EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 21.10.92

Application number: 88110529.0

Date of filing: 01.07.88

Spray washer.

Priority: 16.07.87 CA 542321

Date of publication of application:
25.01.89 Bulletin 89/04

Publication of the grant of the patent:
21.10.92 Bulletin 92/43

Designated Contracting States:
DE FR GB IT SE

References cited:
EP-A- 0 064 959
US-A- 2 745 418
US-A- 3 422 826
US-A- 4 025 363

Proprietor: UNI-RAM CORPORATION
470 Denison Street
Markham Ontario L3R 1B9(CA)

Inventor: Yamamoto, Soichiro
100 Ferrier Street
Markham Ontario L3R 2Z5(CA)

Representative: UEXKÜLL & STOLBERG Paten-
tanwälte
Beselerstrasse 4
W-2000 Hamburg 52(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

This invention relates to a method and apparatus for automatic cleaning of spray gun assemblies and their component parts.

Paint workshops employ spray gun assemblies for painting of products, particularly in the automobile industry. Syphon spray guns are usually employed for small jobs requiring a small amount of paint, whereas pressure spray guns are usually employed for larger jobs. By means of such spray guns, products can be painted rapidly. After a particular job using a particular paint, the gun assemblies must be thoroughly cleaned of the paint before use with a different colour paint. The cleaning operation represents downtime in the use of the gun assemblies, necessitating that the workshop have a large number of gun assemblies if the skilled paint sprayer is to be kept employed for paint spraying operations with different paint colours throughout the day.

In addition, the cleaning operation is an unpleasant and hazardous task requiring use of noxious, volatile, paint solvents, which are generally flammable and nauseous. Typically, the cleaning operation will involve a period of immersing the gun assembly in an open vat of the cleaning fluid, allowing the assembly to soak in the fluid and using a metal brush or scraper to loosen paint debris, followed by rinsing with fresh cleaning fluid. Cleaning operation will involve a period of immersing the gun assembly in an open vat of the cleaning fluid, allowing the assembly to soak in the fluid and using a metal brush or scraper to loosen paint debris, followed by rinsing with fresh cleaning fluid.

It is an object of this invention to provide an apparatus and method for automatic cleaning of paint spray gun assemblies.

It is a further object of this invention to provide such an apparatus and method capable of cleaning a plurality of such gun assemblies.

It is a still further object of this invention to provide such an apparatus and method which is capable of cleaning one or more gun assemblies in a very short time.

It is yet another object of this invention to provide such an apparatus and method which avoids or minimizes the hazards associated with exposure to noxious paint cleaning fluids.

Other objects and advantages will be evident from the following description.

In accordance with one aspect of the invention a cleaning apparatus for automatic cleaning of paint spray gun assemblies comprises a cleaning cabinet provided with a bottom opening, means defining a chamber located below said bottom opening for collecting fluid from said cleaning cabinet, a fluid flow line system including a fluid flow distribution system having a plurality of cleaning fluid outlets for ejection of cleaning fluid within said cabinet, a fluid pump having a fluid inlet and a fluid outlet, a fluid delivery line for the flow of cleaning fluid from said fluid outlet to said fluid flow line system, and a fluid return line for flow of cleaning fluid from said chamber to said fluid inlet, characterized in that a sub-plurality of said outlets define means for supporting a spray gun in said cabinet (12) with a paint passage interior of the gun in direct fluid flow communication with a said outlet, said fluid pump is pneumatically actuated, an air-flow system is provided having an air delivery line, said fluid pump having an air inlet in air flow communication with said air delivery line, said air-flow system and said fluid flow-line system having separate independent flow lines, time control means in said air-flow system adapted to interrupt the action of the pump within a predetermined time, and a member adapted to hold a trigger of a spray gun in a closed, working position.

The use of the high pressure ejection, in accordance with the invention, whereby jets of cleaning fluid impinge on paint soiled surfaces, results in rapid removal of the paint in a surprisingly short time. Although the cleaning cycle could be continued beyond 60 seconds, this is unnecessary and wasteful since no further advantage is obtained. Indeed in so far as extending the cycle beyond 60 seconds results in recycling of fluid containing entrained paint debris into contact with the cleaned parts which could result in deposition of paint debris on the parts, such extension is disadvantageous.

In still another aspect of the invention a method of cleaning at least one paint spray gun assembly comprises:

mounting a gun in a cleaning cabinet,
providing cleaning fluid under pressure to the gun through a fluid flow system by employing an air flow system,
impinging paint contacting surfaces of the gun with said cleaning fluid within said cabinet, characterized in that said cleaning fluid is pumped through said fluid flow system by a fluid pump, which is actuated by air in the air-flow system, wherein the air-flow system is maintained separate from the fluid flow system, and wherein the pump is operated for a predetermined period of time.

The paint contacting surfaces of the gun are, in particular, the walls of the paint passage interior of the gun, which walls are contacted by paint as it flows through the gun. However, other surfaces,
including exterior surfaces, of the gun which may be exposed directly or indirectly to paint in use, are also contemplated.

