Disc drive arrangement for CD player and the like capable of loading different size discs.

Priority: 30.06.87 JP 163285/87
23.06.87 JP 96259/87 U

Date of publication of application:
28.12.88 Bulletin 88/52

Publication of the grant of the patent:
02.02.94 Bulletin 94/05

Designated Contracting States:
AT DE FR GB IT

References cited:
DE-A- 3 513 040
FR-A- 2 563 650
US-A- 4 302 832
US-A- 4 523 306
US-A- 4 561 085

Proprietor: SONY CORPORATION
7-35 Kitashinagawa 6-chome
Shinagawa-ku
Tokyo 141(JP)

Inventor: Toyoguchi, Tsutomu
C/o Sony Corporation
7-35 Kitashinagawa 6-chome
Shinagawa-ku Tokyo(JP)

Representative: Ayers, Martyn Lewis Stanley et al
J.A. KEMP & CO.
14 South Square
Gray’s Inn
London, WC1R 5EU (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The present invention relates generally to a disc drive arrangement and more specifically to a so-called "slot in" loading type disc drive arrangement which can correctly load discs of different sizes.

Of recent times CD players using the so called "slot in" loading type arrangements have been widely used in connection with automotive vehicle type stereo systems. Figs. 15 and 16 show a previously proposed slot in loading type arrangement. In these figures a disc loading passage or slot 1 is provided with a disc loading roller 2 which cooperates with a disc 3 for the purposes of moving the disc into an operative position.

When the disc is being loaded, the loading roller 2 engages the disc 3 and is rotated in a first predetermined rotational direction. When the disc 3 is unloaded the loading roller 2 is rotated in the opposite rotational direction.

In addition to the loading roller 2, the arrangement includes a guide plate 4 which is located in a manner to engage the opposite of the disc 3 to that which the loading roller contacts. As will be appreciated from the drawings, the loading roller 2 is arranged to have a small diameter centre portion and outwardly tapering larger diameter end sections. At the same time, the guide plate 4 is arranged so that the surface thereof in contact with the disc is concavely curved. With this arrangement the disc 3 is engaged by the loading roller 2 and the guide plate 4 and therefore protected from damage such as scratching, abrasion and the like.

Alternatively, as shown in US-A-2,552,650, discs can be passed between two rollers with small diameters in the middle sections which gradually increase towards the end portions.

However, with this type of prior art arrangement a problem is encountered that it is difficult to load discs of different sizes, for example 12cm and 8cm. Viz., in order to permit the larger diameter 12cm discs to be loaded it is necessary to arrange the width loading slot to be sufficiently wide as to permit the entry of the larger of the two discs. This requirement also tends to fix many of the other dimensions of the device in a manner whereby when a smaller 8cm diameter disc 5 is loaded, such as shown in Fig. 17, the disc is subjected to very little centring and is able to move off centre from the position illustrated in solid line to that illustrated in phantom.

To overcome this problem it has been proposed to provide a small disc guide arrangement in the guide slot immediately before the loading roller 2. However, as this guide is fixedly disposed in the loading slot its provision prevents the loading of the larger 12cm discs.

A further problem is encountered in that disc guide plate 4 which is located adjacent the tapered loading roller 2 is arranged to be concave for the purpose of ensuring that contact between the roller and the guide plate only occurs at the periphery of the disc which is not used for recording purposes. In the event that sufficient clearance is set to permit the entry of a large diameter disc, when a small diameter disc is inserted an overly large clearance occurs in the region the disc should be gripped with the result that slippage occurs which often leads to delayed or improper loading. Conversely, if the clearance is set for small diameter discs, when a large diameter one is inserted excessive contact between the guide plate and the surface of the disc on which material is recorded tends to occur and tends to lead to scratching and similar damage.

US-A-4,523,306 describes a record player which uses two pairs of lever arms to receive and guide records of different sizes to centre them on a turntable. The prior art portion of claim 1 is based upon this disclosure.

It is an object of the present invention to provide an arrangement which permits both large and small diameter discs to be readily loaded onto the turntable of a disc drive without damage or improper centring.

In brief, the above object is achieved by an arrangement wherein when a large diameter disc is inserted into the disc drive, diameter sensing probes detect the large diameter and unlock movable disc guides and subsequently induce the guides to separate to levels wherein passage of the large diameter disc is facilitated. The guides are locked in a manner which prevents the same from returning to the positions suited for guiding small diameter discs until such time as the large diameter disc is unloaded from the device.

Lever means mounted in the drive respond to the diameter of the disc loaded and assume configurations relative to the diameter of the loaded disc. The lever means is locked in a configuration suited for small discs until such time as a large disc is introduced. At this time the lever means is unlocked. The means includes means which sense the peripheral edge of the disc and hold the arrangement in a configuration suited for the larger diameter.

According to a first aspect of the present invention there is provided a disc drive for discs of first and second diameters, comprising:

a guide slot through which a disc is to be introduced into said drive;

sensor means for sensing discs being introduced into the drive; and

first and second movable disc guides, disposed within the drive, and between which a disc
introduced into the drive pass, for guiding the position of the disc as it is introduced through the guide slot into the drive;

characterised by further comprising:

a slide device operatively connected with said first and second disc guides, for changing the relative positions of the disc guides between first and second predetermined positions;

lock means operatively mounted on said slide device for selectively locking said first and second movable disc guides in said first and second predetermined positions, said first position being suit- ed to guiding discs having a first diameter and said second position suited to guiding discs having a second diameter, said second diameter being larger than the first diameter; and in that

said sensor means is mounted on said lock means and operative according to whether the disc diameter is sensed as being larger than said first diameter for releasing the lock means from the first position, which is suited for discs having the first diameter and permitting said disc guides to be moved to the second position which is suited for discs having the second diameter.

A second aspect of the present invention comes in that the above mentioned disc drive further features: a loading roller, said loading roller being disposed in said guide slot, said roller having a central portion and two tapered axial end portions, said central portion having a diameter which is less than that of the axial ends of the roller, said two tapered axial end portions tapering outwardly from said central portion to said ends; a guide plate, said guide plate being disposed in said guide slot in a manner to juxtapose said loading roller, said guide plate having a concave surface, said guide plate being arranged with respect to said loading roller in a manner wherein the disc which is being loaded into the drive is contacted on a first surface by said guide plate and contacted on a second opposite surface by said loading roller, the arrangement of said guide plate and said loading roller being that said disc is contacted only at the peripheral edge portions thereof.

A third aspect of the invention comes in that the guide plate mentioned above is resiliently mounted in said guide slot in a manner to be biased toward said loading roller, said guide plate being formed with recesses into which the tapered axial end portions of said loading roller can be received, said recesses being so shaped and sized with respect to the size and shape of said loading roller that when the axial end portions of said loading roller are received in said recesses said guide plate and said loading roller are spaced by a distance suitable for loading discs having said first diameter.

A fourth aspect of the invention comes in that said slide device comprises: first and second essentially flat slide plates, said first and second slide plates being arranged one on the other and each formed with first and second guide slots; first and second slide guide pins, said first and second slide guide pins being fixed to the surface of an upper frame member, said first and second slide guide pins being received in said first guide slots of said first and second slide plates; a third slide guide pin fixed to said upper frame, said third slide guide pin being received in said second guide slots of said first and second guide plates.

