EUROPÄISCHE PATENTSCHRIFT

Veröffentlichungstag der Patentschrift: 30.12.92
Anmeldenummer: 88110849.2
Anmeldetag: 07.07.88

Verfahren zum Aufbereiten eines geschnittenen Mähguteppichs sowie Walzenaufbereiter zur Durchführung dieses Verfahrens.

Priorität: 21.07.87 DE 3724039
Veröffentlichungstag der Anmeldung: 25.01.89 Patentblatt 89/04
Bekanntmachung des Hinweises auf die Patenterteilung: 30.12.92 Patentblatt 92/53
Benannte Vertragsstaaten: CH DE FR GB LI NL
Entgegenhaltungen:
- DD-A- 115 018
- DE-A- 2 023 274
- DE-U- 2 225 675
- DE-U- 6 603 594
- GB-A- 2 056 835

Patentinhaber: Friedrich Mörtl Schleppergerätebau GmbH & Co. KG
Kesslerstrasse 2
W-8780 Gemünden(DE)

Erfinder: Grenzebach, Hans
Spessartweg 29
W-8780 Gemünden/Main(DE)

Vertreter: Rehberg, Elmar, Dipl.-Ing.
Postfach 3162 Am Kirschberge 22
W-3400 Göttingen(DE)

Beschreibung

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und einen Walzenaufbereiter der eingangs beschriebenen Art so weiterzubilden, daß
die halm- und stengelartigen Bestandteile des Mähgutteppichs nicht nur geknickt und gequetscht, sondern auch aufgerieben bzw. aufgesetzt werden.

Wenn die unterschiedlichen Umfangsgeschwindigkeiten sich von Bearbeitungsspalt zu Bearbeitungsspalt alternierend ändern, sind nur zwei Paare unterschiedlicher Umfangsgeschwindigkeiten vorgesehen, die abwechselnd angreifen.

Die in jedem Bearbeitungsspalt auftretenden unterschiedlichen Umfangsgeschwindigkeiten können etwa im Verhältnis von 1:2 bis 1:4 stehen. Es handelt sich also nicht um zufällig auftretende, geringfügige Unterschiede in der Umfangsgeschwindigkeit, sondern der Unterschied nimmt ein erhebliches Ausmaß an, um ganz gezielt die Auf- schlußwirkung zu erreichen. Es ist auch möglich, die Walzen mit gleicher oder auch unterschiedlicher Drehzahl anzu treiben.

