EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 22.03.95

Int. Cl.: B27M 3/00, B27M 3/18, B27C 7/04, B27F 1/04

Application number: 88890134.5

Date of filing: 03.06.88

Method and apparatus for producing furniture.

Priority: 04.06.87 HU 256087

Date of publication of application: 07.12.88 Bulletin 88/49

Publication of the grant of the patent: 22.03.95 Bulletin 95/12

Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

References cited:
EP-A- 0 146 932
CH-A- 287 643
FR-A- 2 495 045
US-A- 3 955 608

WO-A-82/01766
FR-A- 657 758
US-A- 2 068 625
US-A- 3 128 131

Proprietor: Herényi, Károlyné
Bezerédy u. 4
H-1081 Budapest (HU)

Proprietor: Toth, Gábor
Csányi u. 14
H-1203 Budapest (HU)

Inventor: Herényi, Károlyné
Bezerédy u. 4
H-1081 Budapest (HU)
Inventor: Toth, Gábor
Csányi u. 14
H-1203 Budapest (HU)

Representative: Vogeler, Werner, Dipl.-Ing. et al
Patent- und Rechtsanwälte,
Hansmann Vogeler Dr. Boecker Alber Dr. Strych,
Albert-Rosshaupter-Strasse 65
D-81369 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).
Description

The invention relates to a method for producing furniture, wherein wooden elements of furniture will be produced and fixed to one another. The invention also relates to an apparatus for producing furniture having a tenoning machine and a counter-gauge.

The method and apparatus as mentioned above are well known in the furniture industry. However, the wooden starting material of relatively high quality being necessary for these solutions is quite difficult to obtain nowadays, and the cost of this wooden material is also ever increasing. Therefore, the proportion of materials replacing lumber in the furniture industry constantly increases which has a disadvantageous effect on the esthetics and quality of the furniture produced by this industry.

In our modern, quite mechanized world, besides fulfilling its function, the need for an aesthetic value of the furniture arranged in the flat, in the summer house, in the garden, in fine in the human environment is more and more urging. In the state of the art, this need is not satisfied at all, especially in the case of the so-called rustic or country furniture which could be used as furnishings of e.g. inner living rooms and being in contrast to many neuroticating factors of our contemporary life.

As is mentioned above, the traditional furniture industry requires wood or lumber having a quite high quality. But, because of this reason, the greater part of the wood produced by the forest industry cannot find utilization for the production of furnitures, since only a relatively small amount of the lumber satisfies the measurement and quality requirements of the furniture industry. Accordingly, this intensifies the difficulties as mentioned above.

The main object of the present invention is to provide an apparatus, with the help of which natural wood or lumber can be used as starting material of furnitures. A further object of the invention is to make possible the utilization of a much wider range of wood for furniture production as previously. Still another object of the invention is to provide an assortment of rustic or country furnishings made of natural materials.

For producing furniture tree-trunks or tree branches are used as starting material, they will be disbarked, dried and cut to size; and bores or mortises and/or, on at least one of their ends, tenons fitting into the mortises will be produced in them; and, finally, the furniture will be assembled by inserting the tenons into the mortises.

In a preferred realization of waste material of forestry, especially pruned tree-trunks resulting from clearing tree felling and/or branches of old trees ripe for felling are used as starting material. Tree-trunks or tree branches having a diameter smaller than 20 cm can also be used as starting material.

It is still another preferred realization, wherein the starting material is disbarked directly after winning out the starting material having a living moisture content.

In another preferred realization, the starting material is disbarked and cut and, thereafter, dried and for the drying, microwave energy is used.

It can also be preferred, when the furniture is provided with upholstery preferably made of woven or spun material, especially of natural materials, and the upholstery is fixed onto the furniture elements delimiting upholstered surfaces of the furniture.

It is still another preferred realization, wherein the furniture is provided with at least one wooden board arranged in a longitudinal groove formed in the furniture elements, and the board is preferably made of disbarked and dried planks being planed or moulded on its edges.

An apparatus for producing furniture according to the preamble of claim 1 is known for example from FR-A-657758. The present invention is defined in claim 1.

According to the invention, the tenoning machine and the counter-gauge are formed as stations of the apparatus and each has grips for holding tree-trunks or tree branches during their working process, and at least one of the grips of the tenoning machine and the counter-gauge, respectively, is slideably arranged on frames of the machines, and the slideable grip is pressed with a constant force against the end of the tree-trunk or the tree branch.