A fifth aspect of the invention comes in that said first and second movable disc guides are supported on said first and second slide plates respectively, said first guide slots of said first and second guide plates being arranged so that when said first and second slide guide pins proximate the inboard ends of said first slots, said first and second slide plates have been moved in a manner to achieve the maximum separation of said first and second movable disc guides, and so that when said first and second slide guide pins engage the outboard ends of said first slots, said first and second slide plates have been moved in a manner to achieve the minimum separation of said movable disc guides, said minimum separation being essentially equal to said first diameter, said maximum separation being essentially equal to said second diameter.

A further aspect of the present invention comes in that the lock arrangement comprises: first and second lock plates, said first and second lock plates being pivotally mounted on the outboard ends of said first and second slide plates respectively, said first and second lock plates being formed with recesses which respectively engage first and second lock pins when said first and second slide plates assume positions wherein said first and second movable disc guides are separated by said minimum separation and said first and second lock plates are rotated to first locking positions, said first and second lock plates being formed with stopper portions which engage said first and second slide guide pins when said first and second slide plates assume positions wherein said first and second movable disc guides are separated by said maximum separation and wherein said first and second lock plates are rotat- ed to second lock positions.

Another aspect of the present invention is deemed to come in that the sensor means comprises first and second probes, said first and second probes being mounted on said first and second lock plates, said first and second probes assuming positions wherein no contact occurs between said probes and the peripheral edges of a
disc having said first diameter, said first and second probes being moved away from each other when a disc having a second diameter is inserted into said guide slot, the movement of said first and second probes under such conditions causing said first and second lock plates to rotate away from their respective first locking positions and toward their respective second locking positions.

An eighth aspect of the instant invention is deemed to come in the further provision of lever means, said lever means including: a first angled lever pivotally mounted on said upper frame, said first angle lever supporting a switch and actuating lever arrangement which is responsive to the entry of a disc into the drive and which produces a signal indicative of the loading of the disc into said drive ending; contact means mounted on said first angled lever, said contact means being arranged to be engageable with the peripheral edge of the disc which is loaded into said drive: a second angled lever, said second angled lever being operatively connected at one end to one end of said first angled lever, said second angled lever including a edge sensing pin engageable with the peripheral edge of the disc which is loaded into said drive: said first and second angled levers being biased in manner which causes said contact means and said edge sensing pin to move inwardly and essentially toward a turntable disposed in said drive and on which the disc which is loaded into said drive is disposable.

Another aspect of the invention is deemed to be that the first angled lever includes a flange member, and to come in that the device further comprises first and second pivotal plate members, said first pivotal plate member being pivotally mounted on said first slide plate and bias in a direction to rotate inwardly, said first pivotal plate having a lock member which is engageable with said flange member in manner to lock said lever means in a predetermined arrangement, said first pivotal plate member being moved in response to the insertion of a disc having a second diameter into said guide slot, in a manner to release the engagement between said lock member and said flange.

DESCRIPTION OF THE DRAWINGS

The features and attendant advantages of the present invention will become more clearly understood from the following description of the preferred embodiments taken in conjunction with the appended drawings in which:

Fig. 1 is a perspective view of an embodiment of the present invention;

Fig. 2 is a perspective view showing a frame arrangement which forms a vital part of the instant embodiment;

Fig. 3 is a plan view showing the underside of the arrangement shown in Fig. 1 which shows the details of the connection between the two major frame arrangements of the device;

Figs. 4 and 5 are side elevations showing a pivotal frame member in so called "up" and "down" positions;

Fig. 6 is a front elevation showing the relationship between the loading roller and a guide plate which cooperates therewith;

Figs. 7 and 8 are side elevations showing the drive connection arrangement which interconnects a loading roller drive motor and a rack arrangement which raises and lowers various elements of the device vital for placing the loaded disc on the turntable of the device;

Fig. 9 is an exploded view showing the construction and arrangement of various frames and slide members which form a vital part of the instant embodiment;

Fig. 10 is a plan view showing the loading of a large diameter disc and the configuration assumed by various levers and associated elements in such circumstances;

Fig. 11 is a view similar to that shown in Fig. 10 but depicts the elements which support a disc clamp separated to permit the clamp to seat on the turntable and secure a disc in place;

Fig. 12 is a plan view showing the loading of a small disc and the configuration assumed by the various levers and associated elements which occurs under such circumstances;

Figs. 13 and 14 are respectively side and front elevation views showing the construction which permits the clearance between the loading roller and the disc guide plate to be varied depending on the diameter of the disc being loaded;

Figs. 13 to 17 are views showing constructional arrangements found in prior art devices and which have been discussed in the opening paragraphs of the instant disclosure in connection with the problems and shortcomings encountered with said prior art.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

1. OUTLINE OF DISC LOADING DEVICE;

Fig. 1 is a perspective view of a CD player 11 which suited for automotive application. This device is arranged to receive and center large diameter (12 cm) type discs 12 (hereinafter referred to as large discs) and small diameter (8 cm) discs 13 (hereinafter referred to as small discs). The chassis of the device includes a frame or section section 14. This frame 14 includes a structure which
define a loading mouth or entrance 15. When large and small discs are inserted through entrance 15 into the interior of a loading slot 16, they come into contact with a loading roller 17 which is disposed therein. The arrangement further includes what shall be referred to as small disc guides 18 and 19 which are located in front of the loading roller 17; a slidable guide position changing device 20 which is operatively connected with the small disc guides 18, 19; a lock devices 21 which fix the small disc guides 18, 19 and the position changing device 20 in preselected positions depending on the size of the disc being loaded; disc diameter sensing probes 22, 23 which are disposed on the lock devices 21; a turntable 24; and clamp release arms 25, 26.

2. BASIC OUTLINE OF FRAME CONSTRUCTIONS

Figs. 2 to 5 show details of the frames which form a part of the embodiment of the present invention. As will be appreciated from these figures, the above mentioned small disc guides 18, 19; guide position changing device 20; lock devices 21; an upper frame member (to which the preceding elements are connected); the above mentioned disc loading roller 17 and turntable 24 are operatively connected with a pivotal frame arrangement generally denoted by the numeral 29.

The upper frame 27 is provided with a clamp assembly opening 30 which is formed in a upper plate member 31 thereof. The upper frame 27 further includes downwardly depending flange or side members 32, 33. The guide position changing device 20 and the lock devices 21 are disposed on the upper surface of the upper plate member 31. A disc upper surface guide plate 35 is mounted on the lower surface of the upper plate member 31 at location between the edges thereof and in essentially the center of the same. This guide plate 35 is formed, as best seen in Fig. 6, to have a concave surface which is located above the loading roller 17 and which define the upper surface of the loading slot 16. The concave shape of the guide plate 35 cooperates with the tapered construction of the guide roller in manner which ensures that only a peripheral portion of the disc being loaded is actually subject to contact.