Der Walzenaufbereiter der eingangs beschriebenen Art kennzeichnet sich erfindungsgemäß dadurch, daß die leistenartige Vorsprünge und Vertiefungen auf dem Umfang der beiden einander zugeordneten Walzen so verteilt angeordnet und die Walzen angetrieben sind, daß sich unterschiedliche Umfangsgeschwindigkeiten in den Bearbeitungsspalten ergeben, und daß die Vorsprünge und Vertiefungen aus Metall bestehen. Damit wird gleichsam der Querschnitt des Mähgutteppichs in der jeweiligen Oberfläche unterschiedlich beaufschlagt und bewegt, wobei schiebende und ziehende Kraftkomponenten auftreten, die in Verbindung mit der Reibbewirkung der einzelnen Bestandteile des Mähgutteppichs an eine zu dem gewünschten Aufschluß des Mähguts führen, ohne daß kleinblättige Bestandteile abgeschlagen und/o der Mähgutteppich in nachteiliger Weise stark verdichtet wird. Die leistenartigen Vorsprünge und auch die Vertiefungen bestehen aus Metall. Dies vereinfacht nicht nur die Fertigung, sondern erbringt auch den zusätzlichen Vorteil, daß Metall im Vergleich zu Gummibefüllung weniger verschleißanfällig ist. Die Vorsprünge und die Vertiefungen lassen sich jeweils leicht an den Walzen ausbilden. Es ist aber auch möglich, lediglich Vorsprünge auf einen z. B. runden Querschnitt aufweisenden Walzenkörper aufzubringen, beispielsweise zu schrauben oder zu schweißen, wobei dann die Vertiefungen gleichsam automatisch zwischen den Vorsprüngen entstehen. Die Anzahl der Vorsprünge und Vertiefungen auf den beiden Walzen, die Wal-
zendurchmesser und die Drehzahlen der beiden Walzen müssen aufeinander abgestimmt sein, und zwar derart, daß trotz unterschiedlicher Umfangsgeschwindigkeiten die Bearbeitungsspalte immer wieder gebildet werden. Dabei greifen die Vorsprüinge und Vertiefungen auf der Oberfläche der beiden Walzen ineinander. Es müssen die Drehzahlen und die Durchmesser der leistenartigen Vorsprüinge auf den Walzen relativ zu den Vertiefungen so abgestimmt sein, daß trotz der notwendigen unterschiedlichen Umfangsgeschwindigkeiten die leistenartigen Vorsprüinge nicht aneinandergeschlagen, sondern sich jeweils relativ zu den Vertiefungen durch diese hindurch bewegen. Da die leistenartigen Vorsprüinge und die Vertiefungen über die Arbeitsbreite durchgehend vorgesehen sind, wird der gesamte Mähhutteppich auch über die Arbeitsbreite gesehen durchgehend bearbeitet, etwa im Gegensatz zu einem punktförmigen Hineinstechen in den Mähhutteppich, wie dies im Stand der Technik beschrieben wurde.

Die Realisierung des Walzenaufbereiters kann im wesentlichen auf zwei Arten geschehen, aber auch Kombinationen sind möglich. Die Walzen können gleiche oder ungleiche Durchmesser aufweisen. Sie müssen ggf. mit unterschiedlichen Drehzahlen angetrieben werden, um die unterschiedlichen Umfangsgeschwindigkeiten zu erzielen oder es müssen unterschiedliche wirksame Durchmesser vorgesehen sein. Bei diesen beiden Ausführungsformen ergibt sich der weitere Vorteil, daß die Bauhöhe noch etwas kleiner gestaltet werden kann als im Stand der Technik.

Die Vorsprüinge und Vertiefungen können auch in die Oberfläche der Walzen integriert sein, wobei die Walzen somit unrunder Querschnitt aufweisen. Weiterhin ist es möglich, nicht nur zwei Walzen zur Bildung von Bearbeitungsspalten einander zuzuordnen, sondern beispielsweise auch eine dritte Walze der ersten Walze zuzuordnen, um somit insgesamt unter Verwendung von drei Walzen die Anzahl der Bearbeitungsspalte zu verdoppeln. Einen ruhigen Lauf der Walzen gegeneinander erreicht man dann, wenn die Vorsprüinge und Vertiefungen spiralförmig zueinander über die Oberfläche der Walzen verteilt angeordnet werden, so daß der Angriff der Bearbeitungsspalte am Mähhut zu keiner Zeit verlorengeht. Die Vorsprüinge und Vertiefungen können mit entsprechend ihren jeweils unterschiedlichen Umfangsgeschwindigkeiten unterschiedlichen Spiralwinkeln auf der Oberfläche der Walzen vorgesehen sein. Diese unterschiedlichen Winkel müssen dann eingehalten werden, wenn ein Eingriff der Vorsprüinge in Vertiefungen erfolgt. Die Walzen können auch so stark gegeneinander angestellt sein, daß sie bei leerlaufenden Walzen sich nahezu oder tatsächlich berühren. Es versteht sich, daß eine der beiden Walzen gegen Federdruck ausweichbar gelagert ist und ansonsten die Begrenzung der Anstellung über verstellbare Anschläge realisiert werden kann.

Die beiden einander zugeordneten Walzen können eine unterschiedliche Anzahl von Vorsprüngen aufweisen und das Verhältnis der Anzahlen der Vorsprüinge der beiden Walzen entspricht dem umgekehrten Drehzahlerhältnis der beiden Walzen zueinander.

