EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 01.04.92
Application number: 88110174.5
Date of filing: 25.06.88

The file contains technical information submitted after the application was filed and not included in this specification

Improved process for heterogeneous synthesis and related reactors.

Priority: 03.07.87 CH 2529/87
Date of publication of application: 04.01.89 Bulletin 89/01
Publication of the grant of the patent: 01.04.92 Bulletin 92/14
Designated Contracting States: AT DE ES FR GB GR IT NL

References cited:
EP-A 0 142 170
EP-A 0 222 069
DE-U 8 634 177
US-A 4 963 338

Proprietor: AMMONIA CASALE S.A.
Via della Posta 4
CH-6900 Lugano(CH)

Proprietor: Zardi, Umberto
Via Lucino 57
CH-6932 Breganzona (TI)(CH)

Inventor: Zardi, Umberto
Via Lucino 57
CH-6932 Breganzona(CH)
Inventor: Pagani, Giorgio
Salita dei Frati 13
CH-6900 Lugano(CH)

Representative: Incollingo, Italo
AMMONIA CASALE S.A. Via della Posta 4
CH-6900 Lugano(CH)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
The importance of achieving high reaction yields in the heterogeneous synthesis for the production of ammonia, methanol and other products is well known. Such reaction yields are remarkably influenced by: a) the optimization of the number of catalytic beds; b) the system to control reaction temperature by means of intermediate cooling of the gas between catalytic beds; c) the efficiency of the catalyst usually selected with a small granulometry (1.5–3 mm) in the more advanced radial or axial-radial reactors.

There is a great number of reactors of the old generation in existence with axial flow of the gas in the catalytic beds, so that large granulometry (6–12 mm) not very efficient catalyst must be used, with the inconvenient of low yields and considerable pressure drop and therefore high energy consumption.

The above reactors have usually several catalytic beds (up to four in the case of Kellogg reactors) with intermediate quenching between beds (mixing the hot reacted gas with cooler feed gas).

In the more advanced reactors the flow of gas through the catalytic beds is either radial (reactors such as Topsoe or Uhde) or axial-radial such as in the Ammonia Casale reactor. In these reactors more active catalyst with a small granulometry is generally used (1.5–3 mm in cartridges with two or three radial or axial-radial beds, with the advantage of low pressure drop, with intermediate cooling between the beds by means of the indirect exchange of heat using an exchanger.

The advantage of indirect exchange over quenching is that it permits a fuller use of the catalytic beds, and therefore in the above reactors higher conversion yields are obtained, hence lower energy consumption.

A remarkable interest has been shown recently in the modernization of existing axial reactors with low yields in order to improve their performance up to the level of more modern radial or axial-radial reactors.

The Applicant has recently put forward in his European patent application 86104911.2 the modification of axial reactors with several beds, such as Kellogg reactors for example, to turn them into more efficient axial-radial or radial reactors. According to the above patent application the cartridge of existing reactors is simply modified "in situ" (keeping therefore most of the original cartridge) by adding walls permeable by gas and bottoms in order to turn axial beds into axial-radial or radial beds. According to the above application various cartridge arrangements can be achieved.

The recent publication "Nitrogen" No. 165, January-February 1987, illustrates the industrial applications effected by the Applicant of the system described in the above-mentioned application, according to which axial Kellogg reactors with four catalytic beds have been modified in order to improve efficiency, constructing "in situ" a four-bed cartridge with axial-radial gas flow and intermediate cooling by means of feed-gas quenching (Fig. 4 in the article).

The cartridge so modified will take a small-granulometry, high-yield catalyst.

The same article illustrates a different possible embodiment concerning the modification "in situ" suggested in European patent application No. 86104911.2 according to which an axial reactor with several catalytic beds can be modified to increase yields by constructing a two-bed cartridge with radial gas flow and indirect intermediate cooling by means of an exchanger according to the Topsoe proposal (Fig. 1 in the article). Here too a small granulometry catalyst is used.

The solution presented by the Applicant which leaves unchanged the number of catalytic beds and the intermediate cooling system has been the one generally preferred inasmuch as it minimizes the modifications required for the existing cartridge permitting in any case to achieve very high yields.

A drastic modification of the existing cartridge is necessary, on the other hand, to convert the cartridge into two catalytic beds with intermediate indirect cooling between beds by means of an exchanger, according to the Topsoe plan in "Nitrogen". Said plan requires besides the use of an expensive large size exchanger in high-quality material (Inconel 600) because of the high temperatures.

Continuing in his research the Applicant has surprisingly conceived a system which can be suitable adopted to modify existing reactors as well as for new reactors according to which the synthesis catalyst is distributed in three axial-radial or radial catalytic beds, control of the temperature being effected by quenching with fresh gas between the first and the second bed and by means of indirect cooling with exchanger between the second and the third bed of the gas leaving the second bed using fresh gas heated inside the tubes of said exchanger.