A lower frame member 28 is arranged, as shown in all portion of the disc being loaded is actually subject to contact.

A lower frame member 28 is arranged, as shown in Fig. 3, to be below the upper frame 27 and located so that the depending sides 32, 33 thereof are connected thereto through vibration damping bushes 36.

In this instance the bushes are disposed beneath the lower plate 28 and sandwiched thereagainst by inwardly extending connection flanges 32a and 33a.

With this arrangement the upper frame 27 is suspended on the lower frame 28 in a manner wherein any vibration that may be transmitted to the lower frame member 28 from the vehicle chassis or the like to which it is connected, is prevented from reaching the upper frame 27, the turntable and light pickup which are supported thereon.

The pivotal frame 29 comprises first and second pivotal arm members 38, 39 which are disposed on either side of the loading entrance 15 and which are pivotally mounted on the ends of the loading roller 17. The pivotal frame 29 further includes a disc suspension plate 37 which is integral with and which extends from pivotal arm 38 to pivotal arm 39. This plate is arranged at a level lower than the disc entrance opening 15.

The arms 38 and 39 are pivotally connected with side members 32, 33 of the upper frame 27 via pins 40. The other ends of the arms 38 and 39 are formed with spring connection pins 41. The side members 32, 33 are formed with corresponding connection pins 43. Torsion springs 42 operatively interconnect the pins in the manner shown in Figs. 1 and 2. These springs 42 are arranged to provide a snap action with biases the arms 38, 39 in a manner which enables the upper frame 27 to be maintained selectively in either in the position illustrated in Fig. 4 (viz., biased in the direction of arrow a) or that illustrated in Fig. 5 (direction of arrow b).

When in the pivotal frame 29 is in its upper or "up" position (shown in Fig. 4), the disc guide plate 35 is located in a manner to cooperate with the disc loading roller 17 and appropriately contact a disc being loaded into the device. On the other hand, when the pivotal frame 29 assumes its lower or "down" position the disc guide plate 35 is elevated above the loading roller 17 and assumes the position illustrated in Fig. 5. At the same time the disc suspension plate 37 is rotated up to a horizontal position. As the pivotal frame 29 is rotated to the position shown in Fig. 5 the disc is lowered onto the disc turntable 24.

3. DISC LOADING ROLLER CONSTRUCTION

The loading roller 17 is arranged as best seen in Fig. 6 to be shaped in a manner that the axial center portion has the smallest diameter and so that the diameter of the element increases toward the axial ends thereof to define tapers. As previously disclosed, the pivotal arms 38 and 39 are supported on the ends of the loading roller 17 in a manner to be pivotal about the axis of rotation of the same. Accordingly, when the arms 38, 39 are pivotally
fully in the counter-clockwise direction the disc guide plate 35 and the loading roller 17 are brought into suitable proximity of one and other.

As shown in Figs. 7 and 8, the pivotal frame 29 is arranged to pivoted about the axis of the loading roller 17 by a roller drive motor 45 which is operatively connected with the frame 29 by step-down gear arrangement generally denoted by the numeral 46, and a pinion gear 47. In this instance the motor is (as best seen in Fig. 3) located at the lower front right hand corner of the of the lower frame 28.

It should be noted that when the frame 29 is rotated in the clockwise direction as seen in Figs. 7 and 8, a drive mechanism 48 is arranged to operate pivotal arm 49. This arm 49 is arranged to carry an idler gear 50 having a large diameter section 50a and a small diameter section 50b. The larger diameter gear 50a is arranged to mesh with the pinion gear 47 while the smaller diameter gear 50b is arranged to engageable with a rack 51. The rack 51 is operatively connected with an electromagnetic actuator 52 which is arranged to selectively move the rack into and out of engagement with the small diameter gear 50b.

With the above construction, when the roller drive motor 45 is energized, the disc loading roller 17 is induced to rotate and both large and small discs can be moved to a location directly above the turntable 24. In order to detect the completion of a disc loading operation a loading end sensor arrangement generally denoted by the numeral 53 is provided. When the disc is in position, the output of the sensor arrangement 53 is used to actuate the electromagnetic actuator 52 and bring the rack 51 into mesh with the small diameter gear portion 50b of the idler gear 50.

Following the engagement of the rack 51 and the idler gear 50, the idler gear runs along the rack 51 causing the pivotal frame 29 to rotate from the position shown in Fig. 7 to that shown in Fig. 8. This induces the disc which has been loaded to be lowered onto the turntable 24.

4. SMALL DISC GUIDE MECHANISM

When a small disc having a diameter dl (see Fig. 1) is inserted along the line RC denoting the loading center of the device between the small disc guides 18, 19, the center of the disc automatically aligns with the loading center line RC. On the other hand, when a large disc is inserted, the guide position changing device 20 is activated and slides in a manner which permits the disc to enter the slot 16 unhindered.

5. GUIDE CHANGE POSITION DEVICE CONSTRUCTION

Fig. 9 shows in exploded form the construction which characterizes the guide position change device 20. In this arrangement elongate slide plates 54 and 55 are connected with pivotal plates 56 and 57 and arranged so that coil springs 58, 59 apply a bias thereto therethrough. Slide plate 54 (hereinafter referred to as the left slide plate) is formed with two elongate slots 60, 61 which extend essentially parallel to the longitudinal length of the member.

A shorter slot 62 is formed at one end and in a manner to extend normally to the slots 60, 61. The small disc guide 18 is slidably received in this slot and arranged to extend down through the same.

The right slide plate 55 (as it will be referred to hereinafter) is formed with elongate slots 64 and 65 in the illustrated manner. A lock pin 63 fixed to the left slide plate 54 is arranged to extend down into slot 65. A relatively short slot 66 is formed in the right hand end of the right slide plate 55 and arranged to receive the small disc guide 19 therein. A lock pin 67 is formed at the left hand end of the right slide plate 55 and arranged to extend downwardly through an un-numbered slot formed in the upper frame 27.

A first guide pin 68 is provided on the upper frame 27 proximate the un-numbered slot and arranged to be slidably engaged in first slide guide slot 60 of the left slide plate 54. A second guide pin 69 is also provided on the upper surface of the upper frame 27 and arranged to be slidably engaged in the third guide slot 64 of the right slide plate 55.

Further, in this arrangement, the pivotal frames 56 and 57 are formed with openings 56a and 57a respectively. These opening are arranged to receive the upper shaft portions 18a and 19a of the small disc guides 18 and 19.

The coil springs 58 and 59 which are attached at their one ends to the pivotal frames 56, 57 are attached at their other ends to connection lugs (no numerals) which project up from the upper plate member 31 of the upper frame 27. These springs tend to bias the pivotal plates 56 and 58 to rotate inwardly toward each other as seen in the drawings.

As best seen in Fig. 12, when the guide pin 68 is positioned in the left end of the first slide slot 60 of the left slide plate 54 and the second guide pin 69 of the right slide plate is positioned in the right end of the third guide slot 64, the slide guide pin 70 assumes a central position in the second guide slot 61 of the left slide plate 54. Under these conditions, the fourth slide slot 65 of the right slide plate 55 assumes a central position. Accordingly,
the small disc guides are appropriately located for guiding small discs.