Die Erfindung wird anhand verschiedener Ausführungsbeispiele weiter erläutert und beschrieben. Es zeigt:

- Figur 1 eine Frontansicht des Walzenaufbereiters mit einem Scheibenmähwerk,
- Figur 2 eine Darstellung des Antriebs für die beiden Walzen,
- Figur 3 eine erste Ausführungsform der beiden Walzen,
- Figur 4 eine Schnittdarstellung des Mähhutteppichs im Bearbeitungsspalt,
- Figur 5 eine weitere Ausführungsform unter Einsatz von Walzen unterschiedlicher Durchmesser und
- Figur 6 eine weitere Realisierungsmöglichkeit.

Der in Figur 1 mit seinen für das Verständnis der Erfindung notwendigen Teilen dargestellte Walzenaufbereiter weist einen Rahmen 1 auf, zwischen dessen Seitenteilen 2, 3 eine erste Walze 4 und eine zweite Walze 5 drehbar gelagert sind. Die untere Walze 4 ist in ortsfester Lage in in den Seitenteilen 2, 3 angeordneten Lagern 6, 7 drehbar gelagert, während der oberen Walze 5 zugeordnete Lager 8, 9 in Richtung auf die festen Lager 6, 7 verschiebbar geführt sind. Zur Begrenzung der Verschiebarkeit sind Anschläge 10 auf beiden Seiten bzw. im Bereich beider Seitenteile 2, 3 vorgesehen. Aus Übersichtlichkeitsgründen ist nur der Anschlag 10 im Bereich des Seitenteils 2 dargestellt. Weiterhin sind Federn 11 vorgesehen, die ebenfalls nur im Bereich der Seitenteile 2 dargestellt sind, aber auch im Bereich des Seitenteils 3 angeordnet sind. Diese Federn 11 sind vorzugsweise über eine entsprechende Schwingenkonstruktion als Zugfedern belastet und ziehen die obere Walze 5 nach unten gegen die Anschläge 10, die entsprechend ver- und einstellbar sind.

Die beiden Walzen 4 und 5 werden gegensinnig angetrieben und bilden so zwischen sich einen Durchzugsspalt 12 für einen Mähhutteppich. Beide Walzen 4, 5 sind auf ihrer Oberfläche mit leistenartigen Vorsprüngen 13 bzw. 14 versehen, die zwischen sich Vertiefungen 15 und 16 freilassen bzw. bilden. Die Vertiefungen 15 und 16 können auch entsprechend der Anordnung der Vorsprüinge 13 und 14 aus körperlich ausgebildeten Vertiefungen in die Oberfläche der Walzen 3 und 4 eingearbeitet sein, wie dies Figur 5 verdeutlicht. Die Vorsprüinge

Die Figuren 3, 5 und 6 zeigen verschiedene Realisierungsmöglichkeiten des Walzenaufbereiters in stark schematisierter Form:

In all diesen Figuren sind der Einfachheit halber die Walzen 4 und 5 übereinander dargestellt, d. h. die Achsen dieser Walzen liegen in einer Vertikalebene. Tatsächlich wird man es bei einem ausgeführten Walzenaufbereiter vorziehen, die Achse der Oberen Walze 5 in Arbeitssicht nach vorn zu verlagern, wie dies anhand der Darstellung der Zahnräder 18 und 19 in Figur 2 ersichtlich ist. Dabei ist die Arbeitssicht, also die Fahrrichtung des Walzenaufbereiters, durch einen Pfle 28 angezeigt.

