripper arranged midway of the transportation rail for clearing off a residual roving on the roving bobbin. According to the present invention, a mis-bobbin treatment device is provided midway of the transportation rail between the roving stripper and the roving process, for removing a mis-bobbin, from which the residual roving has not been completely cleared off by the roving stripper, from the bobbin hanger and, instead, depositing the normal empty bobbin onto the bobbin hanger. The mis-bobbin treatment device comprises: a detector, arranged midway of the transportation rail between the roving stripper and the roving process, for detecting presence and absence of the residual roving on the roving bobbin after the roving bobbin has been treated by the roving stripper; a peg for selectively holding the mis-bobbin and the normal empty bobbin; a bobbin lift for displacing the peg between a first position at which the roving bobbin is transferred between the bobbin hanger of the bobbin carriage and the peg and a second position at which the normal empty bobbin is doffed onto the peg; means for withdrawing the mis-bobbin held on the peg therefrom during the downward displacement of the peg; and means for feeding the normal empty bobbin to the peg wherein the removal of the mis-bobbin from the bobbin hanger is carried out by the operation of the peg, the bobbin lift, and the mis-bobbin withdrawal means, and the packaging of the normal empty bobbin is carried out by the operation of the peg, the bobbin lift and the normal empty bobbin feeding means.

Preferably, the bobbin lift comprises a base stationarily fixed to a floor on which the apparatus is installed; a pair of vertical pillars fixedly secured on the base; a lifting body mounted on the pillars and moveable up- and downwards; an arm fixedly secured on the lifting body while fixedly holding the peg thereon, and a lifting mechanism for displacing the lifting body along the pillars.
Preferably, the mis-bobbins withdrawal means is provided midway of the downward path of the lifting body and comprises a bobbin withdrawing mechanism for removing the mis-bobbins from the peg during the downward displacement thereof and a box for accommodating the mis-bobbin removed from the peg; the bobbin withdrawing mechanism being provided with an operating plate having an opening which allows the passage of the peg but inhibits the passage of the bobbin.

Advantageously, the normal empty bobbin feeding means comprises a frame fixedly secured on a floor on which the apparatus is installed; a supporting box fixedly mounted onto the frame; and a chute, fixedly mounted onto the upper part of the frame, having an inlet opening in the upper portion thereof for introduction of the normal empty bobbin and an exit opening in the lower portion thereof which confronts the top of the peg when the latter occupies the lowermost position; the chute being provided midway thereof with a bobbin stopper mechanism for delivering the normal empty bobbin one by one to the exit opening.

Advantageously, the bobbin lift comprises a base stationarily fixed to a floor on which the apparatus is installed; a pair of vertical pillars fixedly secured on the base; a lifting body mounted on the pillars and moveable up-and-downwards; a peg holder mounted on the lifting body and moveable in the horizontal direction while fixedly holding the peg thereon; means for guiding the peg holder to a position at which the mis-bobbins is removed from the peg by the mis-bobbin withdrawal means during the downward displacement of the lifting body from the first position, then guiding the peg holder to the second position and finally guiding the peg holder directly from the second position to the first position; and a lifting mechanism for displacing the lifting body along the pillars.

Preferably, the apparatus further comprises a pair of guiding rails arranged in parallel to the transportation rails on the floor on which the apparatus is installed at a position between the roving stripper and the roving process; and a truck reciprocately moveable along the guiding rails; the mis-bobbin treatment device being fixedly mounted on the truck so that when one group of the empty roving bobbins hung from the bobbin hangers of one bobbin carriage is subjected to the clearing-off operation of the roving stripper, the other group of the empty roving bobbins hung from the bobbin hangers of the other bobbin carriage which has been treated by the roving stripper can be simultaneously subjected to the operation of the mis-bobbin treatment device.

Advantageously, the chute of the mis-bobbin treatment device has a plurality of inlet openings in the upper portion of the chute for introduction of the normal empty bobbins, each corresponding to one normal empty bobbin supply source different from the other, and a selection mechanism for selectively connecting the normal empty bobbin supply source with the inlet opening, and a central control unit for selectively operating the selection mechanism when the bobbin carriage waiting on the stock rail reaches the operative position of the mis-bobbin treatment device are provided.

BRIEF DESCRIPTION OF THE DRAWINGS

The other objects and advantages of the present invention will be apparent from the description of the preferred embodiments of the present invention with reference to the accompanying drawings: wherein

Fig. 1 is a front view of a mis-bobbin treatment device used in a first embodiment of the present invention;
Fig. 2 is a plan view showing a layout of an apparatus for transporting roving bobbins according to the present invention;
Fig. 3 is a sectional view showing a main part of a bobbin carriage and a driving device therefor;
Fig. 4 is a plan view of a switching device;
Fig. 5 is a side view illustrating, partially in section, the mis-bobbin treatment device shown in Fig. 1;
Fig. 6 is a plan view of a driving device for the mis-bobbin treatment device;
Fig. 7 is an enlarged sectional view taken along the line VII-VII in Fig. 6;
Fig. 8 is a front view of a mis-bobbin treatment device used in a second embodiment of the present invention;
Fig. 9 is a plan view illustrating, partially in section, the device of Fig. 8;
Fig. 10 is a diagram illustrating a cam groove used in the second embodiment;
Fig. 11 is a front view of a mis-bobbin treatment device used in a third embodiment of the present invention;
Fig. 12 is a front view of a mis-bobbin treatment device used in a fourth embodiment of the present invention; and
Fig. 13 is a plan view showing a layout of an apparatus for transporting roving bobbins according to the fourth embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figs. 1 through 7 illustrate a first embodiment of an apparatus for transporting roving bobbins. Referring to Fig. 2, a roving process is formed by a plurality (two in this drawing) of roving frames 1 arranged in parallel to each other. An auto-doffer, such as disclosed in U.S. Patent No. 4369621 or 3935699, is arranged in front of the roving frames 1 to automati-
cally exchange an empty bobbin hung down on a bobbin hanger of a bobbin carriage, described hereinafter, with a full bobbin formed on a bobbin wheel of the roving frame 1. The bobbin exchange may be manually carried out. A spinning process is formed by a plurality of spinning frames 3. As is well-known, the spinning frame 3 has front and rear rows of bobbin hangers on a creel. A roving exchanger, such as disclosed in EPA 0213962, is arranged in front of the spinning frame 3 to successively exchange an empty bobbin exhausted on the spinning frame and hung down on the bobbin hanger of the creel with a full bobbins hung down on a bobbin carriage supported on a spare rail described later. In this regard, the empty bobbin transferred to the bobbin carriage at a position of the spare rail may be referred to as "empty (roving) bobbin with residual roving", which means several layers of roving are left on the periphery of the bobbin. While, a bobbin, from which the residual roving has been completely removed, will referred to as "normal (empty) bobbin".