According to the present embodiment, the guide position change 20 device is operative in a manner, as shown in Figs. 10 and 11, to appropriately reposition the small disc guides 18 and 19 upon the insertion of a large disc into the mouth or entrance of the device.

Further, as shown in Fig. 12 due to the repositioning of the guides 18 and 19 as a result of the operation of the guide position change device 20, centering of the disc is assured.

In this instance the guides are locked in position by the lock devices 21 and the slide guide pins 68 and 69 assume positions in essentially the centers of the guide slots 60 and 64. At the same time the guide pin 70 assumes the illustrated position in the second guide slot 61 formed in the right slide plate 54. With this the guide slot 65 of the right slide plate 55 assumes an essentially central position and the small disc guides 18, 19 are positioned in the appropriate positions for guiding small discs.

6. LOCK DEVICE CONSTRUCTION

In the instant embodiment the lock devices take the form of essentially triangular lock plates 73, 74 in which pin engagement recesses 71, 72 are respectively formed. These recesses 71, 72 are arranged to receive the lock pins 63, 67 when the embodiment assumes the condition illustrated in Fig. 12. In this condition the slide plates 54, 55 are prevented from moving either with respect to each other or with respect to the chassis of the device. In this condition the coil springs 75, 76 function to bias the plates 73, 74 in a manner to rotate in a direction which causes the recesses 71, 72 to be retained in rattle free engagement with the lock pins 71, 72.

The triangular lock plates 73, 74 are formed with openings 73a, 74a which are arranged to receive the shafts 18a and 19a of the guides 18 and 19 (see Fig. 9). Accordingly, when the lock pins 63, 67 are received in the recesses 71, 72 the movement of the guides 18 and 19 is prevented.

The lock plates 73, 74 are further formed flat end portions 77 and 78. These portions act as stoppers which, when the device assumes the condition illustrated in Figs. 10 and 11, prevent the inward movement of slide plates 54 and 55 and the guides 18 and 19. This of course again locks the arrangement and prevents inward movement of the guides 18, 19 toward positions suited for small diameter discs.

7. DISC DIAMETER DETECTION ARRANGEMENT

Sensor probes 22 and 23 are provided on corners of the triangular lock plates 71, 72 and are arranged to be located proximate the entrance or mouth of the loading slot 16. These sensors 22, 23 further provide a lock releasing function which permits the lock devices 21 to be appropriately released and are located between the entrance 15 and the guides 18 and 19. As will be noted from Fig. 12 guides 18 and 19 are locked in position for guiding a small disc, the sensors probes 22 and 23 are spaced by a distance just greater than the diameter of the small disc.

However, when a large disc is inserted through the entrance 15 into the loading slot 16 the periphery of the disc engages the sensor probes 22 and 23 and induces the lock plates 73, 74 to rotate against the bias of springs 75 and 76. This rotation moves the recesses 71, 72 out of engagement with the lock pins 63, 67 thus releasing the slide plates 54 and 55 from their locked state.

8. LOADING END SENSOR CONSTRUCTION

Figs. 10 to 12 show details of the arrangement which enables the completion of loading of a disc to be detected.

This construction allows for the difference in diameter of the large and small discs and permits the arrangement to detect the completion of the loading of either type of disc. When the disc is indicated as being located above the turntable 24 (viz., the end of loading) the electromagnetic actuator 52 is energized. The switch 79 which triggers the operation of the actuator 52, is mounted on a bell crank-like lever 81 which is pivoted on the upper plate member of the upper frame 27, on a shaft or pin 80. In this arrangement the short arm of lever 81 is provided with a pin 82 which is received in a recess 83 formed on one end of a second angled lever 85. This lever is arranged to be pivotal about a pin 84 which is also provided on the upper plate member 31.

The second lever 85 is provided with a disc guide member 86 while the first lever 81 is provided with a second disc guide arrangement 87.

In this arrangement the first lever 81 cooperates with a switch activation lever 89 which is pivotal about a shaft 88. The activation lever 89 is provided with a disc contact pin 90 which is engageable with the peripheral edges of the large and small discs. Coil springs 91 and 92 are connected to the activation lever 89 and the second angled lever 85 in the manner depicted in Fig. 1. The spring 92 applies a bias which tends to rotate the lever arrangement in a manner which moves the first and second disc guides 86 and 87 inwardly.
toward the peripheral edge of the loaded disc.

The first angled lever 81 is provided with an upwardly turned flange 93 at one end. This flange 93 is arranged to cooperate with a stopper 94 which selectively locks the first and second angled levers 81, 85 in manner which will be set forth hereinafter.

When a small disc is loaded, the stopper 94 assumes a position such as shown in Fig. 12 wherein it engages the upturned flange 93 and thus holds or locks the disc guides 86 and 87 in the illustrated positions. These positions are such as to locate a small disc in a centered position over the top of the turntable 24. When the disc which is being loaded engages the pin 90 the switch 97 is closed by the resulting movement of the actuation lever 89. The closure of the switch 79 activates the electromagnetic actuator 52.

On the other hand, when a large disc is loaded into the device, the slide plate 55 is moved in a manner which causes the stopper 94 to assume a position which releases the lock on the disc guides 86, 87.

Viz., upon insertion of the large disc the outward movement of sensor probes 22, 23 moves the lock plates 73 and 74 in a manner which in turn moves the pivotal plates 56 and 57 and subsequently moves the angled levers 81 and 85 to the positions illustrated in Fig. 10. In this condition, upon the large disc being fully inserted, the pin 90 is appropriately located to be contacted by the peripheral edge of the same and trigger the operation of the electromagnetic actuator 52.

It should be noted that the clamp release arms 25, 26 are arranged to contact the lower outer edge 96 of the magnetic clamp 95 until such time as the loading of the disc is completed and suspend the same above the disc and the turntable 24. However, following the loading the release arms are permitted to move from the positions shown in solid line in Fig. 11 for example to those shown in broken line in the same figure. This movement enables the magnetic clamp 95 to be lowered toward the turntable and permitted to attach itself to the center or hub of the same.

OPERATION

The operation of the above describe arrangement is such that when a large disc is inserted into the loading entrance of mouth 15 the disc sensor probes 22, 23 are forced outwardly with the result that the lock plates 73, 74 are induced to rotate and release the setting of the lock devices 21 and induce the movement of the slide plates 54 and 55 which define a major portion of the guide position changing device 20.

Following this, the large disc is contacted by the loading roller 17 and moved into the device. The guides 18 and 19 are moved outwardly and induce the slide plates 54 and 55 to also move outwardly. Next, the stopper 94 is moved in a manner wherein the engagement with the upwardly turned flange 93 is lost. The disc comes into contact with the disc guides 86 and 87 which are pushed apart and assumes a set position wherein pin 90 is pushed in manner which triggers the switch 79 via movement of the switch actuating lever 89.