In this invention, one of the grips of the tenoning machine and the counter-gauge, respectively, has a turning fork onto which the tree-trunk or the tree branch is connected without rotation, and the other of the grips of them, respectively, has a thrust centre onto which the tree-trunk or the tree branch is rotationally connected.

In this case, it can be preferred, when the thrust centre is connected to the slideable grip of the tenoning machine, and the other grip has a rod being adjustable in longitudinal direction preferably by a screw-and-nut connection and the turning fork is arranged on an end of the rod facing the thrust centre.

In still another preferred embodiment of the apparatus in this invention, the tenoning machine has a rotationally driven milling disk being adjustable perpendicularly to as well as parallelly to the longitudinal axis of the tree-trunk or the tree branch.

It is also preferred, when the counter-gauge has in one of its grips a rod being adjustable in longitudinal direction preferably by a screw-and-nut
connection and the thrust centre is arranged on an end of the rod facing the other grip, and the turning fork being rotate but arrestable in certain angular positions is connected to said other grip, and the counter-gauge has a drill, an axis of which being perpendicular to the longitudinal axis of the tree-trunk or the tree branch.

In this case, it can be preferable, when the grips of the counter-gauge are fixed on a slide bed arranged slideably but arrestable in certain positions on the frame of the counter-gauge.

An embodiment of the invention will be described hereinafter in greater detail by reference to accompanying drawings. In the drawings,

Fig. 1 shows a schematic side elevational view of one of the stations of the apparatus in this invention: that of the tenoning machine, Fig. 2 is the same illustration as in Fig. 1 but for another station: the counter-gauge, Fig. 3 illustrates a preferred realization of the method in this invention.

In accordance with the invention, tree-trunk or tree branches can be made useful which are good for nothing in the traditional lumbering, sylvicultural methods. As is well known, for example, the new afforestation of pine-wood forests must be cleared by felling 5 to 10 years old trees for the better growing of the remaining stand. In most cases, the timber resulting from this clearing felling will even not be gathered and it will never be carried out of the forest. The same happens to the tree branches removed from tree-trunks having high value. According to the known methods, these branches having a diameter of 2 to 20 cm is regarded as waste material. In the sense of the invention, just these trunks and branches will get useful.

According to the invention, the relatively straight trunks and branches having a smaller diameter than 20 cm are selected from among the above mentioned materials and, preferably just on the spot of the felling, the bark will be removed from them, when the trees have the normal living moisture content. The step of disbarking can be realized with the help of a special machine carried onto the spot of felling. Nevertheless, the selected trunks or branches can be transported to the place of further processing and they can be disbarked therein with the aid of the special disbarking machine.

In this example, the disbarked starting material will be cut to size which results in disbarked wooden material cut to size and having a diameter smaller than 20 cm. After this, the wooden material should be dried for which the conventional drying methods can be used. However, it is more convenient to dry the wooden material by exposing it to microwave energy since, in this way, the timber dries quickly and without splits or craks or any deformation or warping. After this, the tenons and mortises accommodating the tenons will be produced, for the purpose of which the apparatus according to this invention can preferably find utilization. The elements formed in this way will be connected to each other by inserting the tenons into the corresponding mortises. The connecting force between the elements can be increased by forming longitudinal incisions in the tenons along their symmetry axes and after inserting the tenons into the mortises, driving a wedge expander into each incision. Further to this, the tenons can be glued into the mortises with which the connecting security between the elements will further be increased.

The elements of the furniture can be provided with a surface coating which can be applied before assembling the elements or even thereafter. This surface treatment can be rendered by applying a wood preservative, laquer layer or color layer. With this surface treatment, the surface quality, the resistance, the cleanability of the furniture elements can be increased or, occasionally, the natural color of the wooden products can be altered, too.

Further to this, the furniture in this invention can be provided with upholstery, for the purpose of which natural materials are preferred. In accordance with this, the upholstery can be made of woven or spun material, for greater demands of leather.

Thanks to the production method of the furniture as described above, a great variability can be rendered with respect not only to the types and sortiment of furnitures but to their measurements, too. The furniture elements formed as above mentioned can be provided as a kind of module elements each tenon of which being insertable into every mortise, with the help of which a great variety of furnitures can be assembled and, thus, special needs and requirements can be fulfilled.

In the apparatus as described in this invention, the tenoning machine as well as the center-gauge are formed as stations of it and, thus, that of the working procedure.