The invention is illustrated in particular and preferred embodiments by reference to the accompanying drawings in which:

FIG. 1 is a perspective view of the cleaning apparatus in accordance with the invention, partly cut away to show the interior;

FIG. 2 is a front elevation of the apparatus of Fig. 1 as a partial cross section to show the interior;

FIG. 3 is a schematic representation of the cleaning fluid flow-line system and pneumatic circulating system of the apparatus of Fig. 1;

FIG. 4 shows a detail illustrating a device for holding the trigger of a spray gun closed, in the apparatus of Fig. 1;

FIG. 5 is a schematic representation of part of a cleaning apparatus in a different embodiment of the invention, and

FIG. 6 shows a detail of the apparatus of Fig. 5.

With particular reference to Fig. 1, a cleaning apparatus 10 includes a cleaning cabinet 12, a cleaning fluid flow-line system 14, a bath 16 and a pneumatic circulating system 18.

Cleaning cabinet 12 includes a support screen 20 at its lower end and a top opening 22. A lid 24 is hingedly mounted by hinges 26 on one side of top opening 22. Top opening 22 includes an inner shoulder 28 having a ledge 30 to support lid 24 when closed.

The cleaning fluid flow-line system 14 includes a cleaning fluid pump 36 having a pump fluid outlet 37 communicating with a fluid delivery line 38.

Fluid delivery line 38 is in fluid flow communication with a distribution tube 40 connected via a connection tube 44 with a distribution tube 42.

Distribution tube 40 includes a horizontal pipe 46 spanning one side of the area below screen 20, and terminating at its opposed ends in a pair of vertical pipes 48 having closed upper ends 50.

Similarly distribution tube 42 includes a horizontal pipe 52, spanning the other side of the area below screen 20, and having vertical pipes 54 at its opposed ends, the latter terminating in closed ends 56.

Horizontal pipes 46 and 52 have short intermediate pipe portions 47 and 53, respectively, which are generally parallel; connection tube 44 extends between opposed intermediate pipe portions 47 and 53.

Outer pipe portions 49 and 51 of horizontal pipe 46 extend from opposed ends of intermediate pipe portion 47 to the vertical pipes 48; similarly outer pipe portions 55 and 57 of horizontal pipe 52 extend from opposed ends of intermediate pipe portion 53 to the vertical pipes 54.

An ejection tube 58 and a wide angle nozzle 59 are formed in horizontal pipe portion 46 in the respective outer pipe portions 49 and 51; and an ejection tube 60 and a wide angle nozzle 61 are formed in horizontal pipe portion 52, in the respective outer pipe portions 55 and 57. The wide angle nozzles 59 and 61 project through screen 20. Wide angle nozzles 62 are formed in vertical pipes 48 and wide angle nozzles 64 are formed in vertical pipes 54.

A pair of ejection orifices 70 is formed in outer pipe portion 49 on either side of ejection tube 58; and ejection orifices 72 are formed in outer pipe portion 55, one on either side of ejection tube 60.

An adapter 73 is provided for fitting on ejection tube 58 or 60. The tapered upper end portions of adapter 73 and ejection tubes 58 and 60 are roughened, such as by knurling, grooving or providing same with opposed flats 180° apart to cause some leakage in use as described further below.

A strainer cartridge 66 is connected via a return line 68 to a pump fluid inlet 69 in fluid pump 36.

Referring in particular to Figure 3, pneumatic circulating system 18 includes an air inlet line 74 an air accumulator 76, a pneumatic timer valve 78 and an air delivery line 80 communicating with fluid pump 36 via an air inlet port 82.

Air inlet line 74 communicates via a valve 84 with an accumulator inlet line 86 which communicates with air accumulator 76.

A branch line 88 in accumulator inlet line 86 communicates with an air pressure gauge 90.

An accumulator outlet line 92 communicates air accumulator 76 with an inlet end 93 of pneumatic timer valve 78. Pneumatic timer valve 78 includes a timer adjuster 94 including an air escape port 95 having an adjustable closure 99 which specifically may comprise a screw closure received in port 95.

Branch line 96 from air inlet line 74 communicates with outlet end 97 of pneumatic timer valve 78.

A lid safety valve 100, the operation of which is described later, is disposed in air delivery line 80 between pneumatic timer valve 78 and air inlet port 82.

A branch line 102 extends between branch line 96 and air delivery line 80. Air control valve 104 is disposed in branch line 102.

A timer button 106 is operably associated with valve 84.

A restrictor 110 in air delivery line 80 limits air flow therein to control the speed of pump 36.

Bath 16 includes a chamber 112 having a vertical front wall 114, a pair of inclined side walls 116 and an inclined rear wall 118. Side walls 116 have support flanges 117. The chamber 112 has
the form of an inverted, truncated pyramid, as-
ked so as to have a straight, vertical front wall
114. A drain valve 120 is disposed at the juncture
of the lower ends of the walls 114, 116 and 118,
and thus at the front side of chamber 112. A skirt
122 surrounds the chamber 112 and stands on legs
124, part of the skirt 122 actually forming front wall
114 of chamber 112.

An activator plate 126 is supported on lid 24
and a switch plate 128 is operably associated with
lid safety valve 100. A vertically movable switch
rod 130 is attached to switch plate 128 and guided
by guides 132. Switch plate 128 engages a spring
loaded plunger 134 in safety valve 100. Valve 100
is normally closed, so that downward movement of
switch plate 100 caused by closure of lid 24 opens
safety valve 100 and vice versa.