The above system, although it minimizes modifications to the cartridge when modernizing existing reactors, permits further increase of reaction yields when compared to the state of the art described in the Applicant’s application 86104911.2 and in the "Nitrogen" article, avoiding use of a big exchanger in high-quality material such as Inconel 600. According to the new system, in effect, the exchanger required to control temperature between the second and the third bed can be much smaller (70%) and in a standard material such as stainless steel.
According to a particular embodiment of the invention (Fig. 1) the gas running through the catalytic beds with an axial-radial or radial flow runs: a) from the inside towards the outside of the bed in the first catalytic bed, the fresh quench gas between the first and the second catalytic bed being distributed from an annular distributor situated in the top section of the external gas collector; b) from the outside towards the inside of the bed in the second and third catalytic bed an exchanger being situated in the central part of the second catalytic bed, said exchanger being fed from a portion of the fresh feed gas flowing through the exchanger inside the tubes, and from the other outside the tubes by the hot gas coming from the second bed.

According to a variation of the above-mentioned possible embodiment of the invention, the first catalytic bed is run through by the gas with an axial flow, the annular distributor of the quench gas being situated near the external wall of the cartridge in the higher part of the bottom of the first bed, according to the description made in the Applicant's Swiss application No. 02221/86 (Fig. 2).

According to a further variation of the invention (Fig. 3) the gas flows in the three beds with a radial flow.

The advantages of the above-mentioned invention over the state of the art can be summed up as follows:
- I - high yields
- II - minimum investment
- III - minimum modification in the case of modernization "in situ" of existing reactors.

The particular embodiments of the invention are disclosed in the claims.

For the purpose of illustration but not of limitation some embodiments of the invention are described:
- Figure 1 shows schematically a synthesis reactor cartridge with three catalytic beds with axial-radial flow of the gas normally adopted when modernizing "in situ" existing reactors. Most of the stream 1 feed gas enters from the bottom of the reactor's shell M, runs from bottom to top along airspace 1 between the shell and the cartridge C and goes then to the outside of the exchanger S1 to be pre-heated by the hot gas leaving from the head of the reactor, stream 5.

The gas so pre-heated stream 1', whose temperature is controlled by a part of the feed gas stream 2, mixes with stream 4 pre-heated in exchanger S2 and reaches the first catalytic bed through which it runs with an axial-radial flow from the inside outwardly, collecting in airspace 1' between cartridge C and the outside wall Pe of the first bed where it mixes with the fresh quench gas stream 3. The gas so mixed to a lower temperature stream 1'' reaches the second catalytic bed through which it runs reacting and heating up with an axial-radial flow from the outside towards the inside of the bed. The hot gas collects then in airspace 1 formed by the inside wall of the catalytic bed and by the outer shell of exchanger S2 situated in the central part of the second catalytic bed and is cooled running from top to bottom outside the tubes of exchanger S2, finally collecting at the exchanger's exit to reach the entrance to the third catalytic bed, stream 1''.

A stream of fresh gas 4 is fed to the bottom of exchanger through which it runs inside the tubes pre-heating and finally joining stream 1'. Stream 1'' finally runs with an axial-radial flow from the outside to the inside through the third catalytic bed C3, collecting in the central collector 1' whence through the central transfer tube T it reached the inside of the tubes of exchanger S1 where it cools pre-heating stream 1 finally to leave the reactor, stream 5.

- Figure 3 shows the cross-section of a synthesis reactor's cartridge with three catalytic beds with the gas flowing radially. Exception made for the flow of the gas in the beds, which in this instance is radial and not axial-radial as in Fig. 1, the beds being closed at the top, the gas run through the various parts of the reactor is as previously described for Fig. 1.

Example

With reference to Fig. 1 the following is an example of embodiment of the invention concerning this application.

In a synthesis reactor for the production of 1000 MTD of ammonia the following operating conditions apply:
- pressure at reactor's inlet: 140 bar
- Figure 4 shows the diagram temperature/reactor's yield under the operating conditions described above (Fig. 4b) and the diagrams temperature/state of the art yields described in Fig. 2 and Fig. 7 of "Nitrogen" (Fig. 4b and Fig. 4c).

As the above-mentioned diagrams show, the improvement in yield obtained with the reactor described according to the invention is about 25 to 60% above the yield obtained in the state of the art. In the above-mentioned diagrams gas temperature is given in abscissa and the concentration of ammonia at reactor's outlet in ordinate.

Claims

1. Process for the heterogeneous, exothermic catalytic synthesis of ammonia, methanol and the like products in which the synthesis catalyst is distributed in three axial-radial or radial flow catalytic beds, and the temperature between beds is controlled by quenching or indirect cooling in heat exchanger, characterized in that said inter-bed temperature control is carried out by quenching with fresh gas between the first and the second catalytic bed, and by indirect cooling of the gas leaving the second catalytic bed with fresh gas heated inside the tubes of a heat exchanger disposed between the second catalytic bed and the third catalytic bed.

2. A process according to claim 1, wherein the gas running through the catalytic beds with an axial-radial or radial flow, runs: (a) from the inside to the outside of the bed in the first catalytic bed; and (b) from the outside to the inside of the bed in the second and third catalytic beds, the heat exchanger being disposed in the central part of the second catalytic bed.