A transportation rail 5 is laid out overhead of a path between the roving process and the spinning process. The transportation rail 5 comprises doffing rails 7 arranged above the surroundings of the roving frames 1, spare rails 8 arranged in front of the creels of the respective spinning frames 3, a main rail 9 arranged to connect the doffing rails 7 to the spare rails 8, and a residual roving treating rail 10 branched in parallel to the main rail 9 from a midportion of the main rail 9. The doffing rail 7 is laid out so as to pass through a point 2a just above a position at which the roving bobbins are doffed and donned by the auto-doffer 2. The transportation rail 5 is formed to be of a C-shaped cross-section as shown in Fig. 3, and a pair of bearing surfaces 5a and a pair of guide surfaces 5b are formed in the bottom thereof.

As is well-known, a plurality of bobbin carriages 11 are movably supported on the transportation rail 5, and as shown in Figs. 2 and 3, a plurality of carriage bars 12 are rotatably supported on the bobbin carriage 11 through pins. Bobbin hangers 13 are attached to the bottom of the bar 12 at a pitch two times the spindle pitch of the spinning frame 3. Engaging pins 14 are attached to the top of the bar 2 at a pitch two times the pitch of the bobbin hangers 13. A pair of supporting rollers 15, a pair of a guide rollers 16 and a steering roller 17 are arranged in the vicinity of both ends of the carriage bar 12 so that the supporting rollers 15 are guided by the bearing surfaces 5a of the transportation rail 5. The guide rollers 16 are guided by the guide surfaces 5b of the transportation rail 5.

As shown in Figs. 2 and 3, a plurality of driving devices 18 for moving the bobbin carriages 11 are arranged on the transportation rail 5 at a pitch shorter than the length of the bobbin carriage 11. As disclosed in U.S. Patent 4759382, the driving device 18 comprises a pair of discs 20 and 21 which are rotatably supported on a bearing member 19 secured to the transportation rail 5 to interpose both the sides of the carriage bar 12 between the discs 20 and 21, and which are connected to each other so that the discs 20 and 21 are rotated in directions opposite to each other. A driving motor 23 is arranged for driving one of the discs 20, 21. Alternative to this driving device 18, a tractor moving along the transportation rail 5 may be used for drawing the bobbin carriage 11.

A switching device 25 shown in Fig. 4 is arranged at a junction between the main rail 9 and the doffing rail 7. In this switching device 25, a switching piece 26 is pivoted on the transportation rail 5 through an axle 27 to guide the steering roller 17 of the bobbin carriage 11. A lever 28 pivoted through the axle 27 is urged by a spring 29 arranged between the lever 28 and the switching piece 26 so that the lever 28 abuts against a stopper 28a and is integrated therewith. An air cylinder 30 for turning the lever 28 is fixed to the transportation rail 5 and the switching piece 28 is changed over between the positions indicated by a solid line and an imaginary line in Fig. 4 by the operation of the air cylinder 30. In this regard, switching devices 31, 32 and 33 having the same structure as that of the switching device 25 are arranged at a junction between the main rail 9 and the spare rail 8 and at a junction between the main rail 9 and the residual roving-treating rail 10.

A known roving stripper 35 as disclosed in Japanese Unexamined Patent Publication No. 62-90337 is arranged in a midportion of the residual roving-treating rail 10. In the roving stripper 35, the bobbin carriage 11 is intermittently forwarded by a known driving device 35a arranged within the roving stripper 35 to feed a plurality (for example, 8) of empty bobbins Y to a working zone within the stripper 35. These empty bobbins Y are pressed to a belt having a plurality piles implanted thereon by a pressing wheel. The implanted belt moves in the direction so that the residual roving on the bobbin is rewound and removed from the bobbin. Then, compressed air is blown to the periphery of a band (sticking cloth) Ya of the roving bobbin Y from the tangential direction thereof to remove the residual roving adhering to the band Ya. Thereafter, the bobbin carriage 11 is again subjected to transportation. The roving stripper 35 may be of a type, for example, as disclosed in Japanese Unexamined Patent Publication No. 60-94628, in which a suction opening having a length equal to the that of the winding area of the roving bobbin Y is brought close to the periphery of the roving bobbin Y, and the roving bobbin Y is rotated in the re-winding direction to suck and remove the residual roving.

A mis-bobbin treatment device 40 is arranged midway of the transportation path of the bobbin carriage 11 between the roving stripper 35 and the roving frame 1. As shown in Fig. 1 and Figs. 5 through 7, this
mis-bobbin-treatment device 40 comprises a driving device 41 for forwarding the bobbin carriage 11, a detector 42 for detecting the presence or absence of a residual roving on the empty bobbin Y which has been subjected to the clear-off treatment of the roving stripper, a bobbin removal device 43 for taking out the mis-bobbin from the bobbin hanger 13 on receipt of a signal of "presence of mis-bobbin" emitted from the detector 42, and a bobbin attachment device 44 for attaching a roving-free normal empty bobbin to the bobbin hanger 13, from which the empty bobbin with residual roving has been taken out. In the driving device 41 shown in Figs. 6 and 7, a supporting member 45 is fixed to the upper surface of the transportation rail 5 through a bracket 49a. A pair of arms 45a of the supporting member 45 rotatably support a shaft 47 of a drum 46 parallel to the transportation rail 5. A screw groove 46a is formed on the periphery of the drum 46 so that the screw groove 46a can engage with the end of the engaging pin 14 of the bobbin carriage 11. The screw groove 46a is formed so that while the screw groove 46a engages with one engaging pin 14, the screw groove 46a falls in engagement with another engaging pin 14 and, as the bobbin carriage 11 is forwarded, the screw groove 46a naturally falls in engagement with the leading engaging pin 14. An electromagnetic clutch 48 is secured to the supporting member 45 to detachably connect the shaft 47 to an input shaft 50. A motor 51 is fixed to the supporting member 45 through a bracket 49b and a belt 54 is wound between a pulley 52 mounted on a driving shaft 51a of the motor 51 and a pulley 53 mounted on the input shaft 50.

As shown in Figs. 1 and 5, the detector 42 comprises a light projector and receiver fixed to a supporting frame, described hereinafter, of the bobbin attachment device 44 through a bracket 55, so that the presence or absence of the residual roving on the bobbin Y hung down on the bobbin hanger 13 at the position of the band Ya is detected and a signal is emitted on detection of the residual roving.

The above-mentioned bobbin removal device 43 comprises a bobbin lift 56 for removing the mis-bobbin Y from the bobbin hanger 13 and bringing down the same and a bobbin withdrawal device 57 for withdrawing the mis-bobbin Y brought down by the bobbin lift 56. In this bobbin lift 56, a base 58 is stationarily fixed on the floor, on which a pair of pillars 59 are vertically arranged. Top end portions of the pillars 59 are fixed to an upper frame 61. A lifting body 62 is vertically movably attached to the pillars 59 and an arm 63 is fixed to the side of the lifting body 62. The width of the arm 63 is smaller than the maximum outer diameter of the empty bobbin Y, and a peg 64 is projected upward from the free end of the arm 63. Chain wheels 65 and 66 are turnably mounted on the base 58 and upper frame 61, respectively, and a chain 67 having both the ends fixed to the lifting body 62 is wound around each chain wheel. A motor 68 is arranged to drive the chain wheel 65 in either the normal direction or the reverse direction through a chain 69. Limit switches 70a, 70b and 70c are fixed to the upper frame 61 and base 58 through brackets 91 and 92 to detect the rise end, drop end and stand-by position of the lifting body 62.