The closure of the switch 79 induces the operation of the electromagnetic actuator 52 and causes the idler gear 50 to engage with the rack 51. Due to the drive connection with the loading roller drive motor 45 the idler gear is caused to run down the rack 51 and cause the upper frame 29 to lower. The loaded disc is thus lowered toward the top of the turntable 24 and simultaneously the arms 25, 26 which support the clamp 95 separate and permitted the clamp 95 to engage the hub of the turntable 24 and secure the disc in place.

It should be noted that when the large disc is loaded the small disc guides 18 and 19 are moved so that the separation therebetween is at least equal to the width of the disc. Accordingly, the slide plates 54, 55 are moved in opposite directions causing the lock plates 73, 74 to pivot in a manner which moves the stopper portions 77, 78 into engagement with slide guide pins 68, 69 and out of positions wherein the recesses 72, 73 formed in the lock plates 73, 74 engage the lock pins 63 and 67.

On the other hand, when the small disc is loaded the lock plates 73, 74 are not subject to rotation and thus remain in the positions wherein the recesses 71 and 72 engage the lock pins 63 and 67. Further, the disc diameter sensor probes 22 and 23 are such that they are unmoved by the passage of the small disc which centered by the small disc guides 18 and 19 in the positions assumed with the slide plates 54, 55 locked together.

When the small disc has been fully moved into the device and the pin 90 pressed in a manner which triggers the engagement of the rack 51 and the pinion gear 50 the upper fram 29 is lowered and essentially the same operations as conducted at the end of the loading of the large disc performed in essentially the same manner.

Figs. 13 and 14 show an arrangement which permits the clearance defined between the guide plate 35 and the loading roller 17 to be varied in accordance with the diameter of the disc which is being loaded. In this instance the guide plate is formed with recesses which are shaped and sized in a manner which permit the axial end portions of the tapered loading roller 17 to be received therein.
The guide plate 35 is biased toward the guide roller by a suitable spring or elastomeric member (not shown). When a small disc is inserted the roller 17 and the guide pate 35 assume the position shown in Fig. 14.

This clearance is selected to ensure that only the appropriate peripheral edge section of the disc is subject to contact by the roller in the manner shown in Fig. 16.

On the other hand, when a large disc is inserted, the guide plate 35 is lifted upwardly against the bias applied thereto to increase the clearance between the roller and the plate to a degree wherein the large disc is gripped in essentially the same manner and with essentially the same force as the small disc.

Claims

1. A disc drive for discs of first and second diameters, comprising:
 a guide slot (16) through which a disc (12, 13) is to be introduced into said drive;
 sensor means (22, 23) for sensing discs being introduced into the drive; and
 first and second movable disc guides (18, 19), disposed within the drive, and between which a disc (12, 13) introduced into the drive passes, for guiding the position of the disc (12, 13) as it is introduced through the guide slot into the drive;
 characterised by further comprising:
 a slide device (20) operatively connected with said first and second disc guides (18, 19), for changing the relative positions of the disc guides between first and second predetermined positions;
 lock means (21) operatively mounted on said slide device (20) for selectively locking said first and second movable disc guides (18, 19) in said first and second predetermined positions, said first position being suited to guiding discs having a first diameter (13) and said second position suited to guiding discs having a second diameter (12), said second diameter being larger than the first diameter; and
 said sensor means (22, 23) is mounted on said lock means (21) and operative according to whether the disc diameter is sensed as being larger than said first diameter for releasing the lock means from the first position, which is suited for discs having the first diameter (13) and permitting said disc guides to be moved to the second position which is suited for discs having the second diameter (12).

2. A disc drive as claimed in claim 1 further comprising:
 a loading roller (17), said loading roller being disposed in said guide slot (18), said roller having a central portion and two tapered axial end portions, said central portion having a diameter which is less than that of the axial ends of the roller, said two tapered axial end portions tapering outwardly from said central portion to said ends;
 a guide plate (35), said guide plate being disposed in said guide slot (16) in a manner to juxtapose said loading roller (17), said guide plate having a concave surface, said guide plate being arranged with respect to said loading roller in a manner wherein the disc (12, 13) which is being loaded into the drive is contacted on a first surface by said guide plate and contacted on a second opposite surface by said loading roller, the arrangement of said guide plate and said loading roller being that said disc is contacted only at the peripheral edge portions thereof.

3. A disc drive as claimed in claim 2 wherein said guide plate (35) is resiliently mounted in said guide slot (16) in a manner to be biased toward said loading roller (17), said guide plate being formed with recesses (35a) into which the tapered axial end portions of said loading roller can be received, said recesses being so shaped and sized with respect to the size and shape of said loading roller that when the axial end portions of said loading roller are received in said recesses said guide plate and said loading roller are spaced by a distance suitable for loading discs having said first diameter (13).

4. A disc drive as claimed in claim 1 wherein said slide device (20) comprises:
 first and second essentially flat slide plates (54, 55), said first and second slide plates being arranged one on the other and each formed with first and second guide slots (60, 61, 64, 65);
 first and second guide pins (68, 69), said first and second slide guide pins being fixed to the surface of an upper frame member (27), said first and second slide guide pins being received in said first guide slots (60, 64) of said first and second slide plates (54, 55);
 a third slide guide pin (70) fixed to said upper frame (27), said third slide guide pin being received in said second guide slots (61, 69) of said first and second guide plates (54, 55).
5. A disc drive as claimed in claim 4, wherein said first and second movable disc guides (18, 19) are supported on said first and second slide plates (54, 55) respectively, said first guide slots (60, 64) of said first and second slide plates being arranged so that when said first and second slide guide pins (68, 69) approximate the inboard ends of said first slots, said first and second slide plates have been moved in a manner to achieve the maximum separation of said first and second movable disc guides, and so that when said first and second slide guide pins engage the outboard ends of said first slots, said first and second slide plates have been moved in a manner to achieve the minimum separation of said movable disc guides, said minimum separating being essentially equal to said first diameter, said maximum separation being essentially equal to said second diameter.

6. A disc drive as claimed in claim 5, wherein said lock means (21) comprises:

first and second lock plates (73, 74), said first and second lock plates being pivotally mounted on the outboard ends of said first and second slide plates (54, 55) respectively, said first and second lock plates being formed with recesses (71, 72) which respectively engage first and second lock pins (63, 67) mounted on said first and second slide plates when said first and second slide plates assume positions wherein said first and second movable disc guides (18, 19) are separated by said minimum separation and said first and second lock plates are rotated to first locking positions, said first and second lock plates (73, 74) being formed with stopper portions (77, 78) which engage said first and second slide guide pins (68, 69) when said first and second slide plates (54, 55) assume positions wherein said first and second movable disc guides (18, 19) are separated by said maximum separation and wherein said first and second lock plates are rotated to second lock positions.

7. A disc drive as claimed in claim 6 wherein said sensor means (22, 23) comprises first and second probes (22, 23), said first and second probes being mounted on said first and second lock plates (73, 74), said first and second probes assuming positions wherein no contact occurs between said probes and the peripheral edges of a disc (13) having said first diameter, said first and second probes being moved away from each other when a disc (12) having a second diameter is inserted into said guide slot (16), the movement of said first and second probes under such conditions causing said first and second lock plates to rotate away from their respective first locking positions and toward their respective second locking positions.