With particular reference to Fig. 2, an optional
adapter 73 is mounted over ejection tube 60;
adapter 73 defining a sleeve configured and dimen-
sioned at an inner end to matingly receive outer
end of ejection tube 60; the outer end of adapter
73 being configured and dimensioned to be matingly
received within a paint passage inlet of pres-
sure spray gun 138. Pressure spray gun 138 with
its trigger closed is thus supported on adapter 73.

A syphon type spray gun 140 is supported on
ejection tube 58, the outer end of ejection tube 58
being configured and dimensioned to be matingly
received within a paint passage inlet of gun 140.
It will be understood that adapter 73 could be sup-
ported on either ejection tube 58 or 60, and it could
be eliminated if not needed depending upon the
particular configuration or type of spray gun 138 to
be cleaned.

A large canister 142 from pressure spray gun
138 is invertedly disposed over wide angle nozzle
59 and small canister 144 from syphon spray gun
140 is invertedly disposed over wide angle nozzle
61.

With particular reference to Fig. 4, there is
shown a portion of a typical spray gun 138, or 140
having a trigger 150 shown in solid lines in the
open position and in phantom lines in the closed,
working position. In the cleaning operation of ap-
paratus 10, the trigger 150 is maintained in the
closed, working position by tightening the trigger
chain 148 and securing it by means of a link of the
chain 148, in a tightened configuration, to hook 152
supported in wedge 146. In this way the paint flow-
line through the spray gun 138, 140 is maintained
fully open for passage of the cleaning fluid during
the cleaning operation. The wedge 146 can itself
be used to hold the trigger 150 in closed configura-
tion in many guns.

In most paint spray guns of North American
design the configuration of the body of the gun
provides location in which the wedge 146 can be
securedly seated, with the wedge 146 holding or
restraining the trigger 150 in the depressed or
closed configuration. The chain 148 and hook 152
are useful for those spray guns, typically of Eu-
ropean design, which do not have a body configu-
ration facilitating direct use of wedge 146 to hold
trigger 150 closed.

In operation lid 24 is opened and water is
introduced through top opening 22 to chamber 112.
Drain valve 120 should of course, be closed. The
upper level of the water should be below strainer
cartridge 66. Cleaning fluid is thereafter introduced
through top opening 22 to form a layer of fluid
above the water in chamber 112. The cartridge 66
should be contained within the layer of cleaning
fluid. Suitably the upper surface of the cleaning
fluid layer should just reach the base of the dis-
tribution tubes 40 and 42 but, in any event, should
be below the outlets of wide angle nozzles 59 and
61, and preferably below support screen 20.

For the case in which a pressure spray gun
138 and a syphon spray gun 140 are to be
cleaned, adapter 73 for the pressure spray gun 138
is mounted on, for example, ejection tube 60 and the
outlet end of adapter 73 is inserted into the
paint inlet of gun 138. The outer end of ejection
tube 58 is inserted in the paint inlet line of gun 140.
Canister 142 of pressure spray gun 138 is inverted
and placed over, for example, wide angle nozzle 59
and canister 144 of spray gun 140 is inverted and
placed over wide angle nozzle 61.

The triggers, for example, the trigger 150 of
syphon spray gun 140, are directly locked in the
closed, working position with wedge 146, or as
illustrated in Fig. 4, so that the paint flow passages
of guns 138 and 140 are completely open for flow
of cleaning fluid.

The lid 24 is closed and its engagement with
ledge 30 prevents splashing of cleaning fluid dur-
ing operation of apparatus 10.

In operation knob 106 is activated to open
valve 84 and air is delivered through air inlet line
74 via normally closed valve 84 to the air accumu-
lator 76, suitably at a pressure of 2.8 x 10^5 N/m^2

50 to 8.4 x 10^5 N/m^2 (40-120 psi), and then to nor-
mally closed pneumatic timer valve 78. Accumula-
tor 76 is pressurized almost instantaneously where-
upon knob 106 is released to close valve 84. When
a sufficient predetermined pressure is generated in
air accumulator 76, pneumatic timer valve 78
opens, and air pressure then passes directly from
air inlet line 74 through branch line 96 to pneumatic
timer valve 78 and then to air delivery line 80 to air

55 inlet port 82 of pump 36. The air pressure in pump
36 activates a piston which forces cleaning fluid in
the flow-line system 14, as jets under pressure
from the ejector tubes 58 and 60 through the paint
flow passages of the guns 138 and 140. At the
same time the cleaning fluid is ejected through wide angle nozzles 59 and 61 as jets impinging on the interior surfaces of canisters 142 and 144, respectively, and through wide angle nozzles 62 and 64 to impinge on the exterior surface of guns 138 and 140 and canisters 142 and 144. As mentioned above, the roughened tapered upper end portions of adapter 73 and ejection tubes 58 and 60 are roughened to cause some leakage. This ensures that the part of the paint inlet lines of spray guns 138 and 140 containing these tapered upper end portions is also cleaned.