The limit switch 70c is set at a stand-by position where the peg 64 can get out from a lower hole of the roving bobbin Y in the hung-down state, and ordinarily, the lifting body 62 rests at the stand-by position. In the bobbin withdrawal device 57, a bobbin container 71 is disposed on the floor on the side of the up-down path of the peg 64. A narrow opening is formed on the upper end of the bobbin container 71 so that each empty bobbin Y can be received in a laid-down state. A bobbin withdrawing mechanism 72 is attached to the top of the bobbin container 71, which comprises opening 71a formed on the side of the upper portion of the bobbin container 71, a pair of guide plate which is formed by projecting side walls of the opening 71a so that the mis-bobbin Y held on the peg 64 is guided thereby during the downward displacement. A baffle plate 76, which is rotatably pivoted on a bracket 74 fixed to the lower wall of the bobbin container 71 beneath the opening 71a, is normally urged to the right, as shown in Fig. 1, by a spring (not shown) or by its own weight so that it obliquely crosses the downward path of the bobbin Y mounted on the peg 64. A stopper 75 limits the motion of the baffle plate 76. A window 76a which has such a size as allowing passage of the arm 63 and peg 64 but not allowing passage of the mis-bobbin Y inserted in the peg 64 is formed on the baffle plate 76.

The bobbin attachment device 44 is constructed by the above-mentioned bobbin lift 56 and a bobbin supply device 77. In the bobbin supply device 77, a supporting frame 78 is arranged on the floor. A supporting box 79 is secured on the supporting frame 78. A lower chute 80 is arranged slightly above the peg 64, when the same occupies the above-mentioned lowermost position, through a bracket 81 fixed to the supporting frame 78, and a notch 80a allowing passage of the arm 63 is formed on the side of the lower chute 80. An upper chute 82 is arranged to supply a roving-free normal empty bobbin Y preliminarily prepared to the lower chute 80, and the upper portion of the upper chute 82 is formed to have such a broad width that the normal bobbin Y is guided while laid down horizontally, and this width-increased portion is passed through the supporting box 79 so that said portion is supported by the supporting box 79. The width of the lower portion of the upper chute 82 is gradually narrowed and is connected to the lower chute 80. The upper end of the upper chute 82 is connected to a supply box or supply conveyor (not shown) for feeding a normal empty bobbin Y. A bobbin-stopping device 83 for supplying bobbins Y one by
one comprises a rotary disc 84 rotatably pivoted on the inner wall of the supporting box 79, stopping members 85 and 86 having one ends connected to positions symmetrically with each other with respect to the center of rotation of the rotary disc 84 and the other ends floatably inserted in the upper chute 82, and an air cylinder 87 for rotating the rotary disc 84 by a predetermined angle to cause the stopping member 85, 86 to emerge alternately in the upper chute 82, with a piston rod 87a and a body 87b of the air cylinder being pivoted, respectively, to the rotary disc 84 and to the supporting box 79. A braking member 88 is stationary arranged on one side of the passage in the upper chute 82 to regulate the falling posture of the bobbin Y, as described later.

In this apparatus having the above-mentioned structure, a full roving bobbin Y is attached to the bobbin hanger 13 of the bobbin carriage 11 supported on the doffing rail 7 at the position of the roving frame 1, and then, these bobbin carriages 11 are delivered to the main rail 9 in succession by the driving device 18 and are supported on the spare rail 8 at the position of the spinning frame 3. At this position, the full roving bobbin Y is exchanged with the empty bobbin Y with residual roving on the creel. Then, the bobbin carriages 11 at the position of the spare rail 8 are returned onto the main rail 9 in succession and transported to the residual roving-treating rail 10. At this position, the empty bobbin Y hanging down on the bobbin hanger 13 is fed to the roving stripper 35. Plurals of these empty bobbins Y are fed intermittently at predetermined pitches to the roving stripper 35 by the driving device 35a, and the clear-off treatment is carried out to remove the residual roving.

When the clear-off treatment is completed and the bobbin carriage 11 is completely fed out from the roving stripper 35, the leading engaging pin 14 abuts against the drum 46 of the driving device 41 of the mis-bobbin-treatment device 40 to rotate the drum 46. Then, the pin 14 falls in engagement with the screw groove 48a. When the bobbin carriage 11 reaches the drum 46 as mentioned above, this displacement is detected by a detector not shown to actuate the motor 51, and the drum 46 is rotated in the direction indicated by an arrow in Fig. 6 by the rotation of the shaft 51a of the motor 51, with the result that the bobbin carriage 11 is slowly but continuously displaced to the right in Fig. 1. Accordingly, empty bobbins Y which have been subjected to the clear-off treatment are delivered in succession to the position confronting the detector 42 which detects the presence or absence of the residual roving on the periphery of the band portion Ya of the bobbin Y. When the detector 42 detects the presence of the residual roving, a signal indicating that this roving bobbin Y is a mis-bobbin is issued, and the motor 51 is immediately stopped by this signal to stop the mis-bobbin just above the peg 84 of the bobbin removal device 43. In this regard, in order to increase the stopping accuracy, the motor 51 can be stopped by using this signal in combination with a signal of another detector for detecting the engaging pin 14 or the like. The bobbin carriage 11 stands still until a predetermined short period set by a non-illustrated timer lapses after the detector 42 has issued the signal indicating the presence of mis-bobbin, so that a rocking of the roving bobbins on the bobbin carriage 11 is minimized. Then, the motor 68 of the bobbin lift 56 is actuated to raise the lifting body 62 located at the stand-by position. When the lifting body 62 is raised to actuate the limit switch 70a, the operation of the motor 68 is stopped and the lifting body 62 is also stopped at the rising end. At this position, the mis-bobbin is slightly lifted up, from the normal hanging-down position, by the peg 84 which is now engaged with the lower hole of the mis-bobbin, whereby the removal of the mis-bobbin from the bobbin hanger is carried out. After the limit switch 70a is actuated, a predetermined short period set by a non-illustrated timer lapses. Then, the motor 68 is actuated reverse to lower the lifting body 62 to bring down the mis-bobbin Y removed from the bobbin hanger 13. In the passage of the downward movement of the lifting body 62, the mis-bobbin Y impinges against the baffle plate 76 of the bobbin withdrawal device 57 and is drawn out from the peg 84 and put into the bobbin container 71. The mis-bobbin Y is brought down through the window 76a of the baffle plate 76. When the lifting body 62 actuates the limit switch 70b, the operation of the motor 68 is stopped and the lifting body 62 is stopped on the falling end.