8. A disc drive as claimed in claim 7 further comprising lever means, said lever means including:

a first angled lever (81) pivotally mounted on said upper frame (27), said first angled lever supporting a switch and actuating lever arrangement (89) which is responsive to the entry of a disc (12, 13) into the drive and which produces a signal indicative of the loading of the disc into said drive ending;

contact means (88, 90) mounted on said first angled lever (81) said contact means being arranged to be engageable with the peripheral edge of the disc (12, 13) which is loaded into said drive:

a second angled lever (85), said second angled lever being operatively connected at one end to one end of said first angled lever (81), said second angled lever including an edge sensing pin (86) engageable with the peripheral edge of the disc which is loaded into said drive;

said first and second angled levers (81, 85) being biased in a manner which causes said contact means (90) and said edge sensing pin (86) to move inwardly and essentially toward a turntable (24) disposed in said drive and on which the disc (12, 13) which is loaded into said drive is disposable.

9. A disc drive as claimed in claim 8 wherein said first angled lever (81) includes a flange member (93), and which further comprises first and second pivotal plate members (56, 57), said first pivotal plate member (57) being pivotally mounted on said first slide plate (55) and bias in a direction to rotate inwardly, said first pivotal plate having a lock member (94) which is engageable with said flange member (93) in a manner to lock said lever means in a predetermined arrangement, said first pivotal plate member being moved in response to the insertion of a disc (12) having a second diameter into said guide slot (16) in a manner to release the engagement between said lock member and said flange.

Patentansprüche

1. PlattenantriebsEinrichtung für Platten zweier verschiedener Durchmesser, mit einem Führungschauch (16), durch welchen eine Platte
(12, 13) in die Antriebseinrichtung eingeführt werden kann, mit einer Sensoreinrichtung (22, 23) zum Messen in die Antriebseinrichtung eingeführter Platten, und mit ersten und zweiten bewegbaren, in der Antriebseinrichtung angeordneten Plattenführungen (18, 19), zwischen denen eine in die Antriebseinrichtung eingeführte Platte (12, 13) durchläuft, zur Positionsführung der Platte (12, 13), während sie durch den Führungsschacht in die Antriebseinrichtung eingeführt wird, gekennzeichnet durch eine mit den ersten und zweiten Plattenführungen (18, 19) verbundene Gleitvorrichtung (20) zur Umstellung der relativen Position der Plattenführungen zwischen einer ersten und zweiten vorbestimmten Position, eine an der Gleitvorrichtung (20) angebrachte Arretierungseinrichtung (21) zum wahlweisen Arretieren der ersten und zweiten Plattenführungen (18, 19) in der ersten und zweiten vorbestimmten Position, wobei die erste Position zur Führung von Platten mit einem ersten Durchmesser (13) und die zweite Position zur Führung von Platten mit einem zweiten Durchmesser (12), größer als der erste Durchmesser, geeignet ist, sowie dadurch, daß die Sensoreinrichtung (22, 23) an der Arretierungseinrichtung (21) angebracht ist und für den Fall, daß der Plattendurchmesser gemäß Messung größer als der erste Durchmesser ist, die Arretierungseinrichtung aus der ersten, für Platten mit dem ersten Durchmesser (13) geeigneten Position freigibt und so die Bewegung der Plattenführungen in die zweite, für Platten mit dem zweiten Durchmesser (12) geeignete Position ermöglicht.

2. Plattenantriebseinrichtung nach Anspruch 1, weiter umfassend eine im Führungsschacht (16) angebrachte, aus einem mittleren Abschnitt und zwei konischen axialen Endabschnitten bestehende Ladewalze (17), wobei der Durchmesser des mittleren Abschnittes kleiner ist als der der axialen Enden der Walze und sich die zwei konischen axialen Endabschnitte vom mittleren Abschnitt zu den Enden hin außen verbreitern, und eine im Führungsschacht (16) angrenzende an die Ladewalze (17) angebrachte Führungsplatte (35) mit einer konkaven Oberfläche, die bezüglich der Ladewalze so angeordnet ist, daß die gerade in die Antriebseinrichtung geladene Platte (12, 13) an einer ersten Oberfläche durch die Führungsplatte und an einer zweiten, gegenüberliegenden Oberfläche durch die Ladewalze kontaktiert wird, wobei die Platte durch die Anordnung der Führungsplatte und der Ladewalze nur an ihren äußeren Randbereichen kontaktiert wird.

3. Plattenantriebseinrichtung nach Anspruch 2, wobei die Führungsplatte (35) im Führungsschacht (16) federnd angebracht ist, so daß sie in Richtung der Laderolle (17) vorgespannt ist, und außerdem zur Aufnahme der konischen axialen Endabschnitte der Ladewalze Aussparungen (35a) aufweist, die von Form und Größe so an die Größe und Form der Ladewalze angepaßt sind, daß dann, wenn die konischen axialen Endabschnitte der Ladewalze in den Aussparungen aufgenommen sind, der Abstand zwischen der Führungsplatte und der Ladewalze zum Laden von Platten mit dem ersten Durchmesser (13) geeignet ist.

4. Plattenantriebseinrichtung nach Anspruch 1, wobei die Gleitvorrichtung (20) erste und zweite, im wesentlichen flache Gleitplatten (54, 55), die übereinander angeordnet sind und jeweils erste und zweite Führungsschlitzte (60, 61, 64, 65) aufweisen, erste und zweite Gleit-Führungsfüllte (68, 69), die an der Oberfläche eines oberen Rahmenteils (27) befestigt sind und von den ersten Führungsschlitzte (60, 64) der ersten und zweiten Gleitplatten (54, 55) aufgenommen werden, und einen dritten Gleit-Führungsstift (70), der an der Oberfläche des oberen Rahmenteils (27) befestigt ist und von den zweiten Führungsschlitzte (61, 65) der ersten und zweiten Gleitplatten (54, 55) aufgenommen wird, umfaßt.

5. Plattenantriebseinrichtung nach Anspruch 4, worin sich die erste und zweite bewegbare Plattenführung (18, 19) auf die erste bzw. zweite Gleitplatte (54, 55) stützen und die ersten Führungsschlitzte (60, 64) der ersten und zweiten Gleitplatte so angeordnet sind, daß für den Fall, daß sich der erste und zweite Gleit-Führungsstift (68, 69) nahe den inneren Enden der ersten Schlitzte befinden, infolge der entsprechend erfolgten Bewegung der ersten und zweiten Gleitplatte der maximalen Abstand zwischen der ersten und zweiten bewegbaren Plattenführung erreicht ist, und daß für den Fall, daß der erste und zweite Gleit-Führungsstift in die äußeren Enden der ersten Schlitzte greifen, infolge der entsprechend erfolgten Bewegung der ersten und zweiten Gleitplatte der minimale Abstand zwischen den bewegbaren Plattenführungen erreicht ist, wobei der minimale Abstand im wesentlichen gleich dem er-
sten Durchmesser, der maximale Abstand im wesentlichen gleich dem zweiten Durchmesser ist.