The ejector orifices 70 or 72, typically .16cm (0.0625 inches) in diameter, direct cleaning fluid under pressure into any cup portion of a spray gun which skirts the paint passage inlet. The pressurized air in air accumulator 76 bleeds from pneumatic timer valve 78 through escape port 95 at a rate determined by closure 99 of timer adjuster 94, and when the pressure drops below a predetermined value pneumatic timer valve 78 closes thereby discontinuing the feed of air under pressure to pump 36.

In practice, time adjuster 94 is adjusted such that pneumatic timer valve 78 will be open for a period of not more than 60 seconds, typically 30 to 60 seconds and especially about 45 seconds, whereby pump 36 actively circulates cleaning fluid under pressure through flow line system 14 for this relatively short period of time.

The jets impinging on paint coated walls displace the paint which is entrained in the fluid and carried away by the fast moving fluid, descending into bath 16.

At completion of the short cleaning operation spray guns 138 and 140 and canisters 142 and 144 are removed. Support screen 20 acts as a safety net so that, for example, gun 138 cannot inadvertently fall into bath 16.

Apparatus 10 can then be used, to clean other guns and components thereof as required.

In use the cleaning fluid is cycled through bath 16 and flow-line system 14. The fluid ejected through ejector tubes 58 and 60 and wide angle nozzles 59, 61, 62 and 64 falls or flows downwardly into bath 16 from where fluid enters return line 68 through strainer cartridge 66 and thence to pump 36. Paint debris is filtered from the fluid by strainer cartridge 66 and generally forms an intermediate paint debris layer in bath 16, floating on the upper surface of the lower water layer. Periodically, after repeated uses of the cleaning cycle, drain valve 120 is opened and the water flows out, drawing with it the paint debris layer. Fresh water is then introduced through opening 22 and, if necessary, fresh cleaning fluid in order to restore the levels.

The formation of the paint debris layer floating on the water avoids or minimizes coating or accumulation of paint debris on the walls of chamber 112 which would present a removal problem after several cleaning operations.

The debris of certain types of paint, for example, water-based paints and some metal containing paints does migrate into the water layer, in which it disperses. The water layer can be replaced by other liquid layers, for example aqueous and other solvents which are immiscible with the cleaning fluid, and of greater density such that the cleaning fluid floats thereon as an upper layer.

It is also possible to omit the water or other lower layer and use solely cleaning fluid.

The inclined walls 116 and 118 of chamber 112 facilitate descent of paint debris into the lower region of bath 16 during draining. The vertical front wall 114 enables location of drain valve 120 at a forward, front side of apparatus 10, so that it is readily accessible, without the hazard of crawling or extending the arm beneath bath 16.

In operation lid 24 is closed and activator plate 126 engages the upper end of switch rod 130 forcing it vertically downwardly within guides 132, whereby switch plate 128 depresses spring-loaded plunger 134 to open lid safety switch 100. When lid 24 is opened, activator plate 126 is disengaged from the upper end of rod 130 and spring-loaded plunger 134 is free to rise urging switch plate 128 and rod 130 vertically upwardly, the rising of plunger 134 closes safety valve 100 so that, if in a cleaning cycle, delivery of air under pressure to pump 36 ceases, the cleaning cycle is interrupted. In this way the hazard of splashing of cleaning fluid from top opening is avoided or minimized.

Restriction 110 in air delivery line 80 is, for example, a small orifice of about .13 cm (0.05 inches) diameter, and limits the air flow to pump 36; this prevents the pump 36 running too fast, while still permitting development of the elevated pressure required to operate pump 36.

Chamber 112 is suitably of metal, for example, aluminium or stainless steel. The materials of the component parts of apparatus 10 should, of course, be selected having regard to the noxious fluids which they are to contact.

Pump 36 will suitably operate at a pumping rate of about g to 36 litres/min. (2 to 8 gal./min.). Generally a pneumatic pump 36 is preferred, and, in particular electric pumps are to be avoided in view of the use of the noxious, volatile and flammable fluids.

The distribution tubes 40 and 42, suitably comprise a discrete unit with connection tube 44, of zinc plated steel or aluminium. As shown in Fig. 1, this discrete unit will sit or stand on support flanges 117 and there is no need for bolts or other connection members which may result in leaks.

The wide angle nozzles 58, 61, 62 and 64
suitably provide a full core jet encompassing a spray angle of 72-80°. The nozzles are suitably of brass, aluminum, polypropylene or other inert material.

The wedge 146 is suitably of high density polyethylene or of metal.

The cleaning fluid may suitably be lacquer thinner, paint thinner or other cleaning fluid, for paint and the like, such as methanol, naphthalene or mineral spirits.

Optionally water may be omitted from bath 16, and a bath 16 of cleaning fluid employed. Suitably bath 16 has a capacity of 22.7 litres to 45.46 litres (5 to 10 gallons).

With further reference to Figs. 5 and 6, there is shown a variation of apparatus 10 of Fig. 1, particularly as to bath 16.

The apparatus 110 of Figs. 5 and 6 has a cabinet 160, a disposable container or drum 162 and a flow pipe assembly 164. The fluid flow-line system and pneumatic circulation system (not shown) are in general and same as described for Fig. 1.

Cabinet 160 has a shallow dished floor 166 having the shape of an inverted wide angle cone; floor 166 has a flow opening 168 at its central, lowermost part.