Bei dem Ausführungsbeispiel der Figur 3 besitzen die Walzen 4 und 5 gleiche Durchmesser und sie sind auch mit gleichen leistenartigen Vorsprüngen 13 und 14 versehen. In der einfachsten Form können die Vorsprünge 13 und 14 als Rundstäbe aus Metall ausgebildet sein, die auf die Oberfläche der Walzen 4 und 5 aufgeschräubt sind. Die Anordnung der Vorsprünge 13 und 14 kann gerade, also achsparallel, oder auch wendelförmig sein, wie dies anhand von Figur 1 verdeutlicht wurde. Die Walze 4 weist hier auf den Umfang gleichmäßig verteilt sechs Vorsprünge 13 auf, während die Walze 5 nur zwei solcher Vorsprünge 14 besitzt. Durch die unterschiedlichen Umdrehungszahlen gemäß den verschiedenen langen Pfeilen sollen hier unterschiedliche Drehzahlen im Verhältnis von 3:1 verdeutlicht werden, d. h. die Walze 5 wird dreimal so schnell angetrieben wie die Walze 4. Dabei sind die beiden Walzen 4 und 5 durch den Antrieb so miteinander gekoppelt, daß die eine Leiste 14 der Walze 5 in eine Vertiefung 15 der Walze 4 trifft und dort der Bearbeitungssattel 22 gebildet wird. Wenn die Walze 4 um 1/6 weitergedreht hat und die Walze 5 somit eine halbe Umdrehung gemacht hat, greift der andere Vorsprung 14 in die nächstfolgende Vertiefung 15 der Walze 4 ein und bildet dort wiederum einen Bearbeitungssattel 22 usw. Bei diesem Ausführungsbeispiel wird also der Bearbeitungssattel 22 immer zwischen einem Vorsprung 14 und einer Vertiefung 15 gebildet. Es versteht sich, daß zwischen diesen aufgezeigten Bearbeitungsspal ten 22 jeweils nochmals ein Bearbeitungssattel
22 auftritt, der im Zusammenwirken eines Vorsprungs 13 an der Walze 4 mit einer Vertiefung 16
der Walze 5 gebildet ist. Zwei aufeinanderfolgende Bearingungsspalte weisen deshalb Durchmesser-
unterschiede gegeneinander auf, so daß die jeweils an dem Mähgutteppich 23 angreifenden Umfangs-
geschwindigkeiten alternierend schwanken. Dies bedeutet, daß der Bearingungsspalte örtlich in ra-
dierer Richtung von den Walzen aus gesehen wande-
ert. Wichtig ist vor allen Dingen, daß die Um-
fangsgeschwindigkeiten im Bearingungsspalte von
ihren absoluten Größe her gesehen gegeneinander
einen nennenswerten Unterschied aufweisen, wie
dies anhand von Figur 4 verdeutlicht ist.

Das Ausführungsbeispiel der Figur 5 zeigt eine Möglichkeit, bei der die beiden Walzen 4 und 5
durch verschiedene Durchmesser aufweisen. Auch
hierbei ist durch unterschiedliche Drehzahlen, die
im Verhältnis von 4:1 stehen, auf die Einwirkung
durch die unterschiedlicher Umfangsgeschwindigkeiten am
Mähgutteppich geachtet. Die Walze 4 besitzt vier
leistenförmige Vorsprünge 13 und vier in den Um-
fang der Walze 4 eingearbeitete Vertiefungen 15,
bei der die Walze 5 nur einen Vorsprung 14 auf-
weist, der eine größere radiale Erstreckung als die
Vorsprünge 13 besitzt und der mit den Vertiefun-
gen 15 zusammenarbeitet. Auf diese Art und Weise
werden zwei unterschiedliche Bearingungsspalte
22 gebildet, und zwar ein erster Bearingungsspalte
zwischen dem Vorsprung 14 und jeder Vertiefung
15 und eine zweite Art von Bearingungsspalte 22
zwischen der Oberfläche der Walze 5 und den
Vorsprüngen 13 der Walze 4.