6. Plattenantriebseinrichtung nach Anspruch 5, wobei die Arretierungs einrichtung (21) erste und zweite Arretierungsplatten (73, 74) umfaßt, die drehbar gelagert auf den Außenseiten der ersten bzw. zweiten Gleitplatte (54, 55) angebracht sind und Aussparungen (71, 72) aufweisen, in welche auf der ersten und zweiten Gleitplatte angebrachte erste bzw. zweite Arretierungsstifte (63, 67) einrasten, wenn die erste und zweite bewegbare Plattenführung (18, 19) infolge der Positionen der ersten und zweiten Gleitplatte den minimalen Abstand haben und die erste und zweite Arretierungsplatten in erster Arretierungsposition greifen sind, und wobei die erste und zweite Arretierungsplatte (73, 74) als Haltevorrichtung ausgebildete Abschnitte (77, 78) aufweisen, die den ersten und zweiten Gleich-Führungsstift (68, 69) einrasten lassen, wenn die erste und zweite bewegbare Plattenführung (18, 19) infolge der Positionen der ersten und zweiten Gleitplatte (54, 55) den maximalen Abstand haben und die erste und zweite Arretierungsplatte in zweiter Arretierungspositionen greifen sind.

7. Plattenantriebseinrichtung nach Anspruch 6, worin die Sensioneineinrichtung (22, 23) auf der ersten und zweiten Arretierungsplatte (73, 74) angebrachte erste und zweite Taster (22, 23) umfaßt, die so angeordnet sind, daß es zu keinem Kontakt zwischen den Tastern und dem Außenrand einer Platte (13) mit dem ersten Durchmesser kommt, da der erste und zweite Taster auseinanderbewegt werden, wenn eine Platte (12) mit dem zweiten Durchmesser in den Führungsschacht (16) einge führt wird, wobei die Bewegung des ersten und zweiten Tasters unter diesen Bedingungen eine Drehung der ersten und zweiten Arretierungsplatte aus ihrer jeweiligen ersten Arretierungsposition in ihre jeweilige zweite Arretierungsposition bewirkt.

8. Plattenantriebseinrichtung nach Anspruch 7 mit einer Hebeleineinrichtung, umfassend einen ersten abgewinkelten Hebel (81), der drehbar gelagert auf dem oberen Rahmen (27) angebracht ist und eine Anordnung (89) aus Schalter und Betätigungshebel trägt, die wiederum auf das Einführen einer Platte (12, 13) in die Antriebseinrichtung reagiert und ein Signal erzeugt, wenn das Laden der Platte in die Antriebseinrichtung beendet ist, eine Kontaktseinrichtung (89, 90), die auf dem ersten abgewin-kelten Hebel (81) angebracht und so angeordnet ist, daß die Außenseite der in die Antriebseinrichtung geladenen Platte (12, 13) in sie einklinken kann, und einen zweiten abgewinkelten Hebel (85), der an einem Ende mit einem Ende des ersten abgewinkelten Hebels (81) verbunden ist und einen Kantenführstoff (86) einschließt, in den die Außenseite der in die Antriebseinrichtung geladenen Platte einklinken kann, wobei der erste und zweite abgewinkelte Hebel (81, 85) so vorgewendet sind, daß sich die Kontaktseinrichtung (90) und der Kantenführstoff (86) nach innen und im wesentlichen auf einen Drehteller (24) zu bewegen, welcher in der Antriebseinrichtung angeordnet ist und auf welchem die in die Antriebseinrichtung geladene Platte (12, 13) angeordnet werden kann.

9. Plattenantriebseinrichtung nach Anspruch 8 mit einem im ersten abgewinkelten Hebel (81) eingeschossenen Flanschteil (93) sowie mit ersten und zweiten drehbar gelagerten Plattenteilen (56, 57), wobei das erste drehbar gelagerte Plattenteil (57) über einen Zapfen auf der ersten Gleitplatte (55) angebracht und so vorge spannt ist, daß es sich nach innen dreht, wobei die erste drehbar gelagerte Platte außerdem ein Arretierteil (94) hat, das zur Arretierung der Hebeleineinrichtung in einer vorbestimmten Anordnung in das Flanschteil (93) greifen kann, und wobei das erste drehbar gelagerte Plattenteil bei Einführung einer Platte (12) mit dem zweiten Durchmesser in den Führungsschacht (16) so bewegt wird, daß sich die Verbindung zwischen dem Arretierteil und dem Flansch löst.

Revedications

1. Dispositif de transport pour des disques ayant un premier et un second diamètres, comprenant:
 - une fente de guidage (16) à travers laquelle un disque (12, 13) doit être introduit dans le dispositif;
 - des organes de détection (22, 23) pour détecter les disques qui sont introduits dans le dispositif;
 - des premiers et des seconds guides disques mobiles (18, 19), disposés à l'intérieur de l'appareil, et entre lesquels passe un disque (12, 13) introduit dans l'appareil, afin de guider la position du disque (12, 13) tandis qu'il est introduit à travers la fente de guidage dans l'appareil; caractérisé en ce qu'il comprend en outre.
- un dispositif coulissant (20) fonctionnellement relié auxdits premiers et seconds guides-disques (18, 19), afin de changer les positions relatives des guides-disques entre des premières et secondes positions prédéterminées;
- des organes de verrouillage (21) fonctionnellement montés sur ledit dispositif coulissant (20) pour bloquer de façon sélective lesdits premiers et seconds guides-disques mobiles (18, 19) dans lesdites premières et secondes positions prédéterminées, ladite première position convenant à guider des disques ayant un premier diamètre (13) et ladite seconde position convenant à guider des disques ayant un second diamètre (12), ledit second diamètre étant supérieur au premier diamètre; et en ce que
- lesdits moyens de détection (22, 23) sont montés sur lesdits moyens de verrouillage (21) et fonctionnent selon que le diamètre du disque est détecté comme étant supérieur audit premier diamètre afin de libérer les moyens de verrouillage depuis ladite première position, qui convient pour des disques ayant le premier diamètre (13), et pour permettre auxdits guides-disques d’être déplacés jusqu’à la seconde position qui convient pour des disques ayant le second diamètre (12).

2. Dispositif selon la revendication 1, comprenant en outre:
- un rouleau de chargement (17), ledit rouleau de chargement étant disposé dans ladite fente de guidage (16), ledit rouleau de chargement ayant une partie centrale et deux parties d’extrémité axiales évasées, ladite partie centrale ayant un diamètre qui est inférieur à celui des extrémités axiales du rouleau, lesdites deux parties d’extrémité axiales évasées s’évasant vers l’extérieur à partir de ladite partie centrale jusqu’auxdites extrémités;
- une plaque-guidé (35), ladite plaque-guidé étant disposée dans ladite fente de guidage (16) de manière à être juxtaposée audit rouleau de chargement (17), ladite plaque-guide ayant une surface concave, ladite plaque-guide étant agencée par rapport audit rouleau de chargement d’une manière suivant laquelle le disque (12, 13) qui est en cours de chargement dans l’appareil est contacté sur une première surface par ladite plaque-guide, et contacté sur une seconde surface opposée par ledit rouleau de chargement, l’agencement de ladite plaque-guide et dudit rouleau de chargement étant tels que le petit disque est contacté uniquement suivant ses parties de bordure périphérique.