Then, the air cylinder 87 of the bobbin supply device 77 in the bobbin attachment device 44 is actuated by a signal issued from the limit switch 70b to project the piston rod 87a, so that the rotary disc 84 is rotated counterclockwise in Fig. 5, and the lower stopping member 85 is escaped from the upper chute 82 while the upper stopping member 86 is projected in the upper chute 82. Thereby one normal empty bobbin Y alone is left to fall in the upper chute 82. In the course of this falling, the head of the falling empty bobbin Y impinges against the braking member 88 and temporarily braked, and therefore, the lower part of the roving bobbin Y is first dropped. The next normal empty bobbin Y is received on the stopping member 85 by the projection of the stopping member 85 and the retreat of the stopping member 86 and occupies a stand-by position for the next exchange. Then, the normal empty bobbin Y is supplied to the lower chute 80 and is attached to the peg 84 standing by at the falling end. When this attachment is detected by a detector, such as a photo-tube, not shown in the drawings, the motor 68 of the bobbin lift 56 is actuated again to raise the lifting body 62 together with the normal empty bobbin Y attached to the peg 84. In this case, the arm 63 is passed through the notch 80a of the lower chute 80 without interference. In the course
of the upward movement of the normal empty bobbin Y, the head thereof impinges against the baffle plate 76, but since the baffle plate 76 is rotatable upward, the bobbin Y turns the baffle plate 76 upward and continues rising. When the lifting body 62 rises to actuate the limit switch 70a, the operation of the motor 68 is stopped and the lifting body 62 is stopped at the rising end. At this point, the upper hole of the bobbin Y is engaged with the bobbin hanger 13. After a predetermined short period set by a timer, the motor 68 is actuated again to bring down the lifting body 62, and the bobbin Y fitted to the bobbin hanger 13 is hung down on the bobbin hanger 13. The arm 63 and the peg 64 free from the bobbin are brought down. When the lifting body 62 actuates the limit switch 70c, the operation of the motor 68 is stopped and the lifting body 62 is stopped at the stand-by position. Then, the motor 51 of the driving device 41 is actuated again by a signal from the limit switch 70c. The above operation is repeated to displace the bobbin carriage 11 to the right in Fig. 1, and mis-bobbins Y are automatically exchanged with normal empty bobbins Y in a short time. When the treatment of mis-bobbins of one bobbin carriage 11 is thus completed, this completion is detected by an appropriate detector, and the bobbin carriage 11 is delivered to the predetermined doffing rail 7 by the driving device 18, and at this position, normal empty bobbin 8 is hung down on the bobbin hanger 13 of the bobbin carriage 11 and are exchanged with full bobbins.

Figs. 8 through 10 illustrate the second embodiment of the mis-bobbin-treatment device of the present invention. The horizontal phase of the bobbin removal position A of a bobbin withdrawal device 57, 57e is made different from that of the bobbin inserting position B of a bobbin supply device 77, 77e, so that a peg 64 of a bobbin lift 56 is moved between the bobbin removal position A and the bobbin inserting position B in the course of the vertical movement. In the bobbin lift 56e, two horizontal guide bars 62e are arranged in parallel to each other on a lifting body 62e. Laterally moving members 62e are attached to the guide bars 62e so that they can move laterally, and cam followers 62ce formed on the laterally moving members 62e are fitted in a cam groove 101 of a cam plate 100. The cam plate 100 is fixed to a base 89e and an upper frame 81e. As shown in Fig. 10, the cam groove 101 comprises a vertically straight cam groove 101a and a second cam groove 101b branched from the first cam groove 101a. At an upper junction between the first cam groove 101a and the second cam groove 101b, a switching piece 102 is rotatably pivoted, and the switching piece 102 is urged by a spring 103 and caused to abut against a stopper 104, so that the top end of the switching piece 102 is located at the first cam groove 101a. At a lower junction, a switching piece 105 is rotatably pivoted, and the switching piece 105 is urged by a spring 106 and is caused to abut against a stopper 107, so that the top end of the switching piece 105 is located at the second cam groove 101b. In the bobbin withdrawal device 57e, a baffle plate 76e of a bobbin withdrawal mechanism 72e is stationarily arranged. In a bobbin attachment device 44e, stopping members 85e and 86e are arranged so that they are projected and retreated by solenoids 110 and 111 arranged in an intermediate portion of a supply chute 82e, and a basket conveyor 113 is arranged on a supporting frame 78e. The basket conveyor 113 comprises an endless belt 113a having many baskets 113b fixed to the periphery thereof. The basket conveyor 113 is disposed so that normal empty bobbins 8 are supplied to a high position close to the inlet of the upper chute 82e.

In the second embodiment, when the lifting body 62e falls, the cam follower 62ce is guided to the second cam groove 101b by the switching piece 102, and as the result, the peg 64e passes through the bobbin removal position A of the bobbin withdrawal device 57e and a mis-bobbin is removed from the peg 64e. Then, the cam follower 62ce is guided to the bobbin inserting position B of the bobbin supply device 77, and at this position, a normal empty bobbin Ye is attached to the peg 64e. When the lifting body 62e then rises, the cam follower 62ce is guided into the first cam groove 101a by the switching piece 105, and the roving bobbin Ye is attached to the bobbin hanger of the bobbin carriage. In this regard, members equal or equivalent to the members described in the above-mentioned first embodiment are indicated by affixing alphabet letter e to the same reference numerals as used in the first embodiment, and detailed explanation of these members is omitted.

In the third embodiment of the present invention illustrated in Fig. 11, while a plurality (for example, 8) of empty bobbins are subjected to the stripping treatment by the above-mentioned roving stripper 35, a plurality of mis-bobbins among a plurality of the empty bobbins Y which have been previously subjected to the stripping treatment and fed out are detected and exchanged with normal bobbins. In this embodiment, along the residual roving-treatment rail 10 on the side where the bobbin carriage 11 is fed out from the roving stripper 35, that is, on the right side of the roving stripper 35 in Fig. 2, two guide rails 120 are laid out, and the bobbin removal device 43 and bobbin attachment device 44 of the above-mentioned first embodiment are arranged on a self-advancing truck 121 provided with a wheel 123 rotatable in the normal and reverse directions by a motor 122. In the bobbin container 71 of the present embodiment, a bobbin box 93 for collecting withdrawn mis-bobbins therein is arranged so that the bobbin box 93 is taken out and inserted through an opening 94 formed on one side wall of the bobbin box 93. The truck 121 moves reciprocatively just below a plurality of empty bobbins Y fed from the roving stripper, and when a mis-bobbin is detected by
the detector 42, the motor 122 is stopped and the mis-bobbin is exchanged with a normal empty bobbin.