As is shown in Fig. 1, in this exemplified embodiment of the tenoning machine, grips 2 and 3 are provided for holding a wooden material 1. In sense of the invention, grip 3 is slideably arranged on a frame 4 of the tenoning machine, whilst grip 2 is fixed to frame 4. Grip 3 has a thrust centre 5 onto which the other end of wooden material 1 in the form of a tree-trunk or a tree branch is connected. Therefore, wooden material 1 can be rotated in respect to grip 3. In contrast to this, grip 2 has a rod being adjustable in longitudinal direction. This is provided in this embodiment in the form of a screw spindle 8 having a screw-and-nut connec-
motion of wooden material 1.

In Fig. 2, a preferred embodiment of the counter-gauge of this invention is shown. On frame 4, a sliding bed 15 is arranged which can be moved on frame 4 but it can also be fixed thereto. On this sliding bed, grips 2 and 3 are mounted, the longitudinal positions of at least one of them, in this example that of both of them being adjustable in respect to frame 4. Turning fork 7 is, in this embodiment, too, attached to grip 2 and thrust centre 5 to grip 3, but feed motion is in this case not required since, herein, only mortises are to be produced in certain positions. Therefore, turning fork 7 can be moved in respect to grip 2 but it can be arrested with the help of a bolt 16 in certain angular positions. Further to this, a screw spindle 18 turnable with a crank-handle 17 on the inner end of which thrust centre 5 is arranged.

The counter-gauge drilling the mortises as in this invention has a driller 19 which is arranged perpendicularly to the longitudinal axis of wooden material 1 in e. g. a drilling machine 20. Driller 19 is formed as usual in the wooden industry and it provides a mortise into which tenon 14 closely fits.

The described embodiment of the counter-gauge functions as follows.

For clamping wooden material 1, the positions of grip 2 and 3 on sliding bed 15 is adjusted in respect to each other for being a distance between turning fork 7 and thrust centre 5 which is greater than the length of wooden material 1. After this, crank-handle 17 and, with this, screw spindle 18 are turned and, because of the screw-and-nut connection between spindle 18 and grip 3, thrust centre 5 as well as turning fork 7 will be pressed into wooden material 1. This provides a connection between turning fork 7 and wooden material 1 without any relative rotation. After wooden material 1 being clamped as mentioned above, sliding bed 15 will be moved on frame 4 and, with this, the relative position of wooden material 1 to driller 19 will be adjusted. In this position, sliding bed 19 is fixed without movement on frame 4. With driller 19 driven rotationally and drilling machine 20, the mortise will be formed.

The assembly of the wooden elements necessitates more than one mortise in wooden material 1 which, in given case, have a certain angular position, e. g. 90 degrees to each other. In this example, this is achieved with a satisfying accuracy by removing bolt 16 and rotating turning fork 7 an with this, wooden material 1, too, around its own axis. After reaching the next required position, turning fork 7 will again be arrested by bolt 16 and the further rotation of wooden material 1 is prevented. Thereafter, the next mortise can be formed in this position by driller 19 and drilling machine 20 as described above. Of course, sliding bed 15 can
also be moved on frame 4 for determining the position of this mortise.

In Fig. 3, three furniture elements 21, 22 and 23 are shown in perspective view. On each end of furniture element 22, tenons 14 and in furniture elements 21 and 23, mortises 24 are provided, respectively. Tenons 14 are coaxial to mortises 24. Further to this, another mortise 25 being perpendicular to mortise 24 is provided in furniture element 23. In Fig. 3, it is also shown that a kind of upholstery 26 can be provided on furniture element 22. If, e.g., furniture elements 21, 22 and 23 are parts of a chair, furniture elements 21 and 23 can be chair-legs and upholstery 26 can be the sitting surface which is spanned also on a further furniture element being parallel to furniture element 22 and not shown in the drawing. With the help of mortise 25, the connection to the other chair-legs can be provided.

In Fig. 3 is also shown that an incision 27 can be made in tenon 14 into which a wedge expander 28 can be driven after tenon 14 being arranged in mortise 24. With this, the stability of the connection between tenon 14 and mortise 24 can efficiently increased.

As is mentioned above, the described embodiments of the apparatus in this invention are very simple and serve only the illustration of the main ideas realized in this invention. Nevertheless, modern working machines and techniques of the wooden and furniture industries can find utilization. At the same time, however, it will be clear from what has been said above that the invention can also be realized by very simple means and devices.