Wenn die Walzen, wie am Beispiel der Figuren
3 und 5 dargestellt, mit ihren Vorsprüngen inein-
dergreifen, ist ein bestimmtes Verhältnis der Dreh-
zahlen zueinander erforderlich, damit die jeweilige
Relativlage der Teile zueinander immer wieder er-
reicht bzw. eingehalten wird. Dabei muß die Ausbil-
dung der Vorsprüinge 13 und 14 so getroffen sein,
daß diese immer wieder in die Vertiefungen 15 und
16 eingreifen bzw. aus diesen Vertiefungen wieder
austreten können.

Die Realisierung ist nicht nur auf die Anwen-
dung der dargestellten Anzahl von Vorsprüngen
13 und 14 beschränkt.

Die Form der leistenartigen Vorsprüinge 13
und 14 kann rund oder kantig ausgebildet sein.

Bei der Ausführungsform gemäß Figur 6 sind
die Durchmesser der Walzen 4 und 5 gleich. Es
finden unterschiedliche Drehzahlen Anwendung.
Auf der Oberfläche der Walzen 4 und 5 sind zwei
unterschiedliche Arten von Vorsprüngen 13 und 13'
vorgesehen. Die Walze 5 besitzt unterschiedlich
hohe Vorsprünge 14 und 14'. Auch auf diese Art
und Weise können Bearingungsspalte 22 gebildet
werden.

Ein solcher Walzenaufbereiter, wie an den vor-
schiedenen Beispielen erläutert, kann als getrennte
Maschine realisiert werden. Es ist aber auch mög-
lisch, ihn zusammen mit einem Mähwerk 29 einzu-
setzen, welches gemäß Figur 1 in Arbeitsrichtung
vorangrang angeordnet wird. Dieses Mähwerk be-
sitzt dann beispielsweise einen Mähbalken 30, auf
dem die einzelnen Mähteiler 31 gelagert sind, wobei
Antrieb der Mähteiler 31, eine Zahnradfolge o.
dgl., in den Mähbalken 30 untergebracht ist.
Auch hier ist aus Übersichtlichkeitsgründen dieser
Antrieb nicht weiter dargestellt. Man erkennt an-
hand von Figur 1, daß die Arbeitsbreite des Mäh-
werks größer ist als die Arbeitsbreite der Walzen 4
und 5. Dies ist darauf zurückzuführen, daß die
äußeren Mähteiler 31 mit Förderwerkzeugen be-
setzt sein können, die den abgängen Mähgut-
teppich in horizontaler Richtung zusammenführen,
so daß die Walzen 4 und 5 nur noch eine entspre-
chend verkleinerte Länge und damit Arbeitsbreite
besitzen müssen, um den auf einmal abgängen
Mähgutteppich zu bearbeiten.

Bezugszeichenliste:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rahmen</td>
</tr>
<tr>
<td>2</td>
<td>Seitenteil</td>
</tr>
<tr>
<td>3</td>
<td>Seitenteil</td>
</tr>
<tr>
<td>4</td>
<td>Walze</td>
</tr>
<tr>
<td>5</td>
<td>Walze</td>
</tr>
<tr>
<td>6</td>
<td>Lager</td>
</tr>
<tr>
<td>7</td>
<td>Lager</td>
</tr>
<tr>
<td>8</td>
<td>Lager</td>
</tr>
<tr>
<td>9</td>
<td>Lager</td>
</tr>
<tr>
<td>10</td>
<td>Anschlag</td>
</tr>
<tr>
<td>11</td>
<td>Feder</td>
</tr>
<tr>
<td>12</td>
<td>Durchzugsspalte</td>
</tr>
<tr>
<td>13</td>
<td>Vorsprung</td>
</tr>
<tr>
<td>14</td>
<td>Vorsprung</td>
</tr>
<tr>
<td>15</td>
<td>Vertiefung</td>
</tr>
<tr>
<td>16</td>
<td>Vertiefung</td>
</tr>
<tr>
<td>17</td>
<td>Antriebsrad</td>
</tr>
<tr>
<td>18</td>
<td>Zahnrad</td>
</tr>
<tr>
<td>19</td>
<td>Zahnrad</td>
</tr>
<tr>
<td>20</td>
<td>Kette</td>
</tr>
<tr>
<td>21</td>
<td>Rad</td>
</tr>
<tr>
<td>22</td>
<td>Bearingungsspalte</td>
</tr>
<tr>
<td>23</td>
<td>Mähgutteppich</td>
</tr>
<tr>
<td>24</td>
<td>Oberfläche</td>
</tr>
<tr>
<td>25</td>
<td>Pfeil</td>
</tr>
<tr>
<td>26</td>
<td>Oberfläche</td>
</tr>
<tr>
<td>27</td>
<td>Pfeil</td>
</tr>
<tr>
<td>28</td>
<td>Pfeil</td>
</tr>
<tr>
<td>29</td>
<td>Mähwerk</td>
</tr>
<tr>
<td>30</td>
<td>Mähbalken</td>
</tr>
<tr>
<td>31</td>
<td>Mähteiler</td>
</tr>
</tbody>
</table>