In the fourth embodiment of the present invention illustrated in Figs. 12 and 13, different kinds of rovings (differing, for example, in the count number or the material) are produced from the respective roving frames and many kinds of roving bobbins (in general, roving bobbins having colors corresponding to the kinds of the yarns) are used, and after a mis-bobbin is removed from the bobbin hanger of the bobbin carriage, the mis-bobbin is exchanged with a normal empty bobbin of the same kind as that of the mis-bobbin. Referring to Fig. 13, roving frames 1a through 1d produce different kinds of rovings, and different colors, for example, red, green, blue and orange, corresponding to the kinds of the yarns, are given to roving bobbins, and rovings of roving bobbins of different colors are fed to four groups of spinning frames 3a through 3d, each group comprising three spinning frames. Each of the spinning frames is a long spinning frame in which two bobbin carriages are located on the spare rail 8. In the case where four kinds of roving bobbins are thus treated, from the viewpoint of the control of automatic delivery of the bobbin carriages 11, it is preferred that stand-by rails 10a through 10d corresponding to the respective kinds of roving bobbins be arranged before and after the roving stripper 35. In the present embodiment, the roving stripper 35 is arranged on each of a residual roving treating rail 10A for delivering red and green roving bobbins and a residual roving treating rail 10B for delivering blue and orange roving bobbins. However, alternative to a plurality of rails 10A, 10B, only one residual roving treating rail can be laid out for delivering all kinds of the roving bobbins in one roving stripper 35. A mis-bobbin-treatment device 40g, illustrated in Fig. 12, is arranged on a residual roving treating rail 10g where the respective stand-by rails 10a through 10d join. The mis-bobbin-treatment device 40g may be disposed in an intermediate portion of the main rail 13, as indicated by symbol K in Fig. 13. A bobbin attachment device 44g of the mis-bobbin-treatment apparatus 40g comprises four supply chutes 82a through 82d having lower portions connected to the lower chute 80, and normal empty bobbins of red, green, blue and orange are supplied to the upper chutes 82a through 82d, respectively. In this connection, the same members as those of the first embodiment are represented by the same reference numerals as used in the first embodiment, and detailed explanation of these members is omitted.

The stripping treatment of the empty bobbin Y is carried out by the roving stripper 35 in the above-mentioned apparatus, and the bobbin carriage 11, for example, on for red roving bobbins, on the stand-by rail 10a, is fed toward the mis-bobbin-treatment device 40g by instructions from a central control unit Q. In the mis-bobbin-treatment device 40g, when the peg 64 is lowered after removal of the mis-bobbin from the bobbin hanger 13, the bobbin stopping device 83 of the upper chute 82a, selected by the central control unit Q, is actuated to drop and supply a red normal empty bobbin, and this bobbin is attached to the bobbin hanger 13, from which the mis-bobbin has been removed. Thus, the mis-bobbin can be exchanged with a normal empty bobbin Y of the same kind as that of the mis-bobbin.

In the present invention, there can be adopted modifications of the foregoing embodiments. For example, there can be mentioned a modification in which the driving device of the roving stripper is constructed so that the bobbin carriage is delivered intermittently at a pitch corresponding to one pitch of the bobbin hanger, and the bobbin removal device and attachment device of the mis-bobbin-treatment device are stationarily arranged adjacent to the roving stripper, as indicated by symbol N in Fig. 2. Another modification in which the above-mentioned bobbin removal device and attachment device are arranged integrally with the roving stripper and when a plurality of empty bobbins are subjected to the stripping treatment by the roving stripper and the bobbin carriage is fed out, on detection of a mis-bobbin by the detector, feed-out of the bobbin carriage is temporarily stopped and the mis-bobbin is exchanged with a normal empty bobbin.

As is apparent from the foregoing description, according to the present invention, when the presence of a residual roving on an empty bobbin which has subjected to the stripping treatment is detected by the detector, on receipt of a detection signal from the detector, the bobbin removal device automatically and rapidly takes out this mis-bobbin from the bobbin hanger and the attachment device attaches a normal empty bobbin to the bobbin hanger, from which the mis-bobbin has been taken out. Accordingly, the stopping time of the bobbin carriage having this mis-bobbin hung thereon can be much shortened and the efficiency of transportation of roving bobbins can be increased. Even if the appearance frequency of mis-bobbins is high, high outputs can be maintained in spinning frames. Moreover, since a mis-bobbin can be automatically exchanged with a normal empty bobbin, an operator need not perform any manual operation at all even when mis-bobbins appear, and the cost in a spinning mill can be reduced.

Claims

1. An apparatus for transporting roving bobbins along a transportation rail arranged between a spinning process and a roving process, comprising:
 a. numerous bobbin carriages (11), each having a plurality of bobbin hangers (13) for suspendingly holding roving bobbins and movably supported by the transportation rail;
 b. an attachment portion (K) for attaching an empty bobbin to the bobbin hanger, in which the attachment portion is disposed in an intermediate portion of the main rail of the bobbin carriage;
 c. a bobbin removal device (40g) for removing an empty bobbin from the bobbin hanger;
 d. a bobbin treatment device (40g) for exchanging an empty bobbin with a normal empty bobbin;
 e. a bobbin hanger (13) for supporting a plurality of bobbins;
 f. a roving device (1a through 1d) for producing various rovings;
 g. a roving stripper (35) for delivering empty bobbins to the bobbin carriage;
 h. a roving carriage (11) for moving roving bobbins along the transportation rail; and
 i. a bobbin carriage (13) for moving empty bobbins along the transportation rail.
a driving device (18) for intermittently displacing the bobbin carriage (11); and a roving stripper arranged midway of the transportation rail (5) for clearing off a residual roving on the roving bobbin; characterized in that
a mis-bobbin treatment device (40) is provided midway of the transportation rail (5) between the roving stripper (35) and the roving process, for removing a mis-bobbin from which the residual roving has not been completely cleared off by the roving stripper (35) from the bobbin hanger (13) and, instead, donning a normal empty bobbin onto the bobbin hanger (13); the mis-bobbin treatment device comprising:
a detector (42) arranged midway of the transportation rail (5) between the roving stripper (35) and the roving process, for detecting a presence of the residual roving on the roving bobbin after the roving bobbin has been treated by the roving stripper (35) and issuing a mis-bobbin signal;
a bobbin removal device (43) for withdrawing the mis-bobbin from the bobbin hanger (13) of the carriage: a bobbin attachment device (44) for feeding the normal empty bobbin to the bobbin hanger (13) from which the mis-bobbin has been removed; wherein the replacement of the mis-bobbin on the bobbin hanger (13) with the normal empty bobbin is carried out by the co-operation of the bobbin removal device (43) and the bobbin attachment device (44) when the mis-bobbin signal is issued from the detector (42).

2. An apparatus as defined by claim 1, wherein the bobbin removal device (43) comprises a bobbin lift (56) with a bobbin catcher (64) thereon for removing and lowering the mis-bobbin from the bobbin hanger (13), and a bobbin withdrawal device (57) for withdrawing the mis-bobbin removed from the bobbin lift (56); and the bobbin attachment device (44) comprises a bobbin lift (56) with a bobbin catcher (64) for lifting and fitting the normal empty bobbin to the bobbin hanger (13) from which the mis-bobbin has been removed, and a bobbin supply device (77) for feeding the normal empty bobbin to the bobbin lift (56).