Drum 162 has an upper neck 170 defining a passage 172 having an outer threaded portion 174.

Flow pipe assembly 164 has a short central pipe 176 and an outer pipe assembly 178 is slidably disposed concentrically about central pipe 176. Annular fluid resistant seal 180 is disposed between an upper end of outer pipe assembly 178 and central pipe 176.

Outer pipe assembly 178 has an outer pipe 163 and an inner pipe 165, an annular passage 167 extends between outer pipe 163 and inner pipe 165.

Outlet port 182 is formed in outer pipe assembly 178 adjacent its upper end; outlet port 182 is in fluid flow communication with annular passage 167.

The upper end of central pipe 176 is in flow communication with flow opening 168, and its lower end extends a short distance into inner pipe 165 of outer pipe assembly, terminating above drum 162. The outer pipe 163 extends only a short distance into drum 162, whereas the inner pipe 165 extends deep into the interior of drum 162.

Return line 68 is connected by fitting 184 to outlet port 182 and delivery line 38 communicates with distribution tubes 40 and 42 (not shown) as in Fig. 1.

A closure cap 186 having a central opening 188 threadablyengages threaded portion 174 of neck 170, with outer pipe assembly 178 slidably received in central opening 188; annular fluid resistant seal 180 is formed between neck 170 and outer pipe 163.

The cleaning fluid is housed in drum 162 and, in operation, inner pipe 165 suitably extends into the cleaning fluid.

The lower end of outer pipe 163 extends below the level of fluid in drum 162.

In operation, outer pipe assembly 178 is inserted through central opening 188 into drum 162; engagement of outlet port 182 with cap 186 prevents outer pipe assembly 178 from falling completely into the drum 162. The drum 162 with outer pipe assembly 178 is positioned below central pipe 176 and aligned therewith so that outer pipe assembly 178 can be slidably withdrawn from central opening 188 and slidably telescoped about central pipe 176 so that the lower end of central pipe 176 is contained within inner pipe 165. Outer pipe assembly 178 is then locked or fixed in position by any suitable means.

The cleaning cycle is initiated and proceeds as for apparatus 10 of Fig. 1; cleaning fluid flows upwardly through annular passage 167 around inner pipe 165 and thence through outlet port 182 into return line 66 into pump 36 and then through delivery line 38. The ejected fluid falls or flows downwardly of floor 166 to flow opening 168 into central pipe 176 and thence into inner pipe 165 and into interior of drum 162. Thus used fluid is returned to an interior region of drum 162 and fluid for washing is drawn from an upper region. The paint debris tends to settle so that fluid in the upper region of the drum, from which fluid is drawn for cleaning, remains relatively paint-free.

After repeated use of the cleaning fluid, drum 162 containing the used fluid can be disposed of.

In an alternative arrangement to that described by reference to Figs. 5 and 6, the flow pipe assembly is vertically movable into cabinet 166 in order to raise the assembly 164 clear of drum 162 for installation and removal of drum 162. In such case, flow pipe assembly 164 might conveniently have a handle at its upper end, within cabinet 166, whereby it might be lifted.

Paint spray gun assemblies are used for applying other sprayable compositions, for example, glue, adhesive, and specialty coatings such as lubricants and mold release coatings. It will be understood that the invention is equally applicable to cleaning of guns used for such other sprayable compositions and for the purposes of this disclosure the term "paint" is intended to include all of these compositions.

Claims

1. An apparatus for cleaning of a spray gun assembly having
 a cleaning cabinet (12) provided with a
bottom opening,

means defining a chamber (112) located below said bottom opening for collecting fluid from said cleaning cabinet (12),

a fluid flow line system (14) including a fluid flow distribution system having a plurality of cleaning fluid outlets (58, 59, 60, 61, 62, 64, 70, 73) for ejection of cleaning fluid within said cabinet (12),

a fluid pump (36) having a fluid inlet (69) and a fluid outlet (37), a fluid delivery line (38) for the flow of cleaning fluid from said fluid outlet (37) to said fluid flow line system (14), and a fluid return line (88) for flow of cleaning fluid from said chamber (112) to said fluid inlet (69),

characterized in that

a sub-plurality of said outlets (58, 60, 73) define means for supporting a spray gun in said cabinet (12) with a paint passage interior of the gun in direct fluid flow communication with a said outlet,

said fluid pump (36) is pneumatically actuated,

an air-flow system (18) is provided having an air delivery line (80), said fluid pump (36) having an air inlet (82) in air flow communication with said air delivery line (80),

said air-flow system (18) and said fluid flow-line system (14) having separate independent flow lines,

time control means (78) in said air-flow system (18) adapted to interrupt the action of the pump (36) within a predetermined time, and

a member (146) adapted to hold a trigger of a spray gun in a closed, working position.

2. A cleaning apparatus according to claim 1 wherein said chamber (112) is enclosed by a substantially vertical front wall (114), a pair of inclined side walls (116) and an inclined rear wall (118), and wherein a drain valve (120) is located adjacent to a lower end of said front wall (114).

3. A cleaning apparatus according to claim 1 wherein said fluid distribution system includes a first distribution tube (40) and a second distribution tube (42), said tubes (40,42) being in opposed spaced apart relationship, and a connecting tube (44) providing fluid flow communication between said distribution tubes (40,42).