Patentansprüche
1. Verfahren zum Aufbereiten eines geschnittenen Mähgutteppichs (23), der durch zwei gegenüberliegenden, beindustrierten, im festen Drehzahlverhältnis zueinander und gegensinnig angetriebenen Walzen (4, 5) gebildeten Durchzugsspalte (12) geführt und dabei unter Angriff an einer Ober- und Unterseite (24, 26) geknipkt und gegürtelt wird, wobei eine Mehrzahl Bearbeitungsspalte (22) zwischen auf den zylindrischen Walzenoberflächen sich über die Arbeitsbreite erstreckenden, während der Rotation miteinander im Eingriff stehenden Vorsprüngen (13, 14) und Vertiefungen (15, 16) gebildet und diese Bearbeitungsspalte periodisch unterbrochen werden, dadurch gekennzeichnet, daß die Vorsprünge (13, 14) und die Vertiefungen (15, 16) an den Walzen (4, 5) an der Ober- und Unterseite (24, 26) des Mähgutteppichs (23) mit unterschiedlichen Umfangsgeschwindigkeiten (25, 27) angreifen, wobei sich unterschiedlichen Umfangsgeschwindigkeiten (25, 27) jeweils nach der periodischen Unterbrechung jedes Bearbeitungsspalts (22) ändern.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die unterschiedlichen Umfangsgeschwindigkeiten (25, 27) sich von Bearbeitungsspalte zu Bearbeitungsspalte alternierend ändern.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die in jedem Bearbeitungsspalte (22) auftretenden unterschiedlichen Umfangsgeschwindigkeiten (25, 27) etwa im Verhältnis von 1:2 bis 1:4 stehen.

4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Walzen (4, 5) mit gleicher oder auch unterschiedlicher Drehzahl angetrieben werden.

5. Walzenaufbereiter für einen geschnittenen Mähgutteppich zur Durchführung des Verfahrens nach Anspruch 1 oder 2, mit mindestens zwei gegensinnig umlaufenden, im festen Drehzahlverhältnis zueinander angetriebenen Walzen (4, 5), die auf ihren Oberflächen einander zugeordnete, sich über die Arbeitsbreite erstreckende, ineinandergreifende leistenartige Vorsprünge (13, 14) und Vertiefungen (15, 16) aufweisen, die jeweils einen Bearbeitungsspalte (22) für den Mähgutteppich (23) bilden, dadurch gekennzeichnet, daß die leistenartigen Vorsprünge (13, 14, 13', 14') und Vertiefungen (15, 16) auf dem Umfang der beiden einander zugeordneten Walzen (4, 5) so vorteilt angeordnet und die Walzen (4, 5) so angetrieben sind, daß sich unterschiedliche Umfangsgeschwindigkeiten in den Bearbeitungsspalten (22) ergeben, und daß die Vorsprünge und Vertiefungen aus Metall bestehen.