3. An apparatus as defined by claim 2, wherein the bobbin lift (56) comprises a base (50) stationarily fixed to a floor on which the apparatus is installed; a pair of vertical pillars (59) fixedly secured on the base (58); a lifting body (62) mounted on the pillars (59) and movable up- and downwards; an arm (65) fixedly secured on the lifting body (62) while fixedly holding the bobbin catcher (64) in a peg form; and a lifting mechanism (65 through 69) for displacing the lifting body (62) along the pillars (59).

4. An apparatus as defined by claim 3, wherein the bobbin withdrawal device (57) is provided midway of the downward path of the lifting body (62) and comprises a bobbin withdrawing mechanism (72) for removing the mis-bobbin from the peg (64) during the downward displacement thereof and box (71) for accommodating the mis-bobbin removed from the peg (64); the bobbin withdrawing mechanism (72) being provided with an operating plate (76) having an opening (76a) which allows the passage of the peg (64) but inhibits the passage of the bobbin.

5. An apparatus as defined by claim 1, wherein the bobbin supply device (77) comprises a frame (78) fixedly secured on a floor on which the apparatus is installed; a supporting box (79) fixedly mounted onto the frame (78); and a chute (80, 82) fixedly mounted on the frame (78), having an inlet opening in the upper portion (82) thereof for introduction of the normal empty bobbin and an exit opening in the lower portion (80) thereof which confronts the top of the peg (64) when the latter occupies the lowermost position; the chute (80, 82) being provided midway thereof with a bobbin stopper mechanism (83) for delivering the normal empty bobbin one by one to the exit opening.

6. An apparatus as defined by claim 2, wherein the bobbin lift (55e) comprises a base (55e) stationarily fixed to a floor on which the apparatus is installed; a pair of vertical pillars (55e) fixedly secured on the base (55e); a lifting body (62e) mounted on the pillars (59e) and movable up- and downwards; a laterally movable member (62be) mounted on the lifting body (62e) and movable in the horizontal direction while fixedly holding the peg (64e) thereon; and for guiding the member (62be) to a position at which the mis-bobbin is removed from the peg (64) by the bobbin withdrawal device (43e) during the downward displacement of the lifting body (62e) from a first position, then guiding the member (62be) to the second position and finally guiding the member (62be) directly from the second position to the first position, the first position being one at which the roving bobbin is transferred between the bobbin hanger (13) of the bobbin carriage (11) and the peg (64e) and the second position being one at which the normal empty bobbin is donned onto the peg (64e); and a lifting mechanism (65e through 69e) for displacing the lifting body (62e) along the pillars (59e).

7. An apparatus as defined by claim 1, wherein said apparatus further comprises a pair of guiding rails (120) arranged in parallel to the transportation rails (5) on the floor on which the apparatus is installed at a position between the roving stripper (35) and the roving process; and a truck (121) reciprocately movable along the guiding rails (120); the mis-bobbin treatment device (40) being fixedly mounted on the truck (121) so that when one group of the empty roving bobbins hung from the bobbin hangers (13) of one bobbin carriage (11) is subjected to the clearing-off operation of the roving stripper (35), the other group of the empty roving bobbins hung from the bobbin hangers (13) of the other bobbin carriage (11) which has been treated by the roving stripper (35) can be simultaneously subjected to the operation of the mis-bobbin treatment device (40).
8. An apparatus as defined by claim 5, wherein the chute of the mis-bobbins treatment device (40g) has a plurality of inlet openings in the upper portion of the chute (82a through 82d) for introduction of the normal empty bobbins, each corresponding to one normal empty bobbin supply source different from the other, and a selection mechanism for selectively connecting the normal empty bobbin supply source with the inlet opening, and a central control unit (Q) for selectively operating the selection mechanism when the bobbin carriage (11) waiting on a stand-by rail (10a through 10d) reaches the operative position of the mis-bobbins treatment device (40g) are provided.

9. An apparatus as defined by claim 1, wherein the mis-bobbins treatment device (40, N) is provided adjacent to and integrally with the roving stripper (35).

Patentansprüche

1. Vorrichtung zum Transport von Vorgarnrollen entlang einer Transportschiene, die zwischen einem Spinnverfahren und einem Vorgarnverfahren angeordnet ist, welche folgendes umfaßt: Spulenachschlitzen (11), die jeweils eine Vielzahl von Hängepulenvorrichtungen (13) aufweisen, um Vorgarnspulen hängend zu halten, und bewegbar von der Transportschiene getragen werden; eine Antriebsvorrichtung (18), um den Spulenachschlitzen (11) intermediierend zu verschieben; und einen Vorgarnabstreifer, der in der Mitte der Transportschiene (5) angeordnet ist, um restliches Vorgarn auf der Vorgarnspule zu beseitigen, dadurch gekennzeichnet, daß eine Behandlungsvorrichtung (40) für fehlerhafte Spulen in der Mitte der Transportschiene (5) zwischen dem Vorgarnabstreifer (35) und dem Vorgarnverfahren angeordnet ist, um eine fehlerhafte Spule, von welcher das restliche Vorgarn nicht vollständig durch den Vorgarnabstreifer (35) entfernt wurde, von der Hängepulenvorrichtung (13) zu entfernen und stattdessen eine normale, leere Spule auf die Hängepulenvorrichtung (13) aufzustocken, wobei die Behandlungsvorrichtung für fehlerhafte Spulen folgendes umfaßt:

 einen Detektor (42), der in der Mitte der Transportschiene (5) zwischen dem Vorgarnabstreifer (35) und dem Vorgarnverfahren angeordnet ist, um die Anwesenheit von restlichem Vorgarn auf der Vorgarnspule nach Behandlung der Vorgarnspule durch den Vorgarnabstreifer (35) zu erfassen und ein Signal, das einer fehlerhafte Spule anzeigt, abzugeben, eine Spulenentfernungsautomatik (43) zur Entnahme der fehlerhaften Spule von der Hängepulenvorrichtung (13) des Schlitzens, eine Spulenbefestigungsvorrichtung (44) zum Aufstecken der normalen, leeren Spule auf die Hängepulenvorrichtung (13), von der die fehlerhafte Spule entfernt wurde, bei welcher der Austausch der fehlerhaften Spule auf der Hängepulenvorrichtung (13) mit der normalen, leeren Spule durchgeführt wird durch das Zusammenwirken der Spulenentfernungsautomatik (43) und der Spulenbefestigungsvorrichtung (44), wenn das Signal für eine fehlerhafte Spule von dem Detektor abgegeben wird.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Spulenentfernungsautomatik (43) eine SpulenannahmeEinrichtung (56) mit einer Spulenfangvorrichtung (64) darauf, um die fehlerhafte Spule von der Hängepulenvorrichtung (13) zu entfernen und abzusenken und eine SpulenannahmeEinrichtung (57) zur Entnahme der von der SpulenannahmeEinrichtung (56) entfernten Spule umfaßt und die Spulenbefestigungsvorrichtung (44) eine SpulenannahmeEinrichtung (56) mit einer SpulenfangEinrichtung (64) zum Anheben und Befestigen der normalen, leeren Spule an der Hängepulenvorrichtung (13), von welcher die fehlerhafte Spule entfernt wurde, und eine Spulenzuführungsvorrichtung (77) umfaßt, um die normale, leere Spule der SpulenannahmeEinrichtung (56) zuzu führen, umfaßt.