4. A cleaning apparatus according to claim 3 wherein said first tube (40) has a substantially horizontal portion (46) spanning one side of said cabinet (12), said portion (46) terminating at its opposed ends in substantially vertical portions (48), at least one ejector tube (58) extending upwardly from said horizontal portion (46), at least one upwardly directed wide angle nozzle (59) in said portion (46), and at least one inwardly directed wide angle nozzle (62) in said vertical portions (48), and wherein said second tube (42) has a substantially horizontal portion (52) spanning the other side of said cabinet (12), said portion (52) terminating at its opposed ends in substantially vertical portions (54), at least one ejector tube (60) extending upwardly from said horizontal portion (52), at least one upwardly directed wide angle nozzle (61) in said horizontal portion (52), and at least one inwardly directed wide angle nozzle (64) in said vertical portions (54).

5. A cleaning apparatus according to claim 1 including a pair of ejection orifices (70) located in a horizontal portion (40) and being associated with an ejector tube (58), and including a pair of ejection orifices (72) located in a horizontal portion (52) and being associated with an ejector tube (60).

6. A cleaning apparatus according to claim 1 wherein said chamber (112) is enclosed by a removable drum (162), said drum (162) being adapted to communicate with said bottom opening in cabinet (12).

7. A cleaning apparatus according to claim 1 wherein said cabinet (12) has a lid (24) and a safety valve (100) located in the air-flow system and operably connected to said lid (24) to cease the air flow when the lid (24) is opened.

8. A cleaning apparatus according to claim 1 wherein said member (146) has a hook (152) on a chain (148) having a plurality of links affixed thereto, said hook (152) being adapted to engage a link of said chain (148) such that said chain (148) is held tightly about the spray gun and said trigger being restrained in said working position.

9. A method of cleaning a spray gun, comprising,

mounting a gun in a cleaning cabinet (12),

providing cleaning fluid under pressure to the gun through a fluid flow system (14) by employing an air flow system (18),

impinging paint contacting surfaces of the gun with said cleaning fluid within said cabinet (12),

characterized in that said cleaning fluid is pumped through said
fluid flow system (14) by a fluid pump (36), which is actuated by air in the air-flow system (18), wherein the air-flow system (18) is maintained separate from the fluid flow system (14), and wherein the pump (36) is operated for a predetermined period of time.

Patentansprüche

1. Vorrichtung für das Reinigen einer Spritzpistolen-Baueinheit, welche eine Reinigungskammer (12), die mit einer Bodenöffnung versehen ist, mit Mitteln zum Definieren einer Kammer (112), die unterhalb der Bodenöffnung für das Auffangen von Flüssigkeit aus der Reinigungskammer (12) angeordnet ist, einem Flüssigkeits-Strömungsleitsystem (14), das ein Flüssigkeitsstrom-Verteilungssystem einschließt, welches eine Vielzahl von Reinigungsfüssigkeits-Austritten (58, 59, 60, 61, 62, 64, 70, 73) für das Austreten von Reinigungsfüssigkeit innerhalb der Reinigungskammer (12) hat, einer Flüssigkeitspumpe (36), die einen Flüssigkeitseintritt (69) und einen Flüssigkeitsaustritt (37), eine Flüssigkeitsabgabeleitung (38) für das Strömen von Reinigungsfüssigkeit von dem Flüssigkeitsaustritt (37) zu dem Flüssigkeits-Strömungsleitsystem (14) und eine Rückflußleitung (68) für das Strömen von Reinigungsfüssigkeit von der Kammer (112) zu dem Flüssigkeitseintritt (69) hat, umfaßt, dadurch gekennzeichnet, daß ein Teil der Austritte (58, 60, 73) Mittel definieren, um eine Spritzpistole in der Reinigungskammer (12) so aufzunehmen, daß der Farbkanal im Innern der Spritzpistole in direkter Flüssigkeitsverbindung mit dem Austritt steht, die Flüssigkeitspumpe (36) pneumatisch betätigt wird, ein Luftstromsystem (18) vorgesehen ist, das eine Luftabgabeleitung (80) hat, wobei die Flüssigkeitspumpe (36) einen Luft- eintritt (82) hat, der in Luftstromverbindung mit der Abgabeleitung (80) steht, das Luftstromsystem (18) und das Flüssigkeits-Strömungsleitsystem (14) gesonderte, voneinander unabhängige Strömungsleitungen haben, Zeiteinstellungs- und Zeiteinrichtung (78) in dem Luftstromsystem (18) so angepaßt sind, daß die Tätigkeit der Flüssigkeitspumpe (36) innerhalb einer vorher festgelegten Zeit unterbrochen wird, und ein Element (146) so angepaßt ist, daß es eine Auswahlseinrichtung einer Spritzpistole in einer geschlossenen Arbeitsstellung hält.

2. Reinigungsvorrichtung nach Anspruch 1, bei welcher die Kammer (112) von einer im wesentlichen vertikalen Frontwand (114), einem Paar geneigter Seitenwände (118) und einer geneigten Rückwand (118) umschlossen ist, und bei welcher ein Ablaufventil (120) angrenzend an das untere Ende der Frontwand (114) angeordnet ist.