Claims

1. Apparatus for producing furniture having a tenoning machine and a counter-gauge, wherein the tenoning machine and the counter-gauge are formed as a station of the apparatus, respectively, and each of them has grips for holding ends of tree-trunks or tree branches during their working process, and at least one of the grips is slideably arranged on frames of the tenoning machine and the counter-gauge, respectively, wherein one of the grips of the tenoning machine and the counter-gauge, respectively, has a turning fork onto which the one end of the tree-trunk or the tree branch is connected without rotation, and the other of the grips of them, respectively, has a thrust centre onto which the other end of the tree-trunk or the tree branch is rotationally connected, and wherein the thrust centre is connected to the slideable grip of the tenoning machine, and the other grip has a rod being adjustable in longitudinal direction preferably by a screw-and-nut connection and the turning fork is arranged on an end of the rod facing the thrust centre, characterized in that, the slideable grip (3) is pressed independently of its position on the frame (4) with a constant force against the end of the workpiece by means of a chain-weight arrangement (12, 10), the chain of which is connected to the guiding grip (2) and rolls on a pulley (11) rotatably mounted on the frame (4), and that the workpiece is fed by a fork-tipped lead screw (6) turning in a fixed thread (9) against the weight-loaded pointed sliding grip (2).

2. An apparatus as claimed in Claim 1, characterized in that the tenoning machine has a rotationally driven milling disk (13) being adjustable perpendicularly as well as parallelly to the longitudinal axis of the tree-trunk or the tree branch, and the slideable grip (3) is pressed with a constant force against the end of the tree-trunk or the tree branch.

3. An apparatus as claimed in any one of Claim 1 to 2, characterized in that the counter-gauge has in one of its grips (3) a rod being adjustable in longitudinal direction preferably by a screw-and-nut connection and the thrust centre (5) is arranged on an end of the rod facing the other grip (2), and the turning fork (7) being rotatable but arrestable in certain angular positions is connected to said other grip (2), and the counter-gauge has a drillier (19), an axis of which being perpendicular to the longitudinal axis of the tree-trunk or the tree branch.

4. An apparatus as claimed in Claim 3, characterized in that the grips (2, 3) of the counter-gauge are fixed on a sliding bed (15) arranged slideably but arrestable in certain positions on the frame (4) of the counter-gauge.

Patentansprüche

1. Vorrichtung zur Herstellung von Möbeln, die eine Zapfenschneidemaschine und eine Zapfenlochleere aufweist, wobei die Zapfenschneidemaschine bzw. die Zapfenlochleere als Teil der Vorrichtung ausgebildet sind und beide Einspannklemmen zum Halten der Enden von Baumstümmern oder Baumstämmen während ihres Bearbeitungsprozesses aufweisen, wenigstens eine der Einspannklemmen verschiebbar an den Rahmen der Zapfenschneidemaschine bzw. der Zapfenlochleere angeordnet ist, eine der Einspannklemmen der Zapfenschneidemaschine bzw. der Zapfenlochleere eine Drehgabel aufweist, mit der das eine Ende des Baum-
stammes oder des Baumastes nicht drehbar verbunden ist, bzw. die andere ihrer Einspannklemmen ein Axialdruckzentrum aufweist, mit dem das andere Ende des Baumstammes oder des Baumastes drehbar verbunden ist, das Axialdruckzentrum mit der verschiebbaren Einspannklemme der Zapfenschneidemaschine verbunden ist, die andere Einspannklemme eine Stange aufweist, die in Längsrichtung vorzugsweise mittels einer Schraubenmutterverbindung einstellbar ist, und die Drehgabel an dem Ende der Stange angeordnet ist, das dem Axialdruckzentrum gegenüberliegt, **dadurch gekennzeichnet, daß**

die verschiebbare Einspannklemme (3) unabgehängig von ihrer Lage auf dem Rahmen (4) mittels einer Kettengewichtsanordnung (12, 10) mit einer konstanten Kraft gegen das Ende des Werkstückes gedrückt wird, wobei die Kette mit der verschiebbaren Einspannklemme (3) verbunden ist und auf einer drehbar an dem Rahmen (4) montierten Scheibe (11) abrollt, und daß das Werkstück mittels einer Gabelspitze versehenen Verstellschraubenspin del (6) verschoben wird, die sich in einem befestigten Gewinde (9) gegen die gewichtsbe lastete spitze zulaufende verschiebbare Einspannklemme (3) dreht.