3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die SpulenannahmeEinrichtung (56) einen Sockel (58), der ortsfest an dem Boden befestigt ist, auf dem die Vorrichtung aufgestellt ist, ein Paar fest mit dem Sockel (58) befestigter, vertikaler Pfosten (59), einen Anhebekörper (62), der auf den Säulen (59) angebracht ist und nach oben und unten bewegbar ist, einen Arm (65), der fest mit dem Anhebekörper (62) befestigt ist, während er die SpulenfangEinrichtung (64) in einer Stützform festhält und einen Anhebermechanismus (65 bis 69) umfaßt, um den Anhebekörper (62) entlang der Säulen (59) zu verschieben.

4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Spulenentnahmeverrichtung (57) in der Mitte des nach unten gerichteten Pfades des Anhebekörpers (62) vorgesehen ist und einen Spulenentnahmemechanismus (72) zum Entfernen der fehlerhaften Spule von dem Sicht (64) während der nach unten gerichteten Verschiebung und einen Kasten (71) zur Aufnahme der von dem Sicht (64) entfernten, fehlerhaften Spule umfaßt, wobei der Spulenentnahmemechanismus (72) mit einer Arbeitsplatte (76) versehen ist, die Öffnungen (76a) aufweist, welche den Durchgang des Sichtes (64) gestattet, aber den Durchgang der Spule verhindert.

5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Spulenzuführungsvorrichtung (77) einen Rahmen (78), der fest an dem Boden, auf dem die Vorrichtung aufgestellt ist, befestigt ist, einen fest auf dem Rahmen (78) angebrachten Tragkasten (79) und eine am Rahmen (78) fest angebrachte Rutsche (80, 82) mit einer Einlaßöffnung im oberen Teil (82) davon für die Einführung einer normalen, leeren Spule und eine Auslaßöffnung in dem
unteren Teil (80) davon, welche dem oberen Ende des Stifts (84) gegenüberliegt, wenn der letztere die unterste Stellung einnimmt, umfaßt, wobei die Rutsche (80, 82) in der Mitte davon mit einem Spulenhaltemechanismus (83) versehen ist, um die normalen, leeren Spule nacheinander zu der Auslaßöffnung zu befördern.

6. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Spuleanhebeeinrichtung (56e) einen Sockel (58e), der ortsfest am Boden befestigt ist, auf dem die Vorrichtung aufgestellt ist, ein Paar senkrechter Säulen (59e), die fest am Sockel (58e) befestigt sind, eine Anhebeeinrichtung (62e), die auf den Säulen (59e) angebracht und nach oben und unten bewegbar ist, ein seitlich bewegbares Element (52be), das auf dem Anhebekörper (62e) angebracht und in wagrechter Richtung bewegbar ist, während es den Stift (64e) fest darauf hält, Einrichtungen zum Führen des Elements (62be) zu einer Stellung, in der die fehlerhafte Spule von dem Stift (64) durch die Spuleentnahmevorrichtung (43e) während der nach unten gerichteten Verschiebung des Anhebekörpers (62e) aus einer ersten Stellung entfernt wird, zum Führen des Elements (62be) in die zweite Stellung und schließlich Führen des Elements (62be) direkt von der zweiten Stellung in die erste Stellung, wobei die erste Stellung eine ist, in der die Vorgarnspule zwischen der Hängespulenvorrichtung (13) des Spulenverschlusses (11) und dem Stift (64e) überführt wird, und die zweite Stellung eine ist, in der die normale leere Spule auf den Stift (64e) aufge- steckt wird, und einen Anhebeeinrichtung (65e bis 69e) für das Verschieben des Anhebekörpers (62e) entlang der Säulen (59e), umfaßt.

7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Vorrichtung weiterhin ein Paar Führungsschienen (120), die parallel zu den Transportschienen (9) auf dem Boden, auf dem die Vorrichtung angebracht ist, in eine Stellung zwischen dem Vorgarnabstreifer (35) und dem Vorgarnverfahren angeordnet ist, und einen Förderwagen (121), der entlang der Führungsschienen (120) hin- und herbewegbar ist, umfaßt, wobei die Behandlungsvorrichtung (40) für die fehlerhaften Spulen fest auf dem Förderwagen (121) angebracht ist, so daß, wenn eine Gruppe der leeren Vorgarnspulen, die von der Hängespulenvorrichtung (13) eines Spulenverschlusses (11) hängen, dem Beseitigungsarbeitsgang des Vorgarnabstreifers (35) unterzogen wird, die andere Gruppe der leeren Vorgarnspulen, die von der Hängespulenvorrichtung (13) des anderen Vorgarnschlusses (11) hängen, die von der Vorgarnabstreifer (35) behandelt wurden, gleichzeitig dem Arbeitsgang der Behandlungsvorrichtung (40) für fehlerhafte Spulen unterworfen werden können.

8. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Rutsche der Behandlungsvorrichtung (40g) für fehlerhafte Spulen eine Mehrzahl von Einlaßöffnungen im oberen Teil der Rutsche (82a bis 82d) für die Einführung der normalen, leeren Spulen, wobei jede einer Zuführungsquelle für normale, leere Spulen, die sich von einander unterscheiden, entspricht, aufweist, und ein Auswahlmechanismus für die selektive Verbindung der Zuführungsquelle für normale leere Spulen mit der Einlaßöffnung und eine zentrale Steuereinheit (Q) für das selektive Betreiben des Auswahlmechanismus, wenn der auf einer Reservecience (10a bis 10d) wartende Spulenverschluß (11) die Betriebsstellung der Behandlungsvorrichtung (40g) für die fehlerhaften Spulen erreicht, vorgesehen sind.

9. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Behandlungsvorrichtung (40, N) für fehlerhafte Spulen neben und einstößig mit der Vorgarnabstreifervorrichtung (35) vorgesehen ist.