3. Reinigungsvorrichtung nach Anspruch 1, bei welcher das Flüssigkeitsverteilersystem ein erstes Verteilerrohr (40) und ein zweites Verteilerrohr (42) einschließt, wobei die Rohre einander gegenüber in einem gewissen Abstand voneinander angeordnet sind sowie ein Verbindungsröhren (44), das für eine Flüssigkeitsverbindung zwischen den Verteilerrohren (40, 42) sorgt.

4. Reinigungsvorrichtung nach Anspruch 3, bei welcher das erste Verteilerrohr (40) einen im wesentlichen horizontalen Teil (46) hat, der eine Seite der Reinigungskammer (12) überbrückt, wobei die Teil (46) an seinen gegenüberliegenden Enden in im wesentlichen vertikalen Teilen (48) endet, mindestens ein sich von horizontalen Teilen (46) zuerstfreier Ausstoßrohr (58) hat, mindestens eine im horizontalen Teil (46) angeordnete, nach oben gerichtete Weitwinkelröhre (39) aufwärts und über mindestens eine, im vertikalen Teil (48) angeordnete, nach innen gerichtete Weitwinkeldüse (62) verfügt, und wobei das zweite Verteilerrohr (42) einen im wesentlichen horizontalen Teil (52) hat, der die andere Seite der Reinigungskammer (12) überbrückt, wobei der Teil (52) an seinen gegenüberliegenden Enden in im wesentlichen vertikalen Teilen (54) endet, mindestens ein sich vom horizontalen Teil (52) nach oben erstreckendes Ausstoßrohr (60) hat, mindestens eine im horizontalen Teil (52) angeordnete, nach oben gerichtete Weitwinkelröhre (39) aufwärts und über mindestens eine, im vertikalen Teil (54) angeordnete, nach innen gerichtete Weitwinkeldüse (64) verfügt.

5. Reinigungsvorrichtung nach Anspruch 1, welche ein Paar im horizontalen Teil (46) angeordnete Ausstoßöffnungen (70) einschließt, die dem Ausstoßrohr (58) zugeordnet sind und welche ein Paar im horizontalen Teil (52) angeordnete Ausstoßöffnungen (72) einschließt, die dem Ausstoßrohr (60) zugeordnet sind.

6. Reinigungsvorrichtung nach Anspruch 1, bei welcher die Kammer (112) an einer lösbares Trommel (182) angeschlossen ist, wobei die Trommel (182) so angepaßt ist, daß sie mit der
Bodenöffnung der Reinigungskammer (12) in Verbindung steht.

7. Reinigungsvorrichtung nach Anspruch 1, bei welcher die Reinigungskammer (12) eine Klappe (24) und ein Sicherheitsventil (100) hat, das in dem Luftstromsystem liegt und betätigbar mit der Klappe (24) verbunden ist, um den Luftstrom zu unterbrechen, wenn die Klappe (24) geöffnet ist.

8. Reinigungsvorrichtung nach Anspruch 1, bei welcher das Element (148) einen Haken (152) an einer Kette (148) hat, die aus einer Vielzahl daran befestigter Glieder besteht, wobei der Haken so ausgebildet ist, daß er derart in ein Glied der Kette (148) eingreift, daß die Kette (148) fest um die Spritzpistole herum und damit die Auslöseeinrichtung in der Arbeitsstel lung gehalten wird.

9. Verfahren für die Reinigung einer Spritzpistole welches umfaßt:
 die Positionierung einer Spritzpistole in ei ner Reinigungskammer (12),
 das Bereitsstellen einer unter Druck stehenden Reinigungslösung zu der Spritzpistole durch ein Flüssigkeitsstromsystem (14) unter Verwendung eines Luftstromsystems (18),
 das Beaufschlagen von mit Farbe verunreini gten Flächen der Farbspritzpistole mit Reinigungslösung innerhalb der Reinigungskammer (12), dadurch gekennzeichnet, daß die Reinigungslösung durch das Flüssigkeitsstromsystem (14) mit Hilfe einer Flüssigkeitszulaufpumpe (36) gepumpt wird, welche durch Luft im Luftstromsystem (18) betätigt wird, wobei das Luftstromsystem (18) von dem Flüssig keitsstromsystem (14) getrennt gehalten wird und wobei die Flüssigkeitszulaufpumpe (36) eine vorher festgelegte Zeit lang betätigt wird.