2. Vorrichtung nach Anspruch 1, **dadurch gekennzeichnet, daß**
die Zapfenschneidemaschine einen drehbar angetriebenen Scheibenfräser (13) aufweist, der sowohl senkrecht als auch parallel zur Längsachse des Baumstammes oder des Baumastes verstellbar ist, und daß die verschiebbare Einspannklemme (3) mit einer konstanten Kraft gegen das Ende des Baustammes oder des Baumastes gedrückt wird.

3. Vorrichtung nach einem der Ansprüche 1 oder 2, **dadurch gekennzeichnet, daß**
die Zapfenlochleere in einer ihrer Einspannklemmen (3) eine Stange aufweist, die vorzugsweise in Längsrichtung mittels einer Schraubenmutterverbindung verstellbar ist, daß das Axialdruckzentrum (5) an dem Ende der Stange angeordnet ist, das gegenüber der anderen Einspannklemme (2) liegt, daß die Drehgabel (7), die drehbar, aber in bestimmten Winkelstellungen arretierbar ist, mit der genannten anderen Einspannklemme (2) verbunden ist, und daß die Zapfenlochleere einen Bohrer (19) aufweist, dessen Achse senkrecht zur Längsachse des Baumstammes oder des Baumastes verläuft.

4. Vorrichtung nach Anspruch 3, **dadurch gekennzeichnet, daß**
die Einspannklemmen (2, 3) der Zapfenlochleere an einem Schiebefundament (15) befestigt sind, das verschließbar, aber in gewissen Stellungen an dem Rahmen (4) der Zapfenlochleere arretierbar angeordnet ist.

Revidications

1. Appareil de fabrication de meuble comprenant une machine à faire les tenons et une contre-jauge, dans laquelle la machine à faire les tenons et la contre-jauge constituent un poste respectif de l'appareil, et chacune d'elles comprend des moyens de serrage pour maintenir les extrémités de troncs d'arbre ou de branches d'arbre pendant le travail d'enlèvement de matière, et au moins un des moyens de serrage étant disposé de façon coulissante sur les châssis respectifs de la machine à faire les tenons et de la contre-jauge, dans lequel un des moyens de serrage respectifs de la machine à faire les tenons et de la contre-jauge comportent une fourche tournante à laquelle une extrémité du tronc d'arbre ou de la branche d'arbre est liée sans rotation, et l'autre des moyens de serrage respectifs comporte un centre de poussée auquel l'autre extrémité du tronc d'arbre ou de la branche d'arbre est liée en rotation, et dans lequel le centre de poussée est lié au moyen de serrage coulissant de la machine à faire les tenons, et l'autre moyen de serrage comporte une tige ajustable en direction longitudinale de préférence par une liaison vis-écrou et la fourche tournante est disposée sur une extrémité de la tige faisant face au centre de poussée, caractérisé en ce que le moyen de serrage coulissant (3) appuie avec une force constante contre l'extrémité de la pièce de travail, indépendamment de sa position sur le châssis (4), au moyen d'un dispositif à châne et poids (12, 10), dont la chaîne est liée au moyen de serrage glissant (2) et s'enroule sur une poulie (11) montée en rotation sur le châssis (4), et en ce que la pièce de travail est poussée par une vis d'entraînement (6) à extrémité fourchue tournant dans un filetage fixe (9) à l'endroit du moyen de serrage coulissant pointu (2) chargé par ledit poids.

2. Appareil selon la revendication 1, caractérisé en ce que la machine à faire les tenons comporte un disque de fraisage (13) entraîné en rotation réglable perpendiculairement aussi bien que parallèlement à l'axe longitudinal du
trone d'arbre ou de la branche d'arbre, et en ce que le moyen de serrage coulissant (3) appuie avec une force constante contre l'extrémité du tronc d'arbre ou de la branche d'arbre.

3. Appareil selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la contre-jauge comporte, dans un de ses moyens de serrage (3), une tige réglable en direction longitudinale de préférence par une liaison vis/écrou et en ce que le centre de poussée (5) est disposé sur une extrémité de la tige faisant face à l'autre moyen de serrage (2) et en ce que la fourche tournante (7) peut pivoter mais est indexable dans certaines positions angulaires et est liée audit autre moyen de serrage (2), et en ce que la contre-jauge comporte un foret (19) dont un axe est perpendiculaire à l'axe longitudinal du tronc d'arbre ou de la branche d'arbre.

4. Appareil selon la revendication 3, caractérisé en ce que les moyens de serrage (2, 3) de la contre-jauge sont fixés sur un plateau coulissant (15) disposé de façon coulissante mais indexable dans certaines positions sur le châssis (4) de la contre-jauge.