Revendications

1. Un appareil pour transporter des bobines de préparation le long d'un rail de transport disposé entre un processus de filage et un processus de mèche, comprenant :
des chariots à bobines (11), chacun présentant une pluralité d'éléments de suspension (13) pour suspendre des bobines de préparation et étant supporté de façon mobile par le rail de transport ;
un dispositif d'entraînement (18) pour déplacer par intermittence le chariot à bobines (11) et un détacheur de mèche disposé au milieu du rail de transport (5) pour éliminer la mèche restante sur la bobine de préparation :
caractérisé en ce que
un dispositif (40) de traitement de bobines défectueuses est disposé au milieu du rail de transport (5) entre le détacheur de mèche (35) et le processus de mèche, pour enlever une bobine défectueuse de laquelle la mèche restante n'a pas été éliminée complètement par le détacheur de mèche (35) de l'élément de suspension de bobine (13) et, fournir à la place une bobine vide normale à l'élément de suspension de bobine (13) ;
le dispositif de traitement de bobine défectueuse comprenant :
un détecteur (42) disposé au milieu du rail de transport (5) entre le détacheur de mèche (35) et le processus de mèche, pour détecter une présence de la mèche restante sur la bobine de préparation après que la bobine de préparation ait été traitée par le détacheur de mèche (35) et délivrant un signal de bobine défectueuse ;
un dispositif d'enlèvement de bobine (43) pour retirer la bobine défectueuse de l'élément de suspension de bobine (13) du chariot ;
un dispositif de fixation de bobine (44) pour amener
la bobine vide normale à l'élément de suspension de bobine (13) duquel la bobine défectueuse a été enlevée ;
dans lequel le remplacement de la bobine défectueuse sur l'élément de suspension de bobine (13) par une bobine vide normale est exécuté avec la coopération du dispositif d'enlèvement de bobine (43) et du dispositif de fixation de bobine (44) lorsque le signal de bobine défectueuse est délivré par le détecteur (42).

2. Un appareil selon la revendication 1, dans lequel le dispositif d'enlèvement de bobine (43) comporte un élévateur de bobine (56) avec un élément de prémécanisme de bobine (64) sur lui pour enlever et abaisser la bobine défectueuse de l'élément de suspension de bobine (13) et un dispositif de retrait de bobine (57) pour retirer les bobines défectueuses enlevées de l'élévateur de bobines (55) ; et le dispositif de fixation de bobine (44) comporte un élévateur de bobine (56) avec un élément de prémécanisme de bobine (64) pour soulever et ajuster la bobine normalement vide à l'élément de suspension de bobine (13) duquel la bobine défectueuse a été enlevée et un dispositif d'alimentation de bobine (77) pour amener la bobine vide normale à l'élévateur de bobine (56).

3. Un appareil selon la revendication 2, dans lequel l'élévateur de bobine (56) comporte une base (50) fixée au sol sur lequel l'appareil est installé ; une paire de pièces verticales (59) fixées sur la base (58) d'un corps élévateur (62) fixé sur la base (58) du corps d élévateur (62) tout en tenant fixement l'élément de prémécanisme de bobine (64) en forme de cheville ; et un mécanisme élévateur (65 à 69) pour déplacer le corps élévateur (62) le long du piler (59).

4. Un appareil selon la revendication 2, dans lequel le dispositif de retrait de bobine (57) est au milieu de la trajectoire descendante du corps élévateur (62) et comporte un mécanisme de retrait de bobine (72) pour enlever les bobines défectueuses de la cheville (64) pendant son déplacement vers le bas et une boîte (71) pour recevoir la bobine défectueuse enlevée de la cheville (64) ; le mécanisme de retrait de bobine (72) étant muni d'une plaque active (76) présentant une ouverture (76a) qui permet le passage de la cheville (64) mais empêche le passage de la bobine.

5. Un appareil selon la revendication 1, dans lequel le dispositif d'alimentation de bobine (77) comporte un bâti (78) fixé au sol sur lequel l'appareil est installé ; une boîte de support (79) fixée sur le bâti (78) et une glissière (80, 82) fixée sur le bâti (78) présentant une ouverture d'entrée dans sa partie supérieure pour l'introduction de la bobine vide normale et une ouverture de sortie dans sa partie inférieure (80) qui est en face du sommet de la cheville (64) lorsque cette dernière occupe la position la plus basse ; la glissière (80, 82) étant munie en son milieu d'un mécanisme d'arrêt de bobine (83) pour délivrer les bobines vides normales une par une à l'ouverture de sortie.

6. Appareil selon la revendication 2, dans lequel l'élévateur de bobines (56e) comporte une base (56e) fixée au sol sur lequel l'appareil est installé ; une paire de piliers verticaux (59e) fixés sur la base (58e) ; un corps élévateur (62e) monté sur les piliers (59e) et mobile de haut en bas ; un organe (62be) mobile latéralement monté sur le corps élévateur (62e) et mobile horizontalement dans le chevêtre (64e) fixée sur lui ; des moyens pour guider l'organe (62be) vers une position dans laquelle la bobine défectueuse est enlevée de la cheville (64) par le dispositif de retrait de bobine (43e) pendant la descente du corps élévateur (62e) depuis une première position, puis guidant l'organe (62be) vers une seconde position et guidant finalement l'organe (62be) directement de la seconde à la première position, la première position étant celle dans laquelle la bobine de préparation est transférée entre l'élément de suspension de bobine (13) du chariot de bobine (11) et la cheville (64e) et la seconde position étant celle dans laquelle la bobine vide normale est fournie à la cheville (64e) ; et un mécanisme élévateur (65e à 69e) pour déplacer le corps élévateur (62e) le long des piliers (59e).

7. Un appareil selon la revendication 1, dans lequel cet appareil comporte en plus une paire de rails de guidage (120) disposées parallèlement aux rails de transport (5) sur le sol sur lequel l'appareil est installé à une position intermédiaire entre le détacheur de mèche (35) et le processus de mèche ; et un chariot (121) mobile selon deux directions le long des rails de guidage (120) ; le dispositif de traitement de bobines défectueuses étant fixé au chariot (121) de sorte que lorsqu'un groupe de bobines de préparation vides suspendu aux éléments de suspension de bobines (13) d'un chariot de bobines (11) est soumis à l'opération d'élimination du détacheur de mèche (35), l'autre groupe de bobines de préparation vides suspendu aux éléments de suspension de bobines (13) de l'autre chariot de bobines (11) qui a été traité par le détacheur de bobines (35) peut être soumis simultanément à l'opération du dispositif de traitement de bobines défectueuses (40).

8. Un appareil selon la revendication 5, dans lequel la glissière du dispositif de traitement de bobines défectueuses (40g) présente une pluralité d'ouvertures d'entrée dans la partie supérieure de la glissière (82a à 82d) pour l'introduction de bobines vides normales, chacune correspondant à une source d'alimentation en bobines vides normales différente de l'autre, et comprenant un mécanisme de sélection pour connecter sélectivement la source d'alimentation en bobines vides normales avec l'ouverture d'entrée, et un poste de commande central (82) pour faire fonctionner sélectivement le mécanisme de sélection lorsque le chariot de bobines (11) attendant sur un rail de garage (10a à 10d) atteint la position.
opérante du dispositif de traitement de bobines (40g).
9. Un appareil selon la revendication 1, dans lequel le dispositif de traitement de bobines défectueuses (40, N) est adjacent et venu d'une pièce avec le détacheur de mèches (35).