Revidications

1. Appareil de nettoyage destiné au nettoyage automatique de pistolets de pulvérisation de peinture comprenant
 une armoire de nettoyage (12) comportant
 une ouverture à sa partie inférieur e,
 des moyens définissant une chambre (112) située au-dessous de ladite ouverture inférieure pour recueillir le fluide provenant de ladite armoire de nettoyage (12),
 un système à conduites d’écoulement de fluide (14) comprenant un système de distribution de fluide comportant plusieurs sorties de fluide de nettoyage (58, 59, 61, 62, 64, 70, 73) pour éjecter le fluide de nettoyage se trouvant dans ladite armoire (12);
 une pompe à fluide (36) comprenant une entrée de fluide (69) et une sortie de fluide (37), et une conduite d’alimentation de fluide (38) pour l’écoulement du fluide de nettoyage depuis ladite sortie de fluide (37) vers ledit système à conduites d’écoulement de fluide (14) et une conduite de retour de fluide (68) pour l’écoulement du fluide de nettoyage provenant de ladite chambre (112) vers ladite entrée de fluide (69),
 caractérisé en ce que
 une sous-pluralité desdites sorties (58, 60, 73) définit des moyens pour supporter un pistolet de pulvérisation dans ladite armoire (12),
 avec un passage à peinture intérieur du pistolet en communication directe d’écoulement du fluide avec l’une desdites sorties,
 ladite pompe à fluide (36) est actionnée pneumatiquement,
 un système d’écoulement d’air (18) est prévu et comprend une conduite d’alimentation d’air (80), ladite pompe à fluide (36) comprenant une entrée d’air (82) en communication avec ladite conduite d’alimentation d’air (80) pour l’écoulement de l’air, ledit système d’écoulement d’air (18) et ledit système à conduites d’écoulement de fluide (14) comprenant des conduites d’écoulement indépendantes et séparées,
 un moyen de commande des temps (78) dans ledit système d’écoulement d’air (18) adapté à interrompre l’action de la pompe (36) dans les limites d’une durée prédéterminée, et
 un organe (146) adapté à maintenir la gâchette d’un pistolet de pulvérisation en position de travail fermée.

2. Appareil de nettoyage selon la revendication 1, dans lequel ladite chambre (112) est entourée par une paroi frontale sensiblement verticale (114), une paroi de parois latérales inclinées (116) et une paroi arrière inclinée (118), et dans lequel une soupape de drainage (120) est montée à proximité d’une extrémité inférieure de ladite paroi frontale (114).

3. Appareil de nettoyage selon la revendication 1, dans lequel ledit système de distribution de fluide comprend un premier tube de distribution (40) et un second tube de distribution (42), lesdits tubes (40, 42) étant à l’opposé l’un de l’autre et espacés, et un tube de connexion (44) déterminent la communication pour l’écoulement du fluide entre lesdits tubes de distribution (40, 42).
4. Appareil de nettoyage selon la revendication 3, dans lequel ledit premier tube (40) comprend une portion sensiblement horizontale (46) s'étendant sur un côté de ladite armoire (12), ladite portion (46) se terminant à ses extrémités opposées par des portions sensiblement verticales (48), au moins un tube éjecteur (58) s'étendant vers le haut à partir de ladite portion horizontale (46), au moins une buse à grand angle (59) dirigée vers le haut dans ladite portion (46) et au moins une buse à grand angle (62) dirigée vers le bas dans lesdites portions verticales (48), et dans lequel ledit second tube (42) comprend une portion sensiblement horizontale (52) s'étendant sur l'autre côté de ladite armoire (12), ladite portion (52) se terminant à ses extrémités opposées par des portions sensiblement verticales (54), un tube éjecteur au moins (60) s'étendant vers le haut à partir de ladite portion horizontale (52), une buse à grand angle (61) au moins dirigée vers le haut dans ladite portion horizontale (52), et au moins une buse à grand angle (64) dirigée vers l'intérieur dans lesdites portions verticales (54).

5. Appareil de nettoyage selon la revendication 1, comprenant une paire d'orifices d'éjection (70) situés dans une portion horizontale (40) et associés à un tube éjecteur (58), et comprenant une paire d'orifices d'éjection (72) situés dans une portion horizontale (52) et associés à un tube éjecteur (60).

6. Appareil de nettoyage selon la revendication 1, dans lequel ladite chambre (112) est constituée par un tambour amovible (162), ledit tambour (162) étant adapté à communiquer avec ladite ouverture de fond de l'armoire (12).

7. Appareil de nettoyage selon la revendication 1, dans lequel ladite armoire (12) comprend un couvercle (24) et une soupape de sûreté (100) situés dans le système d'écoulement d'air et reliés opérationnellement audit couvercle (24) pour faire cesser l'écoulement de l'air quand le couvercle (24) est ouvert.

8. Appareil de nettoyage selon la revendication 1, dans lequel ledit élément (146) comprend un crochet (152) sur une chaîne (148) comportant une pluralité de maillons fixés sur elle, ledit crochet (152) étant adapté à venir en engagement avec un maillon de ladite chaîne (148) de façon que cette chaîne (148) soit maintenue étroitement autour du pistolet de pulvérisation alors que ladite gâchette est retenue dans ladite position de travail.

9. Procédé de nettoyage d'au moins un pistolet de pulvérisation de peinture, comprenant:
 le montage d'un pistolet dans une armoire de nettoyage (12),
 l'envoi d'un fluide de nettoyage sous pression vers le pistolet par un système d'écoulement de fluide (14) en utilisant un système d'écoulement d'air (18),
 l'envoi sur lesdites surfaces recouvertes de peinture du pistolet dudit fluide de nettoyage dans ladite armoire (12),
 caractérisé en ce que
 ledit fluide de nettoyage est pompé par ledit système d'écoulement de fluide (14) par une pompe à fluide (36), qui est actionnée par l'air de système d'écoulement d'air le système d'écoulement d'air (18) étant maintenu séparé du système d'écoulement de fluide (14), et la pompe (36) étant actionnée pendant une période de temps prédéterminée.