6. Walzenaufbereiter nach Anspruch 5, dadurch gekennzeichnet, daß die Walzen (4, 5) gleiche oder ungleiche Durchmesser aufweisen.

7. Walzenaufbereiter nach Anspruch 5 und/oder 6, dadurch gekennzeichnet, daß die Vorsprünge (13, 14, 13', 14') und Vertiefungen (15, 16) in die Oberfläche der Walzen (4, 5) integriert sind und die Walzen somit unrund Querschnitt aufweisen.

8. Walzenaufbereiter nach einem oder mehreren der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Vorsprünge (13, 14, 13', 14') und Vertiefungen (15, 16) mit entsprechend ihren jeweils unterschiedlich Umfangsgeschwindigkeiten (25, 27) unterschiedlichen Spiralwindkeln auf der Oberfläche der Walzen (4, 5) vorgesehen sind.

9. Walzenaufbereiter nach einem oder mehreren der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß die beiden einander zugeordneten Walzen (4, 5) eine unterschiedliche Anzahl von Vorsprüngen aufweisen, und daß das Verhältnis der Anzahlen der Vorsprünge der beiden Walzen dem umgekehrten Drehzahlverhältnis der beiden Walzen zueinander entspricht.

Claims

1. Process for preparing a cut mowing crop mat (23), which is passed through a passage gap (12) formed by two spaced, oppositely situated rollers (4, 5) driven in a fixed rotational speed ratio to one another and in opposite directions and is snapped and squeezed therein by action on its upper and lower sides (24, 26), a plurality of processing gaps (22) being formed between projections (13, 14) and depressions (15, 16) extending over the working width on the cylindrical roller surfaces and engaging with one another during the rotation, and these processing gaps being periodically interrupted, characterised in that the projections (13, 14) and the depressions (15, 16) on the rollers (4, 5) act at different peripheral speeds (25, 27) on the upper and lower sides (24, 26) of the mowing crop mat (23), different peripheral speeds (25, 27) varying in each case in accordance with the periodic interruption of each processing gap (22).
2. Process according to Claim 1, characterised in that the different peripheral speeds (25, 27) vary alternately from one processing gap to the next.

3. Process according to Claim 1, characterised in that the different peripheral speeds (25, 27) occurring in each processing gap (22) are approximately in the ratio of from 1:2 to 1:4.

4. Process according to Claims 1 to 3, characterised in that the rollers (4, 5) are driven at the same or else at different rotational speeds.

5. Roller preparation machine for a cut mowing crop mat for carrying out the process according to Claim 1 or 2, comprising at least two rollers (4, 5) which rotate in opposite directions and are driven in a fixed rotational speed ratio to one another and which have on their surfaces interengaging strip-like projections (13, 14) and depressions (15, 16) which coact with one another and extend over the working width and which in each case form a processing gap (22) for the mowing crop mat (23), characterised in that the strip-like projections (13, 14, 13', 14') and depressions (15, 16) on the periphery of the two rollers (4, 5) coacting with one another are distributed in such a manner and the rollers (4, 5) are driven such that different peripheral speeds are produced in the processing gaps (22), and in that the projections and depressions are composed of metal.

6. Roller preparation machine according to Claim 5, characterised in that the rollers (4, 5) have equal or unequal diameters.

7. Roller preparation machine according to Claim 5 and/or 6, characterised in that the projections (13, 14, 13', 14') and depressions (15, 16) are integrated into the surfaces of the rollers (4, 5) and the rollers thus have a noncircular cross-section.

8. Roller preparation machine according to one or more of Claims 5 to 7, characterised in that the projections (13, 14, 13', 14') and depressions (15, 16) are provided on the surfaces of the rollers (4, 5) with different spiral angles in accordance with their individual different peripheral speeds (25, 27).