3. Appareil selon la revendication 2, dans lequel ladite plaque-guide (35) est montée de manière élastique dans ladite fente-guide (16) d’une manière à être sollicitée en direction dudit rouleau de chargement (17), ladite plaque-guide étant formée avec des évidements (35a) dans lesquels les parties d’extrémité axiales évasées dudit rouleau de chargement peuvent être reçues, lesdits évidements étant conformés et dimensionnés par rapport à la taille et à la forme dudit rouleau de chargement de telle manière que lorsque les parties d’extrémité axiales dudit rouleau de chargement sont reçues dans lesdits évidements, ladite plaque-guide et ledit rouleau de chargement sont écartés d’une distance qui convient au chargement de disques qui ont ledit premier diamètre (13).

4. Appareil selon la revendication 1, dans lequel ledit dispositif coulissant (20) comprend:
- une première et une seconde plaques coulissantes sensiblement planes (54, 55), lesdites premières et secondes plaques coulissantes étant agencées l’une sur l’autre, et étant chacune formée avec les premières et secondes fentes de guidage (60, 61, 64, 65);
- des premiers et seconds ergots de guidage (68, 69), lesdits premiers et seconds ergots de guidage étant fixés sur la surface d’un cadre supérieur (27), lesdits premiers et seconds ergots de guidage étant reçus dans lesdites premières fentes de guidage (60, 64) desdites premières et seconde plaques coulissantes (54, 55);
- un troisième ergot de guidage (70) fixé sur ledit cadre supérieur (27), ledit troisième ergot de guidage étant reçu dans lesdites secondes fentes de guidage (61, 69) desdites premières et seconde plaques de guidage (54, 55).

5. Appareil selon la revendication 4, dans lequel lesdits premier et second guides-disques mobiles (18, 19) sont supportés sur lesdites premières et secondes plaques coulissantes (54, 55) respectivement, lesdites premières fentes de guidage (60, 64) desdites premières et seconde
plaques coulissantes étant agencées de telle sorte que lorsque lesdits premier et second ergots de guidage (88, 69) sont au voisinage des extrémités intérieures desdites premières fentes, lesdites première et seconde plaques coulissantes ont été déplacées de manière à réaliser la séparation maximum desdits premiers et seconds guides-disques mobiles, et de telle sorte que lorsque lesdits premier et second ergots de guidage engagent les extrémités extérieures desdites premières fentes, lesdites première et seconde plaques coulissantes ont été déplacées de manière à réaliser la séparation minimum desdits guides-disques mobiles, ladite séparation minimum étant essentiellement égale audit premier diamètre, et ladite séparation maximum étant essentiellement égale audit second diamètre.

6. Appareil selon la revendication 5, caractérisé en ce que lesdits organes de verrouillage (21) comprennent:

- des premières et des secondes plaques de verrouillage (73, 74), lesdites première et seconde plaques de verrouillage étant montées en pivotement sur les extrémités extérieures desdites premières et secondes plaques de coulissement (54, 55) respectivement, lesdites première et seconde plaques de verrouillage étant formées avec des évidements (71, 72) qui engagent respectivement des premiers et seconds ergots de verrouillage (63, 67) montés sur lesdites premières et secondes plaques de coulissement lorsqu’elles premières et secondes plaques de coulissement occupent des positions dans lesquelles lesdits premiers et secondes guides-disques mobiles (18, 19) sont séparés par un levier écarté minimum et lesdites premières et secondes plaques de verrouillage sont tournées vers des premières positions de blocage,

- lesdites première et seconde plaques de verrouillage (73, 74) étant formées avec des parties d’arrêt (77, 78) et engagent lesdits premiers et seconds ergots de guidage (88, 69) lorsque lesdites premières et secondes plaques coulissantes (54, 55) occupent des positions dans lesquelles lesdits premiers et secondes guides-disques mobiles (18, 19) sont séparés suivant un levier écarté maximum et dans lesquelles lesdites premières et seconde plaques de verrouillage sont tournées vers des secondes positions de blocage.

7. Appareil selon la revendication 6, dans lequel lesdits moyens de détection (22, 23) comprennent un premier et un second détecteurs (22, 23), lesdits premier et second détecteurs étant montés sur lesdites premières et secondes plaques de verrouillage (73, 74), lesdits premier et second détecteurs occupant des positions dans lesquelles il ne se produit aucun contact entre lesdites sondes et les bords périphériques d’un disque (13) ayant ledit premier diamètre, lesdites premières et secondes sondes étant déplacées en éloignement l’une de l’autre lorsqu’un disque (12) ayant un second diamètre est introduit dans ladite fente de guidage (16), le mouvement desdites premières et secondes sondes dans de telles conditions, amenant lesdites premières et secondes plaques de verrouillage à tourner en éloignement de leurs premières positions de verrouillage respectives et en direction de leurs secondes positions de verrouillage respectives.

8. Appareil selon la revendication 7, comprenant en outre des moyens formant levier, lesdits moyens formant levier comprenant:

- un premier levier coudé (81) monté en pivotement sur ledit cadre supérieur (27), ledit premier levier coudé supportant un commutateur et un agencement de levier d’actionnement (89) qui réagit à l’entrée d’un disque (12, 13) dans l’appareil et qui produit un signal qui indique la fin du chargement du disque dans ledit appareil;

- des moyens formant contact (89, 90) montés sur ledit premier levier coudé (81), lesdits moyens formant contact étant agencés de manière à pouvoir être engagés contre le bord périphérique du disque (12, 13) qui est chargé dans ledit appareil;

- un second levier coudé (85), ledit second levier coudé étant fonctionnellement relié à une extrémité dudit premier levier coudé (81), ledit second levier coudé comprenant un doigt (86) de détection de bord, qui peut être engagé contre le bord périphérique du disque qui est chargé dans ledit appareil;

- lesdits premier et second leviers coudés (81, 85) étant sollicité d’une manière qui amène lesdits moyens formant contact (90) et ledit doigt (86) de détection de bord à se déplacer vers l’intérieur et sensiblement en direction d’une table tournante (24) disposée dans ledit appareil et sur laquelle le disque (12, 13) qui est chargé dans ledit appareil peut être
9. Appareil selon la revendication 8, dans lequel ledit premier levier coudé (81) comprend un élément formant bride (93), et qui comprend en outre des première et seconde plaques pivotantes (56, 57) ladite première plaque pivotante (57) étant montée en pivotement sur ladite première plaque coulissante (55) et étant sollicitée dans une direction de manière à tourner vers l’intérieur, ladite première plaque pivotante comportant un organe de verrouillage (94) qui est susceptible d’être engagé avec ledit organe formant bride (93) de manière à bloquer lesdits moyens formant levier dans un agencement prédéterminé, ladite première plaque pivotante étant déplacée en réponse à l’introduction d’un disque (16) ayant un second diamètre dans ladite fente de guidage (16), d’une manière à relâcher l’engagement entre ledit organe de verrouillage et la dite bride.
FIG. 3
FIG. 17
(PRIOR ART)