3. A process according to claim 1, wherein the gas runs through the first catalytic bed with an axial-radial flow and through the remaining two beds with an axial-radial or radial flow, from the inside towards the outside of the beds.

4. A process according to claim 2, wherein the gas running through the catalytic beds with axial-radial or radial flow, runs: (a) from the inside towards the outside of the bed in the first catalytic bed, the fresh quench gas introduced between the first ad the second bed being distributed by an annular distributor situated in the top section of an external gas collector; and (b) from the outside towards the inside of the bed in the second and third catalytic beds, the exchanger being disposed in the central part of the second catalytic bed, the exchanger being fed at one the tubes, and at the other end outside the tubes by the hot gas coming from the second bed.

5. A process according to claim 1, wherein the flow fresh quench gas is at least 20% of the total flow of feed gas, the flow of fresh gas being fed inside the exchanger tubes being at least 20% of the total feed gas flow.

Revisions

1. Procédé pour la synthèse catalytique éthérégène exothermique de l’ammoniaque, du méthanol et produits similaires dans lequel le catalyseur de synthèse est réparti dans 3 lits catalytiques du type flux
axial-radial ou radial, et la température entre les lits est contrôlée au moyen de quenching ou refroidissement indirect dans l'échangeur de chaleur, caractérisé par le fait que le contrôle de température entre les lits est effectué au moyen de quenching avec du gaz frais entre le premier et le deuxième lit catalytique, et par refroidissement indirect du gaz sortant du deuxième lit catalytique avec du gaz frais réchauffé dans les tubes d'un échangeur de chaleur disposé entre le deuxième et le troisième lit catalytique.

2. Un procédé selon revendication 1, dans lequel le gaz traversant les lits catalytiques avec flux axial-radial ou radial coule: c) de l'intérieur vers l'extérieur du lit dans le premier lit catalytique et e) de l'extérieur vers l'intérieur du lit dans le deuxième et troisième lits catalytiques, l'échangeur de chaleur étant situé dans la partie centrale du deuxième lit catalytique.

3. Un procédé selon revendication 1, dans lequel le gaz traverse le premier lit catalytique avec un flux axial-radial et les deux autres lits avec un flux axial-radial ou radial, de l'intérieur vers l'extérieur des lits.

4. Un procédé selon revendication 2, dans lequel le gaz traversant les lits catalytiques avec flux axial-radial ou radial coule: a) de l'intérieur vers l'extérieur du lit dans le premier lit catalytique, le gaz frais de quench introduit entre le premier et le deuxième lit étant distribué par un distributeur annulaire situé dans la section supérieure d'un collecteur externe du gaz, et b) de l'extérieur vers l'intérieur du lit dans le deuxième et troisième lits catalytiques, l'échangeur étant disposé dans la partie centrale du deuxième lit catalytique, l'échangeur étant alimenté d'une part de l'intérieur des tubes et d'autre part, à l'extérieur des tubes, en gaz chaud provenant du deuxième lit.

5. Un procédé selon revendication 1, dans lequel le débit de gaz frais de quench est au moins le 20% du débit total de gaz d'alimentation, le débit de gaz frais alimenté à l'intérieur des tubes de l'échangeur étant au moins le 20% du débit total de gaz d'alimentation.

Patentansprüche

1. Verfahren für heterogene exotherme katalytische Synthese von Ammonium, Methanol und ähnliche Produkte, in welchem der Synthesekatalysator unter 3 axial-radiale oder radiale-Flüsse katalytische Bette verteilt sind, und die Temperatur zwischen die Bette durch Quenching oder indirekte Abkühlung im Wärmeaustauscher kontrolliert ist, dadurch gekennzeichnet, dass die Inter-Bette Temperaturkontrolle mittels Frischgas-Quenching zwischen das erste und zweite katalytische Bett, und mittels indirekte Abkühlung von Gas laufend aus dem zweiten Bett mit Frischgas erwärmt in den Wärmeaustauscherrohre, aufgestellt zwischen das zweite katalytische Bett und das dritte katalytische Bett.

2. Ein Verfahren gemäss Anspruch 1, in welchem das Gas, gehend durch die katalytische Bette mit einem axial-radialen oder radialen Fluss, fließt: a) von innen nach aussen des Bettes im ersten katalytischen Bett; und b) von aussen nach innen des Bettes im zweiten und dritten katalytischen Bett, der Wärmeaustauscher befindend sich im Mittelteil des zweiten Bettes.

3. Ein Verfahren gemäss Anspruch 1, in welchem das Gas durch das erste katalytische Bett mit einem axial-radialen Fluss fließt, und durch die weiteren zwei katalytischen Bette mit einem axial-radialen oder radialen Fluss, von innen nach aussen der Betten.


5. Ein Verfahren gemäss Anspruch 1, in welchem der Quenchesch Mischgas Fluss mindestens 20% vom ganzen Versorgungsgasfluss ist, der Frischgasfluss versorgt im innen der Austauscherrohre seien mindestens 20% vom ganzen Versorgungsgasfluss.