9. Roller preparation machine according to one or more of Claims 5 to 8, characterised in that the two rollers (4, 5) coacting with one another have different numbers of projections, and in that the ratio of the numbers of projections on the two rollers corresponds to the inverse rotational speed ratio of the two rollers to one another.

Revendications

1. Procédé de conditionnement d’un tapis de fourrage coupé (23) guidé dans une fente de passage (12) formée par deux rouleaux (4, 5) opposés et espacés, entraînés dans des sens opposés avec un rapport fixe entre leurs vitesses de rotation, ce tapis (23) étant plié et serré par une action sur ses faces supérieure et inférieure (24, 26), tandis qu’une pluralité de fentes de travail (22) sont formées entre des saillants (13, 14) et des creux (15, 16) s’étendant sur les surfaces cylindriques des rouleaux dans le sens de la largeur de travail et engrenant entre eux au cours de la rotation, ces fentes de travail étant périodiquement interrompues, caractérisé en ce que les saillants (13, 14) et les creux (15, 16) sur les rouleaux (4, 5) agissent avec des vitesses périphériques différentes (25, 27) sur les faces supérieure et inférieure (24, 26) du tapis de fourrage (23), tandis que les vitesses périphériques différentes (25, 27) varient chaque fois selon l’interruption périodique de chaque fente de conditionnement (22).

2. Procédé selon la revendication 1, caractérisé en ce que les vitesses périphériques différentes (25, 27) varient alternativement d’une fente de travail à l’autre.

3. Procédé selon la revendication 1, caractérisé en ce que les vitesses périphériques différentes (25, 27) apparaissant dans chaque fente de travail (22) sont dans un rapport d’environ 1:2 à 1:4.

4. Procédé selon les revendications 1 à 3, caractérisé en ce que les rouleaux (4, 5) sont entraînés à des vitesses de rotation égales ou différentes.

5. Conditionneur à rouleaux pour un tapis de fourrage coupé, pour la mise en œuvre du procédé selon la revendication 1 ou 2, avec au moins deux rouleaux (4, 5) tournant dans des sens opposés, entraînés à des vitesses de rotation ayant entre elles un rapport fixe, présentant sur leurs surfaces des saillants (13, 14) en forme de lattes et des creux (15, 16) associés entre eux, ces éléments s’étendant sur la largeur de travail et engrenant entre eux en formant chaque fois une fente de conditionne-
ment (22) pour le tapis de fourrage (23), caractérisé en ce que les saillants (13, 14, 13', 14') en forme de lattes et les creux (15, 16) sont répartis sur la périphérie des deux rouleaux (4, 5) associés entre eux et les rouleaux (4, 5) sont entraînés de telle sorte qu'il en résulte des vitesses périphériques différentes dans les fentes de conditionnement (22), et en ce que les saillants et les creux sont en métal.

6. Conditionneur à rouleaux selon la revendication 5, caractérisé en ce que les rouleaux (4, 5) présentent des diamètres égaux ou différents.

7. Conditionneur à rouleaux selon les revendications 5 et/ou 6, caractérisé en ce que les saillants (13, 14, 13', 14') et les creux (15, 16) sont intégrés à la surface des rouleaux (4, 5) et que, de ce fait, les rouleaux présentent une section non ronde.

8. Conditionneur à rouleaux selon une ou plusieurs des revendications 5 à 7, caractérisé en ce que les saillants (13, 14, 13', 14') et les creux (15, 16) sont prévus sur la surface des rouleaux (4, 5) avec des angles d'hélice différents correspondant à leurs vitesses périphériques (25, 27) chaque fois différentes.

9. Conditionneur à rouleaux selon une ou plusieurs des revendications 5 à 8, caractérisé en ce que les deux rouleaux (4, 5) associés l'un à l'autre présentent un nombre différent de saillants, et en ce que le rapport des nombres de saillants des deux rouleaux correspond à l'inverse du rapport entre les vitesses de rotation des deux rouleaux, l'un par rapport à l'autre.